marsbugs vol. 12, no. 5 - lyon college: liberal arts...

13
Marsbugs: The Electronic Astrobiology Newsletter Volume 12, Number 5, 8 February 2005 Editor/Publisher: David J. Thomas, Ph.D., Science Division, Lyon College, Batesville, Arkansas 72503-2317, USA. [email protected] Marsbugs is published on a weekly to monthly basis as warranted by the number of articles and announcements. Copyright of this compilation exists with the editor, but individual authors retain the copyright of specific articles. Opinions expressed in this newsletter are those of the authors, and are not necessarily endorsed by the editor or by Lyon College. E-mail subscriptions are free, and may be obtained by contacting the editor. Information concerning the scope of this newsletter, subscription formats and availability of back-issues is available at http://www.lyon.edu/projects/marsbugs. The editor does not condone "spamming" of subscribers. Readers would appreciate it if others would not send unsolicited e-mail using the Marsbugs mailing lists. Persons who have information that may be of interest to subscribers of Marsbugs should send that information to the editor. Astronomers using the Keck I telescope in Hawaii are learning much more about a strange, thermal "hot spot" on Saturn that is located at the tip of the planet's south pole. In what the team is calling the sharpest thermal views of Saturn ever taken from the ground, the new set of infrared images suggest a warm polar vortex at Saturn's south pole—the first to ever be discovered in the solar system. This warm polar cap is home to a distinct compact hot spot, believed to contain the highest measured temperatures on Saturn. A paper announcing the results appears in the February 4th issue of Science. Additional information is available at http://www2.keck.hawaii.edu/news/science/saturn/. [http://www2.keck.hawaii.edu/news/science/saturn/saturn2004a.jpg] Articles and News Page 1 MELTING MARS From Astrobiology Magazine Page 2 TITAN: A WORLD OF ITS OWN By Seth Shostak Page 2 HIGH VOLTAGE MARS By Leslie Mullen Page 3 ASTRONOMERS DISCOVER BEGINNINGS OF "MINI" SOLAR SYSTEM NASA/JPL release 2005-022 Announcements Page 4 JOIN THE CELEBRATION OF NATURAL SELECTION: DARWIN DAY AT THE ESSIG IS TUESDAY, FEBRUARY 8 By Barry Bergman Page 4 THE JOINT INTERNATIONAL SYMPOSIA FOR SUBSURFACE MICROBIOLOGY (ISSM 2005) AND ENVIRONMENTAL BIOGEOCHEMISTRY (ISEB XVII) American Society for Microbiology release Mission Reports Page 5 PUBLICATION OF ESA/UK COMMISSION OF INQUIRY INTO BEAGLE 2 British National Space Centre (BNSC) release 2005/38 Page 5 CASSINI SIGNIFICANT EVENTS FOR 27 JANUARY - 2 FEBRUARY 2005 NASA/JPL release Page 7 MARS EXPLORATION ROVERS UPDATES NASA/JPL releases Page 7 GREEN LIGHT FOR DEPLOYMENT OF ESA’S MARS EXPRESS RADAR ESA release 08-2005 Page 9 MARS GLOBAL SURVEYOR IMAGES NASA/JPL/MSSS release Page 9 MARS ODYSSEY THEMIS IMAGES NASA/JPL/ASU release MELTING MARS From Astrobiology Magazine Based on an AGU report 3 February 2005 Injecting synthetic "super" greenhouse gases into the Martian atmosphere could raise the planet's temperature enough to melt its polar ice caps and

Upload: vothuan

Post on 21-Apr-2018

215 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Marsbugs Vol. 12, No. 5 - Lyon College: Liberal Arts …web.lyon.edu/projects/marsbugs/2005/20050208.doc · Web viewIn the dim light of the outer solar system, Cassini gazed back

Marsbugs: The Electronic Astrobiology NewsletterVolume 12, Number 5, 8 February 2005

Editor/Publisher: David J. Thomas, Ph.D., Science Division, Lyon College, Batesville, Arkansas 72503-2317, USA. [email protected]

Marsbugs is published on a weekly to monthly basis as warranted by the number of articles and announcements. Copyright of this compilation exists with the editor, but individual authors retain the copyright of specific articles. Opinions expressed in this newsletter are those of the authors, and are not necessarily endorsed by the editor or by Lyon College. E-mail subscriptions are free, and may be obtained by contacting the editor. Information concerning the scope of this newsletter, subscription formats and availability of back-issues is available at http://www.lyon.edu/projects/marsbugs. The editor does not condone "spamming" of subscribers. Readers would appreciate it if others would not send unsolicited e-mail using the Marsbugs mailing lists. Persons who have information that may be of interest to subscribers of Marsbugs should send that information to the editor.

Astronomers using the Keck I telescope in Hawaii are learning much more about a strange, thermal "hot spot" on Saturn that is located at the tip of the planet's south pole. In what the team is calling the sharpest thermal views of Saturn ever taken from the ground, the new set of infrared images suggest a warm polar vortex at Saturn's south pole—the first to ever be discovered in the solar system. This warm polar cap is home to a distinct compact hot spot, believed to contain the highest measured temperatures on Saturn. A paper announcing the results appears in the February 4th issue of Science. Additional information is available at http://www2.keck.hawaii.edu/news/science/saturn/. [http://www2.keck.hawaii.edu/news/science/saturn/saturn2004a.jpg]

Articles and News

Page 1 MELTING MARSFrom Astrobiology Magazine

Page 2 TITAN: A WORLD OF ITS OWNBy Seth Shostak

Page 2 HIGH VOLTAGE MARSBy Leslie Mullen

Page 3 ASTRONOMERS DISCOVER BEGINNINGS OF "MINI" SOLAR SYSTEMNASA/JPL release 2005-022

Announcements

Page 4 JOIN THE CELEBRATION OF NATURAL SELECTION: DARWIN DAY AT THE ESSIG IS TUESDAY, FEBRUARY 8 By Barry Bergman

Page 4 THE JOINT INTERNATIONAL SYMPOSIA FOR SUBSURFACE MICROBIOLOGY (ISSM 2005) AND ENVIRONMENTAL BIOGEOCHEMISTRY (ISEB XVII)American Society for Microbiology release

