martin kozak,norbert schönenberger, peyman yousefi, peter

15
EAAC Elba 1 EAAC 2017 Elba, Sept. 25 – 29, 2017 Bunching and Focusing in Dielectric Laser Accelerators Joshua McNeur Martin Kozak,Norbert Schönenberger, Peyman Yousefi, Peter Hommelhoff Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany

Upload: others

Post on 18-May-2022

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Martin Kozak,Norbert Schönenberger, Peyman Yousefi, Peter

EAAC Elba1

EAAC 2017Elba, Sept. 25 – 29, 2017

Bunching and Focusing in Dielectric Laser Accelerators

Joshua McNeur Martin Kozak,Norbert Schönenberger, Peyman Yousefi, Peter Hommelhoff

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany

Page 2: Martin Kozak,Norbert Schönenberger, Peyman Yousefi, Peter

EAAC Elba2

Particle accelerators: from RF to optical/photonic drive?

RF cavity (TESLA, DESY)

Conventional linearaccelerator (RF)

Laser-based dielectricaccelerator (optical)

Based on

Peak field limited by

Max. achievable gradients

(Supercond.) RF cavities Quartz grating structures

Surface breakdown:200 MV/m

Damage threshold:30 GV/m

100 MeV/m 10 GeV/m

Drive period ~300 ps ~5 fs

Page 3: Martin Kozak,Norbert Schönenberger, Peyman Yousefi, Peter

EAAC Elba3

Proposed dielectric structures

YoderRosenzweig,2005

Cowan, 2008

Plettner, Lu, Byer, 2006

… and variants

• Goal: generate a mode that allows momentum transfer from laser field to electrons

• Use first order effect (efficient!)• Second order effects

(ponderomotive) too inefficient

For a review and an extensive list of references, see: R. J. England et al., “Dielectric laser accelerators”,Rev. Mod. Phys. 86, 1337 (2014)

Chang, Solgaard, 2014

Page 4: Martin Kozak,Norbert Schönenberger, Peyman Yousefi, Peter

EAAC Elba4

Acceleration at a dielectric structure / phase mask

Page 5: Martin Kozak,Norbert Schönenberger, Peyman Yousefi, Peter

EAAC Elba5

Dielectric laser acceleration results

Demonstration gradient (2012): 25 MeV/mMax observed: >200 MeV/m (2016), soon expected: 700 MeV/m (ß=0.3)

J. Breuer, P. Hommelhoff, Phys. Rev. Lett. 111, 134803 (2013)

Page 6: Martin Kozak,Norbert Schönenberger, Peyman Yousefi, Peter

EAAC Elba6

Dual-Grating Structure: Dielectric laser acceleration of 60 MeV electrons at Stanford/SLAC

Group of R. L. Byer at NLCTA

E. Peralta et al., Nature 503, 91 (2013)

> 250 MeV/m

More recently @ UCLA Pegasus Lab: 850 MeV/m(see talk by David Cesar, this session)

Page 7: Martin Kozak,Norbert Schönenberger, Peyman Yousefi, Peter

EAAC Elba7

Accelerator on a chip?

Page 8: Martin Kozak,Norbert Schönenberger, Peyman Yousefi, Peter

EAAC Elba8

Acceleration by phase-synchronous propagation

t = 0

t = p/2

t = p

1

2

3

4

acceleration

deceleration

deflection

deflection This example:first spatial harmonic. Analogous for third spatial harmonic.

Page 9: Martin Kozak,Norbert Schönenberger, Peyman Yousefi, Peter

- 9 - J. McNeur, LA3Net 2016

DLA with laser-triggered electron source

• A refurbished SEM (FEI XL30 FEG)• Schottky-emitter, energy up to 30 keV, spot size 3-10 nm

Time-resolved DLA experiment

IR pulse for DLA

DLA experimental setup

Adapted from D.-S. Yang et al., PNAS 107, 14993 (2010).

Page 10: Martin Kozak,Norbert Schönenberger, Peyman Yousefi, Peter

EAAC Elba10

Acceleration by phase-synchronous propagation

t = 0

t = p/2

t = p

1

2

3

4

acceleration

deceleration

deflection

deflection This example:first spatial harmonic. Analogous for third spatial harmonic.

Page 11: Martin Kozak,Norbert Schönenberger, Peyman Yousefi, Peter

EAAC Elba11

Experimental demonstration of DLA focusing of an electron beam

x

z

• Move sample across focused electron beam (in x-direction)• At each x-pos.: measure centroid of deflected (&accelerated) electron beam• Depending on injection phase, focal lengths as small as 200 µm measured• Still inadequate to compensate for DLA-field induced defocusing

Page 12: Martin Kozak,Norbert Schönenberger, Peyman Yousefi, Peter

EAAC Elba

FAUs Lehrstuhl für Laserphysik

Partners/collaborations:

QEM collaborationACHIP collaboration

Ph. Russell, MPLR. L. Byer + coll., Stanford / SLAC

I. Hartl, F. Kärtner, R. Aßmann, DESYR. Holzwarth, MenloSystems

Chr. Lemell, J. Burgdörfer, TU ViennaM. Kling, F. Krausz, LMU/MPQ

E. Riedle, LMUG. G. Paulus, Jena

J. Rosenzweig, P. Musumeci, UCLAM. Stockman, Georgia State

Philip DienstbierChristian HeideTakuya Higuchi

Martin HundhausenJohannes Illmer

Martin KozakAng Li

Joshua McNeurStefan Meier

Anna MittelbachTimo PaschenJürgen Ristein

Constanze SturmAlexander Tafel

Norbert SchönenbergerPhilipp Weber

Peyman YousefiRobert Zimmermann

Former members:A. Aghajani-Talesh J. Breuer P. Dombi D. Ehberger M. Eisele M. Förster R. Fröhlich J. Hammer S. Heinrich J. Hoffrogge H. KauppM. Krüger A. Liehl L. Maisenbacher F. NajafiH. Ramadas T. Sattler Ella Schmidt M. Schenk L. Seitz J.-P. Stein H. Strzalka Y.-H. M. Tan S. Thomas Di Zhang

Page 13: Martin Kozak,Norbert Schönenberger, Peyman Yousefi, Peter

EAAC Elba13

Demonstration of 2-stage acceleration

Image of laser intensity profileson the grating

Energy gain can be doubled or suppresseddepending on the relative phase of the 2 spots

Relative phase of laser spots is controlled withsub-cycle precision via a delay stage in one armof an interferometer

Page 14: Martin Kozak,Norbert Schönenberger, Peyman Yousefi, Peter

EAAC Elba14

Demonstration of 2-stage acceleration

Count rates of accelerated electronswith energy gain >30 eV

• Energy gain twice as large• Linear scaling of energy

J. McNeur, M. Kozak, N. Schoenenberger, K. J. Leedle, H. Deng, A. Ceballos, H. Hoogland, A. Ruehl, I. Hartl, O. Solgaard, J. S. Harris, R. L. Byer, P. Hommelhoff, arXiv:1604.07684

Page 15: Martin Kozak,Norbert Schönenberger, Peyman Yousefi, Peter

EAAC Elba15

Demonstration of 2-stage deflection

Ad

just

able

kn

ife-

edge

• Phase-dependent transverse momentum exchange

• Basis for sub-opticalcycle streaking (w/ shorter interactionlength, uniform fields)

M. Kozak, J. McNeur, K. J. Leedle, N. Schoenenberger, A. Ruehl, I. Hartl, J. S. Harris, R. L. Byer, P. Hommelhoff, Nature Comm. 8, 14342 (2017)