martin bureau, oxford university the tully-fisher relation: across morphological types and redshift...

49
Martin Bureau, Oxford University The Tully-Fisher Relation: Across Morphological Types and Redshift Martin Bureau, Oxford University Plans: Galaxy formation, scaling relations, T-F relation Stellar T-F: data, modeling, V c , S0-S evolution CO T-F: data, V c biases, prospects High-z: local benchmarks, ALMA, Stellar: Michael Williams, Michele Cappellari CO: Timothy Davis, Lisa Young, Katey Alatalo, Leo Blitz Atlas 3D Team NANTEN2: Kazafumi Torii, Satoshi Yoshiike, Selçuk Topal, Yasuo Fukui, NANTEN2 consortium KMOS: Sarah Miller, Mark Sullivan, Roger Davies, UK KMOS consortium

Upload: ethan-cox

Post on 25-Dec-2015

222 views

Category:

Documents


0 download

TRANSCRIPT

Martin Bureau, Oxford University

The Tully-Fisher Relation: Across Morphological Types

and Redshift Martin Bureau, Oxford University

Plans: Galaxy formation, scaling relations, T-F relation Stellar T-F: data, modeling, Vc , S0-S evolution CO T-F: data, Vc biases, prospects High-z: local benchmarks, ALMA, VLT/KMOS Summary

Stellar: Michael Williams, Michele CappellariCO: Timothy Davis, Lisa Young, Katey Alatalo, Leo Blitz

Atlas3D TeamNANTEN2: Kazafumi Torii, Satoshi Yoshiike, Selçuk Topal, Yasuo

Fukui,NANTEN2 consortium

KMOS: Sarah Miller, Mark Sullivan, Roger Davies,UK KMOS consortium

Martin Bureau, Oxford University

Martin Bureau, Oxford University

Plans: Galaxy formation, scaling relations, T-F relation Stellar T-F: data, modeling, Vc , S0-S evolution CO T-F: data, Vc biases, prospects High-z: local benchmarks, ALMA, VLT/KMOS Summary

The Tully-Fisher Relation: Across Morphological Types

and Redshift

Stellar: Michael Williams, Michele CappellariCO: Timothy Davis, Lisa Young, Katey Alatalo, Leo Blitz

Atlas3D TeamNANTEN2: Kazafumi Torii, Satoshi Yoshiike, Selçuk Topal, Yasuo

Fukui,NANTEN2 consortium

KMOS: Sarah Miller, Mark Sullivan, Roger Davies,UK KMOS consortium

Martin Bureau, Oxford University

Hubble Sequence

(Astronomy 01)

E1 E3 E7

S0

S Aa S Ab S Ac S Ad

S Ba S Bb S Bc S Bd

Irr

Mass, velocity dispersion,L-weighted age, density

Gas fraction, rotation, SF

(spheroid)

(disk)

Martin Bureau, Oxford University

Broad Aims

Goals:• Mass assembly history (gas, stars, dark matter)• Chemical enrichment

history (age, metallicity, SFH)

Context:• Hierarchical structure

formation (merging, harassment, ...)• Internal dynamical

evolution (BH/triaxiality-driven, ...)

⇒ Exploit "fossil record" (near-field cosmology)

(HST H

DF)

(SIN

S)

Martin Bureau, Oxford University

Scaling Relations (correlations)

Stellar Evolution:• Colour - mag. diagram

(CMD)• UVX - Mg relation

Galaxy Evolution:• Colour - mag. diagram

(CMD)• Fundamental plane (FP)

Star Formation:• Far infrared - radio

correlation• Kennicutt - Schmidt law (K-

S)

Underlying Physics:• M/L - velocity dispersion• Dark - visible matter

(Mice

la e

t al.

88

)

(Bla

nto

n e

t al.