Mission Reports

Page 5 PUBLICATION OF ESA/UK COMMISSION OF INQUIRY INTO BEAGLE 2British National Space Centre (BNSC) release 2005/38

Page 5 CASSINI SIGNIFICANT EVENTS FOR 27 JANUARY - 2 FEBRUARY 2005NASA/JPL release

Page 7 MARS EXPLORATION ROVERS UPDATESNASA/JPL releases

Page 7 GREEN LIGHT FOR DEPLOYMENT OF ESA’S MARS EXPRESS RADARESA release 08-2005

Page 9 MARS GLOBAL SURVEYOR IMAGESNASA/JPL/MSSS release

Page 9 MARS ODYSSEY THEMIS IMAGESNASA/JPL/ASU release

MELTING MARSFrom Astrobiology MagazineBased on an AGU report3 February 2005

Injecting synthetic "super" greenhouse gases into the Martian atmosphere could raise the planet's temperature enough to melt its polar ice caps and create conditions suitable for sustaining biological life. In fact, a team of researchers suggests that introducing global warming on the Red Planet may be the best approach for warming the planet's frozen landscape and turning it into a habitable world in the future. Margarita Marinova, then at the NASA Ames Research Center, and colleagues propose that the same types of atmospheric interactions that have led to recent surface temperature warming trends on Earth could be harnessed on Mars to create another biologically hospitable environment in the solar system. In the February issue of Journal of Geophysical Research-Planets, published by the American Geophysical Union, the researchers report on the thermal energy absorption and the potential surface temperature effects from introducing man-made greenhouse gases strong enough to melt the carbon dioxide and ice on Mars.

"Bringing life to Mars and studying its growth would contribute to our understanding of evolution, and the ability of life to adapt and proliferate on other worlds," Marinova said. "Since warming Mars effectively reverts it to

its past, more habitable state, this would give any possibly dormant life on Mars the chance to be revived and develop further."

The authors note that artificially created gases—which would be nearly 10,000 times more effective than carbon dioxide—could be manufactured to have minimal detrimental effects on living organisms and the ozone layer while retaining an exceptionally long lifespan in the environment. They then created a computer model of the Martian atmosphere and analyzed four such gases, individually and in combination, that are considered the best candidates for the job.

Their study focused on fluorine-based gases, composed of elements readily available on the Martian surface, that are known to be effective at absorbing thermal infrared energy. They found that a compound known as octafluoropropane, whose chemical formula is C3F8, produced the greatest warming, while its combination with several similar gases enhanced the warming even further.

The researchers anticipate that adding approximately 300 parts per million of the gas mixture in the current Martian atmosphere, which is the equivalent of nearly two parts per million in an Earth- like atmosphere, would spark a runaway greenhouse effect, creating an instability in the polar ice sheets that would slowly evaporate the frozen carbon dioxide on the planet's surface.

Page 2: Marsbugs Vol. 12, No. 5 - Lyon College: Liberal Arts …web.lyon.edu/projects/marsbugs/2005/20050208.doc · Web viewIn the dim light of the outer solar system, Cassini gazed back

Marsbugs: The Electronic Astrobiology Newsletter, Volume 12, Number 5, 8 February 2005

They add that the release of increasing amounts of carbon dioxide would lead to further melting and global temperature increases that could then enhance atmospheric pressure and eventually restore a thicker atmosphere to the planet.

Such a process could take centuries or even millennia to complete but, because the raw materials for the fluorine gases already exist on Mars, it is possible that astronauts could create them on a manned mission to the planet. It would otherwise be impossible to deliver gigaton-sized quantities of the gas to Mars. The authors conclude that introducing powerful greenhouse gases is the most feasible technique for raising the temperature and increasing the atmospheric pressure on Mars, particularly when compared to other alternatives like sprinkling sunlight-absorbing dust on the poles or placing large mirrors in the planet's orbit.

Read the original article at http://www.astrobio.net/news/article1427.html.

An additional article on this subject is available at http://www.space.com/scienceastronomy/mars_terraform_050203.html.

TITAN: A WORLD OF ITS OWNBy Seth ShostakFrom Space.com3 February 2005

OK, everyone anticipated that Titan was going to be interesting, but few expected it to be weirder than Michael Jackson. Two weeks ago, as the Huygens probe parachuted through this distant moon's oily, pumpkin skies, a less-than-consumer-grade 0.04 megapixel camera was trained on the landscape ten miles below. It saw a hostile shoreline, riven with tributaries, and what appears to be a (possibly dry) lake.

Imagine the luck: a shoreline and a lake. Try dropping a penny on a big map of your home state, and see how often it lands on a bit of shoreline topography. Not often, unless you live in Minnesota. The implication is that Titan is pockmarked with ponds; it's Minnesota trapped in the mother of all winters. Daytime temperatures are an unpleasant -180°C (-290°F).

Read the full article at http://www.space.com/searchforlife/seti_titan_shostak_050203.html.

HIGH VOLTAGE MARSBy Leslie MullenFrom Astrobiology Magazine7 February 2005

Mars is often enveloped by planet-wide dust storms—their biting winds choke the air and scour the arid surface. Tornado-like dust devils dance across the planet so frequently that their numerous tracks crisscross each other, tracing convoluted designs in the red soil. Such weather conditions would make life a hardship for any future explorers on Mars. According to Sushil Atreya, Professor and Director of the Planetary Science Laboratory at the University of Michigan, these storms also may have prevented life from ever existing on the martian surface.

Dust particles in a storm create an electrostatic charge whenever they strike one another or the ground. In field experiments led by William Farrell of NASA's Goddard Space Flight Center, electrical fields of 10 kilovolts per meter were measured in dust devils on Earth. Such experiments suggest that dust devils on Mars could generate very large electric fields of about 5 to 20 kilovolts per meter. These electric fields would cause gas molecules in the martian atmosphere to break down. For example, when the electric fields break down water vapor (H2O), they would produce hydroxyl radicals (·OH). According to Atreya, these hydroxyls would eventually help form hydrogen peroxide (H2O2).

