mars one surface exploration suit (ses) esign · pdf file3 level i ses requirements ......

40
3 T T 1 w C P N B A G J 3481 East Michig Tucson, Arizona Tel: 520-903-100 1-800-TO ORBIT www.ParagonSD Controlled B Prepared an Norman Hahn Barry W. Finge Approved B Grant Anderso Justin Cook gan Street a 85714 00/Fax: 520-903- T (866-7248) DC.com Ma y: Program nd Approved er y: on -2000 ars One S Conce Doc s d By: Title Senio Chief Title Presid Expor Surface eptual D cument N Re e or Aerospace E Engineer e dent/CEO rt Control Com e Explora Design A umber: 80 evision: B ngineer mpliance ation Su Assessm 07300008 Signatu Electroni Electroni Signatu Electroni Electroni uit (SES) ment 8 ure & Date ic Approval an ic Approval an ure & Date ic Approval an ic Approval an ) d Date on File d Date on File d Date on File d Date on File

Upload: vuhuong

Post on 06-Mar-2018

216 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Mars One Surface Exploration Suit (SES) esign  · PDF file3 LEVEL I SES REQUIREMENTS ... Surface SEA PLSS Functional Breakdown

3TT1

w

C PNB  AGJ

3481 East MichigTucson, ArizonaTel: 520-903-1001-800-TO ORBIT

www.ParagonSD

Controlled B

PreparedanNorman Hahn Barry W. Finge

ApprovedBGrant AndersoJustin Cook 

gan Street a 85714 00/Fax: 520-903-T (866-7248)

DC.com

Ma

y: Program

ndApproved

er 

y:on 

-2000

ars One SConce

Doc

s

dBy: TitleSenioChief  

TitlePresidExpor

Surfaceeptual D

cument NRe

eor Aerospace Ef Engineer

edent/CEOrt Control Com

e ExploraDesign A

umber: 80evision: B

ngineer

mpliance

ation SuAssessm

07300008

SignatuElectroniElectroni

 SignatuElectroniElectroni

uit (SES)ment

8

ure&Dateic Approval anic Approval an

ure&Dateic Approval anic Approval an

)

d Date on Filed Date on File

d Date on Filed Date on File

Page 2: Mars One Surface Exploration Suit (SES) esign  · PDF file3 LEVEL I SES REQUIREMENTS ... Surface SEA PLSS Functional Breakdown

807300008B

Page i of iii

Revisions Rev Description DateNC  Original DRAFT Release to initiate discussions with customer for Sections 1 through 4.  05/06/13A  Export controlled release for delivery to customer only 09/11/15B  Revisions throughout document to comply with Export Control requirements for public 

release. 09/12/16

Page 3: Mars One Surface Exploration Suit (SES) esign  · PDF file3 LEVEL I SES REQUIREMENTS ... Surface SEA PLSS Functional Breakdown

807300008B

Page ii of iii

Table of Contents REVISIONS .................................................................................................................................................................I 

TABLE OF CONTENTS ............................................................................................................................................ II List of Figures ...................................................................................................................................................... iii List of Tables ........................................................................................................................................................ iii 

1 INTRODUCTION .................................................................................................................................................... 1 1.1 Background ...................................................................................................................................................... 1 1.2 Scope ............................................................................................................................................................... 1 1.3 Purpose ........................................................................................................................................................... 2 1.4 Methods ........................................................................................................................................................... 2 1.5 Mission Concept of Operations ....................................................................................................................... 2 

1.5.1  Phase 1: 1st Rover Delivery .................................................................................................................. 2 1.5.2  Phase 2: Cargo Missions ...................................................................................................................... 2 1.5.3  Phase 3: System Checkout and Crew Launch Verification .................................................................. 3 1.5.4  Phase 4: First Crew Arrival ................................................................................................................... 3 1.5.5  Phase 5: Crew Expansion .................................................................................................................... 3 

1.6 Reference Documents ..................................................................................................................................... 4 

2 SYSTEM-LEVEL DESIGN DRIVERS .................................................................................................................... 5 2.1 Overview .......................................................................................................................................................... 5 2.2 Atmospheric and Martian Surface Conditions ................................................................................................. 5 2.3 Other Considerations ....................................................................................................................................... 6 

3 LEVEL I SES REQUIREMENTS ............................................................................................................................ 8 3.1 Functional Requirements ................................................................................................................................. 8 

3.1.1  Atmosphere Management ..................................................................................................................... 8 3.1.2  Water Management ............................................................................................................................... 9 3.1.3  Food Management ................................................................................................................................. 9 3.1.4  Crew Waste Management ..................................................................................................................... 9 3.1.5  Thermal Management ............................................................................................................................ 9 3.1.6  Communications & Tracking .................................................................................................................. 9 3.1.7  Electrical Power ................................................................................................................................... 10 3.1.8  Command & Data Handling ................................................................................................................. 10 3.1.9  BioMedical ........................................................................................................................................... 11 

3.2 Performance Requirements ........................................................................................................................... 11 3.3 Design & Construction ................................................................................................................................... 14 3.4 Interfaces ....................................................................................................................................................... 15 

3.4.1  Human Interfaces ................................................................................................................................ 15 3.4.2  System Interfaces ................................................................................................................................ 15 3.4.3  Natural and Induced Environments ..................................................................................................... 16 