06

)

(Combes et al. 07)

Martin Bureau, Oxford University

Tully-Fisher: Definition

Definition:• Originally, optical

luminosity (magnitude) vs. HI linewidth

(corrected for disk inclination)

• Generally, any luminosity (stellar mass) vs. any

rotational velocity (total mass)

⇒ Luminous vs. dark matter

Uses:• Distance determination (H0, peculiar velocity field,

…)

⇒ M/L evolution with z (and type)

(zero-point and scatter)

(Bure

au e

t al. 9

6)

Lum

.

V/sin i

Martin Bureau, Oxford University

Tully-Fisher: M/L evolution

M/L:• Stellar populations - Age - Metallicity - Non-Solar abundance

ratio - Star formation history

(SFH) - Initial mass function

(IMF) - …• Dark matter

• Size scale• …

(Gas-rich) disk galaxies

Scaling:• We have: G M / R2 = V2 / R

M α V2 R

• We define: M/L Σ = M / πR2

• We get: L = V4 / πG2 (M/L) Σ

L α V4 (M/L)-1 Σ-1

Martin Bureau, Oxford University

Tully-Fisher: Tracers

Tracer Spirals S0s Ellipticals

Global HI line widths

YES USUALLY NOTALMOST NEVER

Resolved ionised gas

rotation curves

YES SOMETIMES NO

Resolved stellar

rotation curves

(corrected)

YES YES NO

Circular velocity of

mass modelsYES YES YES

Martin Bureau, Oxford University

Stellar + CO T-F: Goals

Goals: M/L evolution Constraints on galaxy

formation through zero-point and scatter

• Probe E-S0-S interface (stellar pops, DM, structure)• Constrain E-S0-S evolution Identical treatment of E/S0/S (avoid systematic biases)

E - S0 - S continuity:

Martin Bureau, Oxford University

Martin Bureau, Oxford University

Plans: Galaxy formation, scaling relations, T-F relation Stellar T-F: data, modeling, Vc, S0-S evolution CO T-F: data, Vc biases, prospects High-z: local benchmarks, ALMA, VLT/KMOS Summary

The Tully-Fisher Relation: Across Morphological Types

and Redshift

Stellar: Michael Williams, Michele CappellariCO: Timothy Davis, Lisa Young, Katey Alatalo, Leo Blitz

Atlas3D TeamNANTEN2: Kazafumi Torii, Satoshi Yoshiike, Selçuk Topal, Yasuo

Fukui,NANTEN2 consortium

KMOS: Sarah Miller, Mark Sullivan, Roger Davies,UK KMOS consortium

Martin Bureau, Oxford University

Stellar T-F: Sample, data

Stellar kinematics: (V, σ, h3, h4)

(Chung e

t al. 0

4)

v

σ

h3

h4

Sample:• 28 edge-on disk

galaxies: 14 S0, 14 Sa-Sc Mostly bright, HSB, field

objects (Bureau & Freeman 1999)

• K-band images (Bureau et al. 06)

• Stellar kinematics (2-3 Re)

(Chung et al. 04)

⇒ Inclination known, need to derive (corrected) rotation velocity

vrms = √(v2 + σ2)

Martin Bureau, Oxford University

* Rotation dominant (esp. in outer parts), so anisotropy effects unimportant (mass-anisotropy degeneracy minimised)

Stellar T-F: Modeling method

Luminous MGE model:

• Multi-Gaussian expansion of image (incl. negative terms)

⇒ Radially constant M/L*

free

Dark NFW halo:• Assumed mass-

concentration relation⇒ Dark halo virial mass MDM

free

JAM dynamical model:

• Jeans axisymmetric modeling

⇒ Radially constant orbital anisotropy βz free

JAM:

(Williams et al. 09)

MDM

M/L*

Martin Bureau, Oxford University

Stellar T-F: Velocity measure

Velocity definition:

Velocities:• Need single measure of

velocity• Flat (or asymptotic) velocity

Systematics:• Past works compare

modeled Vcirc (or Vdrift) of S0s with HI line widths for Ss: significant biases

⇒ Here, compare Vcirc with Vcirc

(Williams et al. 10)

V (

km

s-

1)

R (arcsec)

Martin Bureau, Oxford University

Stellar T-F: Velocity measure

Velocity comparisons:

(Will

iam

s et

al.