The sun probably generates some hydrogen peroxide by photo-dissociating water vapor in the upper atmosphere. But Atreya estimates the dust storms might result in 200 times more hydrogen peroxide gas in the atmosphere than the sun could produce, since most of the water vapor on Mars is close to the surface—right where the dust storms occur.

"The amount of hydrogen peroxide becomes so large, the atmosphere cannot hold any more of the gas," says Atreya. "So it begins to snow out of the atmosphere, and settles on to the surface as hydrogen peroxide dust."

Left: "I think the ingredients of the [martian] biosphere should be martian. That would be the most interesting situation." —Chris McKay. Image credit: University of Arizona. Right: "I think it's increasingly evident that there is a large inventory of water on Mars." —Lisa Pratt. Image credit: NASA.

Hydrogen peroxide is a strong oxidant, and would destroy any organic materials existing on the planet's surface. Since life as we know it is based on organic chemistry, the hydrogen peroxide dust would snuff out any chances for such life to appear there.

The lack of organics on Mars was first established by the Viking landers in 1976. The two landers conducted four experiments to try to detect life, and one of these experiments showed that the surface of Mars was entirely devoid of carbon compounds. Because the thin Martian atmosphere does little to shield the planet from the harsh ultraviolet radiation of the sun, scientists suspected that UV light destroyed some of the organics. They also speculated that oxidizing compounds in the soil, like hydrogen peroxide, also could destroy organics.

But hydrogen peroxide had never been detected on Mars. That changed in 2003, when two groups detected small amounts of hydrogen peroxide in the martian atmosphere. Atreya is a member of the Infrared TEXES spectrometer team, and he says they measured 20 to 50 parts per billion of hydrogen peroxide using NASA's Infrared Telescope Facility in Hawaii. Hydrogen peroxide also was detected by a team led by Todd Clancy of the Space Science Institute in Boulder, Colorado, using the James Clerk Maxwell Telescope in Hawaii.

But, says Atreya, the amount of hydrogen peroxide detected on Mars is not enough to remove all the organics that should be on the surface. Even if there were no indigenous organics on Mars, substantial amounts of organic material should have been delivered to Mars by the many meteorites and comets that have impacted the planet since the early days of the solar system. Large amounts of hydrogen peroxide or another superoxide produced by dust storms could explain why the surface of Mars is so barren today.

Man, machine, and the environment to change. Image credit: ESA.

However much hydrogen peroxide is produced by dust storms, the sun's UV rays would ensure it would not last long in the air, breaking the molecules down after a few days. But if hydrogen peroxide ice particles are bound to the dust particles they ride on, they could mix with the surface soils after they fall out of the atmosphere, allowing them to persist in the environment for much longer. This longer residence time would allow the hydrogen peroxide snow to eventually be converted into other superoxides by surface chemistry.

If water is mixed in with the soil, or if there is sub-surface ice, the hydrogen peroxide eventually would combine with this water. Depending on the concentration of H2O2, this would lower the freezing point of the water, just as salt makes ocean water less apt to freeze on Earth. Thus, while hydrogen

2

Page 3: Marsbugs Vol. 12, No. 5 - Lyon College: Liberal Arts …web.lyon.edu/projects/marsbugs/2005/20050208.doc · Web viewIn the dim light of the outer solar system, Cassini gazed back

Marsbugs: The Electronic Astrobiology Newsletter, Volume 12, Number 5, 8 February 2005

peroxide on the martian surface would reduce the chance for life above ground, its presence in subsurface martian water would increase the odds that life could exist beneath the surface.

The dust storms block our view of what is happening on Mars, so to prove the storms really are generating hydrogen peroxide, Atreya says a measuring device would have to be sitting on the surface.

"Surfaces are hard to detect with remote sensing, especially the localized chemicals," says Atreya. "Also, the hydrogen peroxide would be mixed in with the regolith, making remote observations of it even more difficult."

The Mars Rovers Spirit and Opportunity have been traveling on the martian surface for over a year, but they are not equipped to detect hydrogen peroxide or other superoxides. Atreya says that the Mars Science Laboratory (MSL) mission, scheduled for 2009, will include a suite of instruments that are expected to measure the presence of superoxides such as hydrogen peroxide.

"This idea is new, and possibly very important," says Mike Mumma, Director of the Center for Astrobiology at NASA's Goddard Space Flight Center. "It suggests there should be abundant oxidants on dust particles. If it bears out, it could provide a very efficient way for destroying organic compounds much more rapidly than by photochemistry."

Read the original article at http://www.astrobio.net/news/article1431.html.

ASTRONOMERS DISCOVER BEGINNINGS OF "MINI" SOLAR SYSTEMNASA/JPL release 2005-0227 February 2005 Moons circle planets, and planets circle stars. Now, astronomers have learned that planets may also circle celestial bodies almost as small as planets. NASA's Spitzer Space Telescope has spotted a dusty disc of planet-building material around an extraordinarily low-mass brown dwarf, or "failed star". The brown dwarf, called OTS 44, is only 15 times the mass of Jupiter. Previously, the smallest brown dwarf known to host a planet-forming disc was 25 to 30 times more massive than Jupiter. The finding will ultimately help astronomers better understand how and where planets—including rocky ones resembling our own—form.

This graph of data from NASA's Spitzer Space Telescope shows that an extraordinarily low-mass brown dwarf, or "failed star," is circled by a disk of planet-building dust. The brown dwarf, called OTS 44, is only 15 times the mass of Jupiter, making it the smallest known brown dwarf to host a planet-forming disk. Spitzer was able to see this unusual disk by measuring its infrared brightness. Whereas a brown dwarf without a disk (red dashed line) radiates infrared light at shorter wavelengths, a brown dwarf with a disk (orange line) gives off excess infrared light at longer wavelengths. This surplus light comes from the disk itself and is represented here as a yellow dotted line. Actual data points from observations of OTS 44 are indicated with orange dots. These data were acquired using Spitzer's infrared array camera.

"There may be a host of miniature solar systems out there, in which planets orbit brown dwarfs," said Dr. Kevin Luhman, lead author of the new study from the Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass. "This leads to all sorts of new questions, like 'Could life exist on such planets?' or 'What do you call a planet circling a planet-sized body? A moon or a planet?'"

This artist's concept shows a brown dwarf surrounded by a swirling disk of planet-building dust. NASA's Spitzer Space Telescope spotted such a disk around a surprisingly low-mass brown dwarf, or "failed star." The brown dwarf, called OTS 44, is only 15 times the size of Jupiter, making it the smallest brown dwarf known to host a planet-forming, or protoplanetary disk. Astronomers believe that this unusual system will eventually spawn planets. If so, they speculate that OTS 44's disk has enough mass to make one small gas giant and a few Earth-sized rocky planets. OTS 44 is about 2 million years old. At this relatively young age, brown dwarfs are warm and appear reddish in color. With age, they grow cooler and darker. Image credit: NASA/JPL-Caltech/T. Pyle (SSC). Image credit: NASA/JPL-Caltech/Harvard-Smithsonian CfA.

Brown dwarfs are something of misfits in the astronomy world. These cool orbs of gas have been called both failed stars and super planets. Like planets, they lack the mass to ignite and produce starlight. Like stars, they are often found alone in space, with no parent body to orbit. "In this case, we are seeing the ingredients for planets around a brown dwarf near the dividing line between planets and stars. This raises the tantalizing possibility of planet formation around objects that themselves have planetary masses," said Dr. Giovanni Fazio, an astronomer at the Harvard Smithsonian Center for Astrophysics and a co-author of the new study. The results were presented today at the Planet Formation and Detection meeting at the Aspen Center for Physics, Aspen, CO, and will be published in the February 10th issue of The Astrophysical Journal Letters. Planet-forming, or protoplanetary, discs are the precursors to planets.Astronomers speculate that the disc circling OTS 44 has enough mass to make a small gas giant planet and a few Earth-sized, rocky ones. This begs the question, "Could a habitable planet like Earth sustain life around a brown dwarf?" "If life did exist in this system, it would have to constantly adjust to the dwindling temperatures of a brown dwarf," said Luhman. "For liquid water to be present, the planet would have to be much closer to the brown dwarf than Earth is to our Sun."

"It's exciting to speculate about the possibilities for life in such as system, of course at this point we are only beginning to understand the unusual circumstances under which planets arise," he added. Brown dwarfs are rare and difficult to study due to their dim light. Though astronomers recently reported what may be the first-ever image of a planet around a brown dwarf called 2M1207, not much is understood about the

3

Page 4: Marsbugs Vol. 12, No. 5 - Lyon College: Liberal Arts …web.lyon.edu/projects/marsbugs/2005/20050208.doc · Web viewIn the dim light of the outer solar system, Cassini gazed back

Marsbugs: The Electronic Astrobiology Newsletter, Volume 12, Number 5, 8 February 2005

planet-formation process around these odd balls of gas. Less is understood about low-mass brown dwarfs, of which only a handful are known. OTS 44 was first discovered about six months ago by Luhman and his colleagues using the Gemini Observatory in Chile. The object is located 500 light-years away in the Chamaeleon constellation. Later, the team used Spitzer's highly sensitive infrared eyes to see the dim glow of OTS 44's dusty disc. These observations took only 20 seconds. Longer searches with Spitzer could reveal discs around brown dwarfs below 10 Jupiter masses.

This artist's conception shows the relative size of a hypothetical brown dwarf-planetary system (below) compared to our own solar system. A brown dwarf is a cool or "failed" star, which lacks the mass to ignite and shine like our Sun. NASA's Spitzer Space Telescope set its infrared eyes on an extraordinarily low-mass brown dwarf called OTS 44 and found a swirling disk of planet-building dust. At only 15 times the mass of Jupiter, OTS 44 is the smallest known brown dwarf to host a planet-forming, or protoplanetary, disk. Astronomers believe that this unusual system will eventually spawn planets. If so, they speculate that OTS 44's disk has enough mass to make one small gas giant and a few Earth-sized rocky planets. Examples of these possible planets are depicted at the bottom of this picture, circling a low-mass brown dwarf. Above, the bodies of our own solar system have been drawn to the same scale. In each system, the terrestrial planets have been enlarged and the distances between the planets and their parent bodies have been scaled down for easier viewing. Image credit: NASA/JPL-Caltech/T. Pyle (SSC).

Other authors of this study include Dr. Paola D’Alessia of the Universidad Nacional Autonoma de Mexico; and Drs. Nuria Calvet, Lori Allen, Lee Hartmann, Thomas Megeath and Philip Myers of the Harvard-Smithsonian Center for Astrophysics. NASA's Jet Propulsion Laboratory, Pasadena, CA, manages the Spitzer Space Telescope mission for NASA's Science Mission Directorate, Washington, DC. Science operations are conducted at the Spitzer Science Center, Pasadena, CA. JPL is a division of Caltech. The infrared array camera, which spotted the protoplanetary disc around OTS 44, was built by NASA Goddard Space Flight Center, Greenbelt, MD; its development was led by Fazio. Artist's conceptions and additional information about the Spitzer Space Telescope are available at http://www.spitzer.caltech.edu.

Contact:Whitney ClavinJet Propulsion Laboratory, Pasadena, CAPhone: 818-354-4673

JOIN THE CELEBRATION OF NATURAL SELECTION: DARWIN DAY AT THE ESSIG IS TUESDAY, FEBRUARY 8 By Barry BergmanUniversity of California, Berkeley release2 February 2005

Berkeley's Essig Museum of Entomology will throw open its doors on Tuesday, February 8, as part of a worldwide celebration of Charles Darwin

and science education. The open house, scheduled for 1:00 to 5:00 PM, has become an annual event at the museum, which holds millions of insect specimens and is normally closed to the general public. Kipling Will, the Essig's associate director, says this year's festivities are a way of "gearing up for 2009," Darwin's 200th birthday and the 150th anniversary of the publication of his landmark work, On the Origin of Species.