10

)

SS0

Vcirc - Vdrift

VHI - Vdrift

S0 (Bedregal et al. 06)

Velocities:• Need single measure of

velocity• Flat (or asymptotic) velocity

Systematics:• Past works compare

modeled Vcirc (or Vdrift) of S0s with HI line widths for Ss: significant biases

⇒ Here, compare Vcirc with Vcirc

Martin Bureau, Oxford University

Stellar T-F: Velocity measure

VLA+ATCA:(C

hung e

t al. 0

6,

12

)Velocities:• Need single measure of

velocity• Flat (or asymptotic) velocity

Systematics:• Past works compare

modeled Vcirc (or Vdrift) of S0s with HI line widths for Ss: significant biases

⇒ Here, compare Vcirc with Vcirc

Martin Bureau, Oxford University

Stellar T-F: S0 vs Sab

T-F relation: K-band (14 S0 + 14 Sa-Sc, mostly field spirals) (K-band; 2-3 Re stellar kinematics)

S0 vs Sab:• Large offset to Sc-Sd T-F

relation for both S0 and Sab

• S0 fainter than Sab by 0.50 ± 0.15 mag at K

(identical treatment) (smaller than previous

studies)

Evolution:• Fading timescale ≈1 Gyr, but S0 up to z≈1

⇒ Passive evolution (exclusively) ruled out

(Williams et al. 10)

S0S

Martin Bureau, Oxford University

Baryonic T-F: S0 vs Sab

Baryonic and “total” T-F:

• S0 and Sab still slightly offset when considering stellar mass

(0.2 dex) (worse if gas added)

• S0 – Sab offset unchanged for dynamical mass

(although Mdyn rather uncertain)

• If S0 – Sab Mdyn offset is true, then “broken homology”

(S0 more compact by 20%)

⇒ S0 not simply S fading… dynamical “processing” required

(Will

iam

s et

al.

10

)

M*

Mdyn

S0S

T-F relation: M* and Mdyn

Martin Bureau, Oxford University

Baryonic T-F: S0 vs Sab

T-F relation: M* and Mdyn

Baryonic and “total” T-F:

• S0 and Sab still slightly offset when considering stellar mass

(0.2 dex) (worse if gas added)

• S0 – Sab offset unchanged for dynamical mass

(although Mdyn rather uncertain)

• If S0 – Sab Mdyn offset is true, then “broken homology”

(S0 more compact by 20%)

⇒ S0 not simply S fading… dynamical “processing” required

M α V2 R

M α V4 (M/L)-1 Σ-

1

Martin Bureau, Oxford University

Martin Bureau, Oxford University

Plans: Galaxy formation, scaling relations, T-F relation Stellar T-F: data, modeling, Vc , S0-S evolution CO T-F: data, Vc biases, prospects High-z: local benchmarks, ALMA, VLT/KMOS Summary

The Tully-Fisher Relation: Across Morphological Types

and Redshift

Stellar: Michael Williams, Michele CappellariCO: Timothy Davis, Lisa Young, Katey Alatalo, Leo Blitz

Atlas3D TeamNANTEN2: Kazafumi Torii, Satoshi Yoshiike, Selçuk Topal, Yasuo

Fukui,NANTEN2 consortium

KMOS: Sarah Miller, Mark Sullivan, Roger Davies,UK KMOS consortium

Martin Bureau, Oxford University

CO T-F

Tracer Spirals S0s Ellipticals

Global HI line widths

YES USUALLY NOTALMOST NEVER

Resolved ionised gas

rotation curves

YES SOMETIMES NO

Resolved stellar

rotation curves

(corrected)