Darwin Day will also feature experts from Berkeley, the California Academy of Sciences, and the National Center for Science Education, who will present a series of "vignettes on modern Darwinism and anti-evolutionism" under the rubric "Setting the Record Straight". Scheduled speakers include Brent Mishler, professor of integrative biology and director of the Jepson and University Herbaria, who will discuss "Genomics and Darwin," and the Essig's director, Rosemary Gillespie, who will address the misuse of research on Hawaiian spiders by proponents of creationism and its close relation, "intelligent design". This year's celebration comes at a time of rising political influence for creationists. A Pennsylvania school district, for example, now requires high-school biology students to consider "intelligent design," the belief that life was shaped by a higher power, along with natural selection. Will, however, says the Darwin Day festivities are meant to "promote the idea of right science thinking," and to commemorate evolutionary theory as "the unifying principle" in scientific research.

As part of its open house, the Essig—located at 211 Wellman—will hold half-hourly tours. The museum will supplement its vast collection of insect specimens with birds, barnacles, and carnivorous plants from other museums. Speakers will make their presentations from 7:00 to 9:00 PM in 145 Dwinelle Hall. In addition, the event's sponsors—the Essig Museum, the Entomology Students Organization, and Bay Area Biosystematists—will offer daily lunchtime screenings of the five-part Nova/WGBH series, Evolution, beginning Monday, February 7.

Read the original news release at http://www.berkeley.edu/news/berkeleyan/2005/02/02_darwin.shtml.

THE JOINT INTERNATIONAL SYMPOSIA FOR SUBSURFACE MICROBIOLOGY (ISSM 2005) AND ENVIRONMENTAL BIOGEOCHEMISTRY (ISEB XVII)American Society for Microbiology release7 February 2005

The Joint International Symposia for Subsurface Microbiology (ISSM 2005) and Environmental Biogeochemistry (ISEB XVII), Jackson Hole, Wyoming, August 14-19, 2005.Abstracts due: March 1, 2005Notification of acceptance: May 16, 2005

ISSM/ISEB 2005 will address important scientific and engineering issues for which biogeochemistry and subsurface microbiology play essential roles. These symposia will provide opportunities for international attendees to advance ideas on current research topics, scientific interconnections, and future directions for the biogeosciences.

Plenary sessions: Carbon cycling, sequestration and energy Metal sequestration Methods and tools of biogeochemistry Field-scale biogeochemistry in the future Extremophiles and exobiology

Concurrent and poster sessions: Subsurface extremophiles Exobiology Subseafloor microbiology Biogeochemical cycling Microbes and energy Redox geochemistry and microbiology Subsurface microbiology in mesoscale systems Molecular scale science and subsurface microbiology Applications of new and innovative methods In situ measurement of subsurface microbes and activities Geophysics and microbiology Microbial mineral weathering and formation

4

Page 5: Marsbugs Vol. 12, No. 5 - Lyon College: Liberal Arts …web.lyon.edu/projects/marsbugs/2005/20050208.doc · Web viewIn the dim light of the outer solar system, Cassini gazed back

Marsbugs: The Electronic Astrobiology Newsletter, Volume 12, Number 5, 8 February 2005

Bacterial transport Environmental genomics and proteomics in the study of the

subsurface Novel subsurface sampling methods Nanotechnology for studying subsurface microbiology Development of knowledge from the lab to field-scale processes Bioremediation research and applications Human health and subsurface microbiology Modeling subsurface geomicrobial processes and diversity Future perspectives for subsurface microbiology

Addition information is available at http://www.issm-iseb.org/.

PUBLICATION OF ESA/UK COMMISSION OF INQUIRY INTO BEAGLE 2British National Space Centre (BNSC) release 2005/383 February 2005

The British National Space Centre has today published the report of the ESA/UK Commission of Inquiry set up to investigate the circumstances and possible reasons that prevented completion of the Beagle 2 mission.The report was always seen by BNSC and ESA as an internal inquiry. Its purpose was to learn lessons for the future. There were also concerns about the confidentiality of commercial information. The organizations involved were given a strong indication that the information they supplied was only for the use of the inquiry. For these reasons the report was not published. ESA and the UK did however think it right that the recommendations of the report should be published as these covered the most important issues.

The ill-fated Beagle 2 lander would have been the first probe to look for signs of life on Mars' surface since the Viking program. Image credit: ESA/BNSC/Astrium.

The Science and Technology Select Committee was also confidentially given a copy of the full report. Subsequently, in view of the Committee's strongly held view that the report should be published in full, we have discussed the issue again with ESA and have persuaded them that the report should be published. We have also had further discussions with the other organizations involved about now publishing the report and they are aware that the report is being published today. The contents of the report have not been agreed with the parties. A full copy of the report, including recommendations, can be found at http://www.bnsc.gov.uk/assets/channels/resources/press/report.pdf.

Read the original news release http://www.bnsc.gov.uk/default.aspx?nid=4900.

Additional articles on this subject are available at:http://www.spacedaily.com/news/beagle2-05a.htmlhttp://www.universetoday.com/am/publish/beagle_2_failure_report.html

CASSINI SIGNIFICANT EVENTS FOR 27 JANUARY - 2 FEBRUARY 2005NASA/JPL release4 February 2005

The most recent spacecraft telemetry was acquired today from the Goldstone tracking station. The Cassini spacecraft is in an excellent state of health and is operating normally. Information on the present position and speed of the Cassini spacecraft may be found on the "Present Position" web page located at http://saturn.jpl.nasa.gov/operations/present-position.cfm.

Thursday, January 27:

We are now in the second week of execution of background sequence S08. For the first time, Cassini acquired Radar data over a region on Titan that has been previously imaged by the Imaging Science Subsystem and Visual and Infrared Mapping Spectrometer (VIMS) instruments. This overlapping data is fundamental to putting the probe-landing site in context with the rest of Titan.

Intricate undulations and swirls within the banded atmosphere of Saturn give scientists clues to the processes occurring there. The lower part of the image shows the characteristic billows that form at the turbulent boundary between two air masses of different densities moving at different speeds. This can be contrasted with the dark band just to the north that shows linear features moving in an apparently stable region with no obvious turbulent mixing from north to south. The bright band farther north appears to have the same morphology. At the top of the image, a dark oval-shaped storm resides in a band where a chevron pattern dominates. The chevron pattern is suggestive of a place where momentum is being redistributed in Saturn's atmosphere. The image of Saturn's southern hemisphere was taken with the Cassini spacecraft narrow angle camera on December 6, 2004, at a distance of approximately 3.4 million kilometers (2.1 million miles) from Saturn through a filter sensitive to wavelengths of infrared light centered at 727 nanometers. The image scale is 40 kilometers (25 miles) per pixel. Contrast was enhanced to aid visibility of features in the atmosphere.Meanwhile VIMS performed several stellar calibration observations to determine the state of the instrument optics and whether decontamination will be necessary. VIMS also conducted one in a series of mosaics of the entire

5

Page 6: Marsbugs Vol. 12, No. 5 - Lyon College: Liberal Arts …web.lyon.edu/projects/marsbugs/2005/20050208.doc · Web viewIn the dim light of the outer solar system, Cassini gazed back

Marsbugs: The Electronic Astrobiology Newsletter, Volume 12, Number 5, 8 February 2005

ring system while Cassini is near apoapsis. The Magnetospheric and Plasma Science (MAPS) instruments continued their dawn-side magnetospheric boundaries campaign.

In the dim light of the outer solar system, Cassini gazed back at Saturn's brightest gem—the moon Enceladus. The icy little world presents only a slim crescent in this natural color view. Cassini has now matched the best spatial resolution on Enceladus achieved by NASA's Voyager spacecraft, and will soon have excellent coverage of the moon (at more than 10 times the resolution in this image), following a flyby planned for February 17. When seen from its day side, Enceladus (499 kilometers, or 310 miles across) has one of the brightest and whitest surfaces in the solar system. Since it reflects most of the sunlight that strikes it, the temperature there remains at a chilly -200 degrees Celsius (-330 degrees Fahrenheit). In this view, Cassini was pointed at the leading hemisphere of Enceladus, which was in darkness at the time. The image has been rotated so that north on Enceladus is up. Images taken using red, green and blue spectral filters were combined to create this natural color view. The images were acquired with the Cassini spacecraft narrow angle camera on January 16, 2005, at a distance of approximately 209,300 kilometers (130,100 miles) from Enceladus and at a Sun-Enceladus-spacecraft, or phase, angle of 148 degrees. Resolution in the original image was about 1 kilometer (0.6 miles) per pixel. The image has been contrast-enhanced and magnified by a factor of two to aid visibility.

The Huygens Probe System Engineer and Cassini Outreach team members participated in a telecon for students working in the Goldstone Apple Valley Radio Telescope Project (GAVRT). Two hundred students from 15 classrooms from across the US and in Okinawa, Japan, asked questions about the Huygens Mission, the science, and careers in space exploration. Students taking part in GAVRT have access to the dish antenna via the Internet, and have been gathering data about Saturn's atmosphere and its thermal temperature, sharing that information with NASA.

A sequence change request for S08 submitted by CDA was approved today.Commands will be sent to the spacecraft to make CDA "prime" for their observation on February 16. The commands will be tested in the Integrated Test Laboratory prior to uplink.

As a note, every day this week the instruments are taking data, the Navigation team is obtaining Optical Navigation images, and we have on average one DSN pass a day where we downlink the data. If you don't see anything listed on a particular day, it's because we are just doing business as usual and have no special events going on.

The trailing hemisphere of Saturn's moon Rhea seen here in natural color, displays bright, wispy terrain that is similar in appearance to that of Dione, another one of Saturn's moon. At this distance however, the exact nature of these wispy features remains tantalizingly out of the reach of Cassini's cameras. At this resolution, the wispy terrain on Rhea looks like a thin coating painted onto the moon's surface. Cassini images from December 2004 revealed that, when seen at moderate resolution, Dione's wispy terrain is comprised of many long, narrow and braided fractures. Images taken using red, green and blue spectral filters were combined to create this natural color view. The images were acquired with the Cassini spacecraft narrow angle camera on January 16, 2005, at a distance of approximately 496,500 kilometers (308,600 miles) from Rhea and at a Sun-Rhea-spacecraft, or phase, angle of 35 degrees. Resolution in the original image was about 3 kilometers (2 miles) per pixel. The image has been rotated so that north on Rhea is up. Contrast was enhanced and the image was magnified by a factor of two to aid visibility.

Friday, January 28:

The Titan 3 encounter is coming up next week. In preparation for this event, TOST & HSWT hosted a preview event. This was an open meeting where science objectives and activities were shared with anyone who was interested. Yes, you did notice correctly. The 4th encounter is indeed numbered T-3. If you go back and check you will see that the first three Titan flybys were numbered a, b, and c. This was the result of re-planning the early part of the tour in support of the Probe receiver problem.

Orbital trim maneuver #12 (OTM) was completed on the spacecraft early this morning. This maneuver in combination with OTM-11 served two purposes. The first was to return us to the original tour design after Probe release and relay, and the second was to target the spacecraft for Cassini's fourth encounter with Titan (T-3) on February 15. The main engine burn began at 12:15 AM Pacific Time. A "quick look" immediately after the maneuver showed the burn duration was 120.1 seconds long, giving a delta-V of 18.68 m/s. All subsystems reported a nominal OTM.

Tuesday, February 1:

Made astronomy picture of the day again with an image of Iapetus! That's six since the start of the New Year. The sequence leads uplinked Instrument Expanded blocks for VIMS today and performed some memory readouts.

At the first Exploration Conference on "Education for Advocacy: The Challenge of Sustaining Societal Support for Space Exploration", the Cassini K-4 Literacy Program was called out as an example of what NASA should be doing as a program that could produce significant results in the classroom,

6

Page 7: Marsbugs Vol. 12, No. 5 - Lyon College: Liberal Arts …web.lyon.edu/projects/marsbugs/2005/20050208.doc · Web viewIn the dim light of the outer solar system, Cassini gazed back

Marsbugs: The Electronic Astrobiology Newsletter, Volume 12, Number 5, 8 February 2005

reach out to under-served students, and thereby gather long term societal support for NASA.