YES YES NO

Circular velocity of

mass modelsYES YES YES

Martin Bureau, Oxford University

CO T-F

Tracer Spirals S0s Ellipticals

Global CO line widths

YES SOMETIMES SOMETIMES

Global HI line widths

YES USUALLY NOTALMOST NEVER

Resolved ionised gas

rotation curves

YES SOMETIMES NO

Resolved stellar

rotation curves

(corrected)

YES YES NO

Circular velocity of

mass modelsYES YES YES

Martin Bureau, Oxford University

Possible Pitfalls:

• CO may not extend to flat part of rotation curve

• Geometry and inclination ill-defined

• CO-rich populations unrepresentative of general galaxy population (biased)

• …

CO T-F: Caveats and pitfalls

(Young e

t al.

11

)(Y

oung e

t al.

11

)

Martin Bureau, Oxford University

Sample selection:• MK < -21.5• D < 41 Mpc• |δ – 29º| < 35º , |b| > 15º• All E/S0s, no spiral structure

Data:• SAURON optical wide-field

IFU• SDSS/INT optical + 2MASS

NIR imaging• IRAM 30m CO (1-0)+(2-1) +

CARMA CO (1-0) follow-up• WSRT HI (δ > 10º, excl.

Virgo) Various archives

(XMM, Chandra, GALEX, HST, Spitzer, …)

RedRed

BlueBlue

Mr

CO T-F: Atlas3D survey

Atlas3D

g-r

⇒ 260 galaxies

(Cappella

ri et a

l. 1

1)

Martin Bureau, Oxford University

CO T-F: Single-dish survey

IRAM 30m Survey:• CO(1-0,2-1), 23/12”

FWHM• 260 Atlas3D E/SOs• Sensitivity: 3 mK (30 km

s-1) 3 x 107 M⊙

Results:• 22% detection rate• MH2 = 107.1-9.3 M⊙

• CO(2-1)/CO(1-0) ≈ 1 - 2 Largely independent of: luminosity, dynamics

(λR),

environment (Virgo), …

High S/N:

Low S/N:

(Combes, Young & Bureau 07; Young et al. 11)

Martin Bureau, Oxford University

CO T-F: Single-dish survey

IRAM 30m Survey:• CO(1-0,2-1), 23/12”

FWHM• 260 Atlas3D E/SOs• Sensitivity: 3 mK (30 km

s-1) 3 x 107 M⊙

Results:• 22% detection rate• MH2 = 107.1-9.3 M⊙

• CO(2-1)/CO(1-0) ≈ 1 - 2 Largely independent of: luminosity, dynamics

(λR),

environment (Virgo), …

Optical CMD + CO:

(Young et al. 11, 13)

Martin Bureau, Oxford University

CO T-F: Inclination measures

Stellar:• Galaxy axis ratio (intrinsic thickness;

c/a=0.34) JAM best-fit inclination

(Molecular) Gas:• Unsharp-masked image ellipse fitting Tilted-ring model best-fit

inclination

⇒ Error not strongly dependent on inclination

Stellar i :

(Davis e

t al.

11

a)

(Cappella

ri et a

l. 1

0)

Martin Bureau, Oxford University

CO T-F: Inclination measures

H2 - stars

Misalignment angle

(Davis

et

al. 1

1b)

Atlas3D (CARMA):• H2 and stars often

misaligned: ≥1/3 external

(accretion/cooling) ≤2/3 internal (stellar mass

loss)

• Always aligned in clusters• Randomly misaligned in

field

⇒ Increased scatter (and bias)

in field ?

(Ala

talo

et

al. 1

2)

Martin Bureau, Oxford University

CO T-F: Inclination measures

Stellar:• Galaxy axis ratio (intrinsic thickness;

c/a=0.34) JAM best-fit inclination

(Molecular) Gas:• Unsharp-masked image ellipse fitting Tilted-ring model best-fit

inclination

⇒ Error not strongly dependent on inclination

(Molecular) gas i :

(Davis e

t al.