Wednesday, February 2:

A delivery coordination meeting was held today for Mission Sequence Subsystem version 10.5 and Inertial Vector Propagator 10.5. This was a big day for the Science Planning (SP) folks. The reports from the port#2 end-to-end pointing validation for S39 and S40 have been delivered to SP by AACS. The team is currently in the process of preparing the products to be archived. The wrap-up meeting is scheduled for February 9.

Official port#2 for S41 occurred today as well. The wrap-up meeting is scheduled for February 16. At that time, all tour sequences will have passed through the implementation process.

SP hosted a Science In-reach talk on UVIS results from stellar occultations of Titan. The S10 SSUP process kicked off today. And let us not forget about the folks from the Mission Support & Services Office. During this post-Huygens period, the ground system is definitely not "quiet". MSSO submitted an extensive list of testing, installations, and support performed this week. It's good to have these folks working with us!

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini-Huygens mission for NASA's Science Mission Directorate, Washington, DC. JPL designed, developed and assembled the Cassini orbiter.

An additional article on this subject is available at http://www.universetoday.com/am/publish/natural_colour_rhea.html.

MARS EXPLORATION ROVERS UPDATESNASA/JPL releases

Spirit Productive with Peace Efforts2 February 2005

Spirit had another productive week in the locale of a target called "Peace." Because of strong interest in the unusual character of "Peace," the team decided to throw the full science instrument payload at the rock.

This stunning image features the heat shield impact site of NASA's Mars Exploration Rover Opportunity. This is an approximately true-color mosaic of panoramic camera images taken through the camera's 750-, 530-, and 430-nanometer filters. The mosaic was acquired on Opportunity's sol 330 (December 28, 2004), shortly after Opportunity arrived to investigate the site where its heat shield hit the ground south of "Endurance Crater" on January 24, 2004. On the left, the main heat shield piece is inverted and reveals its metallic insulation layer, glinting in the sunlight. The main piece stands about 1 meter tall (about 3.3 feet) and about 13 meters (about 43 feet) from the rover. The other large, flat piece of debris near the center of the image is about 14 meters (about 46 feet) away. The circular feature on the right side of the image is the crater made by the heat shield's impact. It is about 2.8 meters (9.2 feet) in diameter but only about 5 to 10 centimeters (about 2 to 4 inches) deep. The crater is about 6 meters (about 20 feet) from Opportunity in this view. Smaller fragments and debris can be seen all around the impact site. The impact excavated a large amount of reddish subsurface material. Darker materials cover part of the crater's flat floor and have formed a streak or jet of material pointing toward the two largest heat shield fragments. Image credit: NASA/JPL/Cornell.

Poking Around on the Plains4 February 2005

Opportunity continues to be active and healthy, making good progress south across the Meridiani plains with a few hiccups along the way. Despite the early end of one autonomous traverse and a Deep Space Network problem that precluded sending commands on sol 364, the rover covered more than 300 meters (984 feet) in the past week, breaking its own one-sol distance records twice! Having scuffed and trenched in the sands of the plain, Opportunity is now examining the trench and nearby soil targets.

NASA's Mars Exploration Rover Spirit took this full-circle panorama of the region near "Husband Hill" (the peak just to the left of center) over the Thanksgiving holiday, before ascending farther. Both the Spirit and Opportunity rovers are still going strong, more than a year after landing on Mars. This 360-degree view combines 243 images taken by Spirit's panoramic camera over several martian days, or sols, from sol 318 (November 24, 2004) to sol 325 (December 2, 2004). It is an approximately true-color rendering generated from images taken through the camera's 750-, 530-, and 480-nanometer filters. The view is presented here in a cylindrical projection with geometric seam correction. Spirit is now driving up the slope of Husband Hill along a path about one-quarter of the way from the left side of this mosaic. Image credit: NASA/JPL/Cornell.

Spirit Encounters "Alligator"7 February 2005

Spirit has completed examination of a rock target called "Alligator" using every tool on the instrument deployment device (robotic arm). With Spirit's batteries recharged and atmospheric dust stable again, the rover is in excellent health and ready to approach "Cumberland Ridge", a crest on "Husband Hill".

The latest full MER updates are available at:http://marsrovers.jpl.nasa.gov/mission/status_spirit.htmlhttp://marsrovers.jpl.nasa.gov/mission/status_opportunity.html

Additional articles on this subject are available at:http://www.astrobio.net/news/article1430.htmlhttp://www.spacedaily.com/news/mars-mers-05l.htmlhttp://www.spacedaily.com/news/mars-mers-05m.html

GREEN LIGHT FOR DEPLOYMENT OF ESA’S MARS EXPRESS RADARESA release 08-20058 February 2005

The European Space Agency has given the green light for the MARSIS radar on board its Mars Express spacecraft to be deployed during the first week of May. Assuming that this operation is successful, the radar will finally start the search for subsurface water reservoirs and studies of the Martian ionosphere. ESA's decision to deploy MARSIS follows eight months of intensive computer simulations and technical investigations on both sides of the Atlantic. These were to assess possible harmful boom configurations during deployment and to determine any effects on the spacecraft and its scientific instruments.

The three radar booms of MARSIS were initially to have been deployed in April 2004, towards the end of the Mars Express instrument commissioning phase. They consist of a pair of 20-meter hollow cylinders, each 2.5 centimeters in diameter, and a 7-meter boom. No satisfactory ground test of deployment in flight conditions was possible, so that verification of the booms' performance had to rely on computer simulation. Just prior to their scheduled release, improved computer simulations carried out by the manufacturer, Astro Aerospace (California), revealed the possibility of a whiplash effect before they locked in their final outstretched positions, so that they might hit the spacecraft. Following advice from NASA’s Jet Propulsion Laboratory (JPL), which contributed the boom system to the Italian-led MARSIS radar instrument, and the Mars Express science team, ESA put an immediate hold on deployment

7

Page 8: Marsbugs Vol. 12, No. 5 - Lyon College: Liberal Arts …web.lyon.edu/projects/marsbugs/2005/20050208.doc · Web viewIn the dim light of the outer solar system, Cassini gazed back

Marsbugs: The Electronic Astrobiology Newsletter, Volume 12, Number 5, 8 February 2005

until a complete understanding of the dynamics was obtained. JPL led a comprehensive investigation, including simulations, theoretical studies and tests on representative booms, the latter to assess potential aging of the boom material. European experts, from ESA and the former spacecraft prime contractor, Astrium SAS, France, worked closely with JPL throughout the entire investigation. An independent engineering review board, composed of ESA and industry experts, met in January to evaluate the findings and advise on "if and when" to proceed with deployment.

The Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) on board ESA's Mars Express will employ ground-penetrating radar to map underground water (if it exists) on Mars. Low-frequency waves will be directed towards the planet from a 40-meter long antenna which will be unfurled after Mars Express goes into orbit. The radio waves will be reflected from any surface they encounter. In most cases this will be the surface of Mars, but because low frequencies are used, a significant fraction will travel through the crust to encounter further layers of different material—perhaps even water. Analysis of the echoes produced will reveal much about the composition of the top five kilometers of the crust. Image credit: ESA.

The ESA review board, at its final meeting on 25 January, recommended deployment of the MARSIS booms. The rationale for the decision was based on the results of the analyses, which showed the possible impact scenarios, the amount of energy involved, the nature of the materials, and the physical conditions in space. The board concluded that the risk of an impact on the spacecraft could not be ruled out, but that the impact energy would be low and the probability of a severe failure was very small.

One credible failure case is that an antenna boom could become blocked during deployment, either by itself or by the spacecraft. Although means are available to unblock a deployment, in the worst case MARSIS would have to be considered partially or completely lost. However, the analyses have shown that the Mars Express control systems would be able to cope with such a configuration and minimize the consequences for the other scientific instruments.

The ESA board recommended planning the deployment for the week beginning 2 May. However, should the remaining preparations proceed faster than planned, it might be feasible to start deployment during the week beginning 25 April. An early deployment is scientifically desirable, as the evolution of the Mars Express orbit will allow radar measurements of the most interesting scientific regions on Mars to start in May 2005. If, as expected, the deployment is successful, MARSIS will probe the secrets of Mars’s subsurface at least until 30 November 2005, the nominal end date of Mars Express operations, and beyond if the mission is further extended.

MARSIS main antenna during Mars Express payload tests. One of the two main radar booms is shown here, a 20-metre long hollow cylinder, of 2.5 centimetres diameter, folded up in a box like a concertina (accordion). When the box is opened, the elastic energy of the compressed glass-fibre booms will let them unfold like a jack-in-the-box. Image credit: Universität der Bundeswehr, München.

Mars Express was launched on 2 June 2003 and reached the planet on 25 December 2003. Since entering its operational orbit on 28 January 2004, it has been performing studies and global mapping of the atmosphere and surface, analyzing their chemical composition, and delivering amazing images of Martian landscapes.

Contacts:ESA Communication DepartmentMedia Relations OfficeParis, FrancePhone: +33(0)15369 7155Fax: +33(0)1 5369 7690

Rudolf SchmidtESA Mars Express Project Manager Noordwijk, The NetherlandsPhone: +31 71 565 3603

For more information about the Mars Express mission visit http://mars.esa.int.

For more information about the Science Program visit http://www.esa.int/science.

MARS GLOBAL SURVEYOR IMAGESNASA/JPL/MSSS release27 January - 2 February 2005

The following new images taken by the Mars Orbiter Camera (MOC) on the Mars Global Surveyor spacecraft are now available.

Intracrater Dunes (Released 27 January 2005)http://www.msss.com/mars_images/moc/2005/01/27/

Big Dust Devils (Released 28 January 2005)http://www.msss.com/mars_images/moc/2005/01/28/

Pavonis Slope Streaks (Released 29 January 2005)http://www.msss.com/mars_images/moc/2005/01/29/

8

Page 9: Marsbugs Vol. 12, No. 5 - Lyon College: Liberal Arts …web.lyon.edu/projects/marsbugs/2005/20050208.doc · Web viewIn the dim light of the outer solar system, Cassini gazed back

Marsbugs: The Electronic Astrobiology Newsletter, Volume 12, Number 5, 8 February 2005

Becquerel's Bands (Released 30 January 2005)http://www.msss.com/mars_images/moc/2005/01/30/

Ascraeus Pits (Released 31 January 2005)http://www.msss.com/mars_images/moc/2005/01/31/

Mars at Ls 160 Degrees (Released 1 February 2005)http://www.msss.com/mars_images/moc/2005/02/01/

Wind-Exhumed Crater (Released 2 February 2005)http://www.msss.com/mars_images/moc/2005/02/02/

All of the Mars Global Surveyor images are archived at http://www.msss.com/mars_images/moc/index.html.

Mars Global Surveyor was launched in November 1996 and has been in Mars orbit since September 1997. It began its primary mapping mission on March 8, 1999. Mars Global Surveyor is the first mission in a long-term program of Mars exploration known as the Mars Surveyor Program that is managed by JPL for NASA's Office of Space Science, Washington, DC. Malin Space Science Systems (MSSS) and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

MARS ODYSSEY THEMIS IMAGESNASA/JPL/ASU release31 January - 4 February 2005

THEMIS Images As Art #26 (Released 31 January 2005)http://themis.la.asu.edu/zoom-20050131A.html

THEMIS Images as Art #27 (Released 1 February 2005)http://themis.la.asu.edu/zoom-20050201A.html

THEMIS Images as Art #28 (Released 2 February 2005)http://themis.la.asu.edu/zoom-20050202A.html

THEMIS Images as Art #29 (Released 3 February 2005)http://themis.la.asu.edu/zoom-20050203A.html

THEMIS Images as Art #30 (Released 4 February 2005)http://themis.la.asu.edu/zoom-20050204A.html

All of the THEMIS images are archived at http://themis.la.asu.edu/latest.html.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, DC. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

End Marsbugs, Volume 12, Number 5.

9