11

a)

(Cappella

ri et a

l. 1

0)

Martin Bureau, Oxford University

CO T-F: Velocity measure

Selection:• Double-horn profiles

likely to reach Vflat

(imperfect diagnostic)

• CO traces Vflat globally

(not Vpeak)

• CO traces the circular velocity locally

⇒ CO excellent kinematic tracer

Integrated profiles : (Y

oung e

t al. 1

1)

Martin Bureau, Oxford University

CO T-F: Velocity measure

CO vs. Ionised Gas:• CO rotating faster

(colder) then ionised gas

(and stars)• Nearly perfect tracer of

the circular velocity

• Better (and excellent) tracer of dynamical mass

✗ : BIMA CO (1-0) --- : SAURON JAM model + : SAURON stars + : SAURON ionised gas

(Davis et al. 12)

Martin Bureau, Oxford University

CO T-F: Results

CO Tully-Fisher:• Many (potential) pitfalls • Many better than

expected• Many simple

workarounds

• Slope and zero-point robustly recovered• Standard intrinsic

scatter

⇒ Stellar / Jeans T-F easily recovered⇒ No or minimum efforts !⇒ Great prospect to probe M/L(z) with

LMT+ALMA…

CO Tully-Fisher relations:

(Davis et al. 11a)

Martin Bureau, Oxford University

CO T-F: Results

ETG/FR vs Sc:• Sc follow spirals in HI • ETG/FR fainter than Sc

by 1.0 ± 0.1 mag at K-band

(identical treatment)• Consistent with

Williams et al.’s 0.5 mag at K-band offset for Sab

(consistent with past work)

⇒ CO T-F easily recovered across all Hubble types

(and environments)

CO Tully-Fisher relations:

(Chung et al., in prep)

Martin Bureau, Oxford University

CO T-F

Tracer Spirals S0s Ellipticals

Global CO line widths

YES SOMETIMES SOMETIMES

Global HI line widths

YES USUALLY NOTALMOST NEVER

Resolved ionised gas

rotation curves

YES SOMETIMES NO

Resolved stellar

rotation curves

(corrected)

YES YES NO

Circular velocity of

mass modelsYES YES YES

Martin Bureau, Oxford University

CO T-F

Tracer Spirals S0s Ellipticals

Global CO line widths

YES YES YES

Global HI line widths

YES USUALLY NOTALMOST NEVER

Resolved ionised gas

rotation curves

YES SOMETIMES NO

Resolved stellar

rotation curves

(corrected)

YES YES NO

Circular velocity of

mass modelsYES YES YES

Martin Bureau, Oxford University

Martin Bureau, Oxford University

Plans: Galaxy formation, scaling relations, T-F relation Stellar T-F: data, modeling, Vc , S0-S evolution CO T-F: data, Vc biases, prospects High-z: local benchmarks, ALMA, VLT/KMOS Summary

The Tully-Fisher Relation: Across Morphological Types

and Redshift

Stellar: Michael Williams, Michele CappellariCO: Timothy Davis, Lisa Young, Katey Alatalo, Leo Blitz

Atlas3D TeamNANTEN2: Kazafumi Torii, Satoshi Yoshiike, Selçuk Topal, Yasuo

Fukui,NANTEN2 consortium

KMOS: Sarah Miller, Mark Sullivan, Roger Davies,UK KMOS consortium

Martin Bureau, Oxford University

CO T-F: Local benchmark

Existing work:• Number of studies and

objects limited (Dickey, Lavezzi, Sofue, Tutui, …)

• Large single dishes or interferometry

⇒ Non-optimal datasets⇒ Hard to compare with

future high-z work

CO Tully-Fisher relations:

(Lavezzi & Dickey 1998)

(Dickey & Kazes 1992)(Schoeniger & Sofue 1997)

Martin Bureau, Oxford University

CO T-F: Local benchmark

NANTEN2:• 4m mm/sub-mm dish,

Atacama• CO(1-0) + (2-1) receivers (1 GHz ≈ 2600 km s-1

bandwidth) (61 kHz ≈ 0.15 km s-1

resolution)• Small consortium

⇒ Large beam, 170” at CO(1-0)

(entire galaxies)

⇒ Extensive, flexible scheduling

NANTEN2:

Martin Bureau, Oxford University

CO T-F: Local benchmark

Nearby galaxy survey:• Pilot observations: - 30+ galaxies observed (≈40 min on-source; single pointing) - Mosaics straightforward (few attempted)• Full survey: - 250+ “full” galaxies (≈3

yrs) - Preferably no CO

detection, (non-TF) accurate

distance

⇒ z = 0 benchmark (star formation, gas-to-dust ratio,

…)

NANTEN2:

(Yoshiike et al., in prep)

Martin Bureau, Oxford University

CO T-F: Local benchmark

Nearby galaxy survey:• Pilot observations: - 30+ galaxies observed (≈40 min on-source; single pointing) - Mosaics straightforward (few attempted)• Full survey: - 250+ “full” galaxies (≈3

yrs) - Preferably no CO

detection, (non-TF) accurate

distance

⇒ z = 0 benchmark (star formation, gas-to-dust ratio,

…)

NANTEN2:

(Yoshiike et al., in prep)

Martin Bureau, Oxford University

CO T-F: Intermediate z

ALMA:• 50 x 12m dishes to 16 km• 12 x 7m dishes compact

array• 4 x 12m dishes total power

• 10 bands, 30 - 950 GHz (bands 3, 6, 7, 9: cycles

0+1) (bands 4, 8, 10: in

progress) (bands 1, 2, 5: ???)

⇒ Detect CO or CII in MW-like galaxy at z = 3 in 24 hr

(z = 1 in 1 hr?)

LMT + GBT promising

ALMA:

Martin Bureau, Oxford University

CO T-F: Intermediate z

ALMA:• CO(1-0): Band 3: z = 0.0 –

0.4 Band 2: z = 0.3 –

0.7 Band 1: z = 1.6 –

3.7• CO(2-1): Band 6: z = 0.0 –

0.1 Band 5: z = 0.1 –

0.4 Band 4: z = 0.4 –

0.8 Band 3: z = 1.0 –

1.7 Band 2: z = 1.6 –

2.4 Band 1: z = 4.1 –

6.4

⇒ Great T-F machine (spatially-resolved or

not) ⇒ Need better

understanding of CO(2-1)

ALMA:

QSO at z = 4.4, CII 158 μm (unresolved)

Spiral at z = 0.0, optical, CO(2-1), cont. + CO(6-5)

(ESO

)(E

SO

)

Martin Bureau, Oxford University

CO T-F: Intermediate z

ALMA:• CO(1-0): Band 3: z = 0.0 –

0.4 Band 2: z = 0.3 –

0.7 Band 1: z = 1.6 –

3.7• CO(2-1): Band 6: z = 0.0 –

0.1 Band 5: z = 0.1 –

0.4 Band 4: z = 0.4 –

0.8 Band 3: z = 1.0 –

1.7 Band 2: z = 1.6 –

2.4 Band 1: z = 4.1 –

6.4

⇒ Great T-F machine (spatially-resolved or

not) ⇒ Need better

understanding of CO(2-1)

CARMA:(EGNoG survey: spirals at z = 0.3)

(Bauermeister et al. 13)

Martin Bureau, Oxford University

Hα T-F: Local benchmark

Existing work:• Large number of

(long-)slit spectroscopic studies

(Mathewson et al., Courteau, …)

• Few integral-field studies (IFU, Fabry-Perot, …)

Environment independent,

excellent “beam”

⇒ Datasets available

⇒ IFU groundwork incomplete

(simulate higher z IFU work)

Hα Tully-Fisher relations:

(EG

G, C

orn

ell U

.)

(C. Flynn)

Martin Bureau, Oxford University

Hα T-F: Local benchmark

Hα velocity fields:

(Chemin et al. 2005)

(Epinet et al. 2009)

Existing work:• Large number of

(long-)slit spectroscopic studies

(Mathewson et al., Courteau, …)

• Few integral-field studies (IFU, Fabry-Perot, …)

Environment independent,

excellent “beam”

⇒ Datasets available

⇒ IFU groundwork incomplete

(simulate higher z IFU work)

Martin Bureau, Oxford University

Hα T-F: Intermediate z

KMOS:• 2nd generation VLT instrument• 24 deployable IFUs over 7.2’

FOV (2.8” x 2.8”, 14 x 14 spaxels)• JHK bands, R ≈ 3500

• UK: Durham, Oxford, UKATC Germany: MPE, Munich Obs,

ESO• 250 GTO nights, 120 for UK

⇒ Galaxy evolution from z = 1 to 10 (SFH, K-S, mergers, Mdyn, …)

VLT KMOS:

(MPE)

Martin Bureau, Oxford University

Hα T-F: Intermediate z

KMOS UK GTO:• Large z = 0.5 - 3.0 survey (Oxford, Durham?, MPE?)• Pilot: ≈20-30 objects per

bin 3 redshifts (0.8, 1.5,

2.4) 2 morphological bins• Total: ≈1000 galaxies ? CANDELS fields (+ different

environments)

⇒ Adapt current (z = 0) tools⇒ Tully-Fisher (galaxy)

evolution at intermediate redshifts

Mid-z galaxy survey:

(Förster Schreiber et al. 2009)

(Miller et al. 12)

Martin Bureau, Oxford University

Hα T-F: Intermediate z

Mid-z galaxy survey:

(Miller et al. 2011)

KMOS UK GTO:• Large z = 0.5 - 3.0 survey (Oxford, Durham?, MPE?)• Pilot: ≈20-30 objects per

bin 3 redshifts (0.8, 1.5,

2.4) 2 morphological bins• Total: ≈1000 galaxies ? CANDELS fields (+ different

environments)

⇒ Adapt current (z = 0) tools⇒ Tully-Fisher (galaxy)

evolution at intermediate redshifts

(Koekemoer et al. 2011)

Martin Bureau, Oxford University

Martin Bureau, Oxford University

Plans: Galaxy formation, scaling relations, T-F relation Stellar T-F: data, modeling, Vc , S0-S evolution CO T-F: data, Vc biases, prospects High-z: local benchmarks, ALMA, VLT/KMOS Summary

The Tully-Fisher Relation: Across Morphological Types

and Redshift

Stellar: Michael Williams, Michele CappellariCO: Timothy Davis, Lisa Young, Katey Alatalo, Leo Blitz

Atlas3D TeamNANTEN2: Kazafumi Torii, Satoshi Yoshiike, Selçuk Topal, Yasuo

Fukui,NANTEN2 consortium

KMOS: Sarah Miller, Mark Sullivan, Roger Davies,UK KMOS consortium

Martin Bureau, Oxford University

T-F Conclusions

HI: - Trivial locally for late-type galaxies

⇒ Only exceptionally in early-types, high-density environments

⇒ Impossible to mid-z until SKA

Stars: - JAM successful; 2 good tracer of enclosed mass; Vcirc reliable

⇒ Possible for all morphological types, environments

⇒ Always time-consuming, impossible beyond local universe

CO: - Limited work locally; needs to be expanded

⇒ Possible for all morphological types, environments

⇒ Routine to intermediate z with ALMA + LMT

Hα: - Extensive work locally; needs to be expanded to IFUs

⇒ Difficult in early-types, ok for all environments

⇒ Routine to intermediate z with 2nd generation 8m telescopes