3.5 Safety, Quality, and Mission Assurance ........................................................................................................ 18 

4 FUNCTIONAL BASELINE DEFINITION .............................................................................................................. 21 4.1 Pressure Suit ................................................................................................................................................. 21 

4.1.1  Helmet .................................................................................................................................................. 21 4.1.2  In-Suit Communication System ........................................................................................................... 22 4.1.3  Upper Torso ......................................................................................................................................... 22 4.1.4  Arms ..................................................................................................................................................... 22 4.1.5  Gloves .................................................................................................................................................. 22 4.1.6  Waist .................................................................................................................................................... 23 4.1.7  Brief/Hip/Thigh ..................................................................................................................................... 23 4.1.8  Legs ..................................................................................................................................................... 23 4.1.9  Boots .................................................................................................................................................... 24 4.1.10  Liquid Thermal Garment ...................................................................................................................... 24 4.1.11  Thermal Micrometeoroid Garment (TMG) ........................................................................................... 24 

4.2 Portable Life Support System ........................................................................................................................ 24 4.2.1  Overview .............................................................................................................................................. 24 4.2.2  Communications .................................................................................................................................. 25 4.2.3  Power Storage, Distribution, and Generation ...................................................................................... 25 

Page 4: Mars One Surface Exploration Suit (SES) esign  · PDF file3 LEVEL I SES REQUIREMENTS ... Surface SEA PLSS Functional Breakdown

807300008B

Page iii of iii

4.2.4  Environmental Control and Life Support .............................................................................................. 25 4.2.5  Command and Data Handling ............................................................................................................. 27 4.2.6  Health Monitor ..................................................................................................................................... 28 

4.3 Master Equipment List (MEL) ........................................................................................................................ 29 

5 RISK AND OPPORTUNITY MANAGEMENT ...................................................................................................... 30 5.1 Cost and Schedule Risk Drivers .................................................................................................................... 30 

5.1.1  Robustness of Design .......................................................................................................................... 30 5.1.2  Safety and Crew Productivity .............................................................................................................. 31 5.1.3  Environmental ...................................................................................................................................... 32 

5.2 Opportunities to Reduce Risk ........................................................................................................................ 35 5.2.1  Future Studies ..................................................................................................................................... 35 5.2.2  Precursor Tests (Mars Rover 2020) .................................................................................................... 35 5.2.3  Minimize Suit Pressure ........................................................................................................................ 35 5.2.4  Additive Manufacturing ........................................................................................................................ 35 5.2.5  Common Parts ..................................................................................................................................... 36 5.2.6  Establish Common Interfaces Early .................................................................................................... 36 

List of Figures Figure 1: External view of the Mars One Habitat Concept after the first crew landing (inflatable habitat modules

are out of view behind the landers). .................................................................................................................. 1 Figure 2: Internal view of the Mars One Habitat Housing Concept ........................................................................... 2 Figure 3: Surface SEA Suit System ........................................................................................................................... 8 Figure 4: Surface Exploration Pressure Suit Functional Flow Block Diagram .......................................................... 8 Figure 5: Surface SEA PLSS Functional Breakdown ................................................................................................ 8 Figure 6. Typical Spacesuit Configuration. ............................................................................................................. 21 Figure 7: Mars One Helmet Architecture ................................................................................................................. 21 Figure 8: Advanced Helmet Lighting System – Waist Entry I-Suit .......................................................................... 21 Figure 9: Heads-Free Communication System ....................................................................................................... 22 Figure 10: Waist Entry I-Suit Soft Upper Torso (SUT) ............................................................................................ 22 Figure 11: I-Suit Arm Architecture ........................................................................................................................... 22 Figure 12: Current Phase VI ISS EMU .................................................................................................................... 22 Figure 13: Rear Entry I-Suit Mobility Evaluation on an ATV ................................................................................... 23 Figure 14: Critical Surface EVA Operations Evaluated during NASA D-RATS Testing in Arizona ........................ 23 Figure 15: ILC Dover EMU LCVG ........................................................................................................................... 24 Figure 16: Power Subsystem Schematic................................................................................................................ 25 Figure 17: MTSA Pressure, Temperature and Air Revitalization System. ............................................................. 26 Figure 18: Command and Data Handling Subsystem Schematic .......................................................................... 27 Figure 19: Radiation Climate on Mars (source: Scientific American December 9, 2013) ....................................... 34  List of Tables Table 1: Paragon Documents ................................................................................................................................... 4 Table 2: Other Reference Documents ...................................................................................................................... 4 Table 3: SES MEL and On-back Mass Estimates .................................................................................................. 29 

Page 5: Mars One Surface Exploration Suit (SES) esign  · PDF file3 LEVEL I SES REQUIREMENTS ... Surface SEA PLSS Functional Breakdown

1

1PceSti

AaSNo

FC

1T(Psmteetslah

1 Introdu

1.1 BackgroParagon Spaconceptual dexploring anSupport Sysransmittal tonternally rev

Additional teassessment,Security’s ENumber (ECoutside pers

For the equConceptual D

1.2 Scope The scope o(SES). ThePortable Lifesuit during managemenhermal cont

essential subelements inche refurbish

station(s). Fanders afterhabitat modu

Figure 1: Exte

ction

ound ace Developdesign of thnd working stem (ECLSo the customviewed and a

echnical sp, but may bxport Admin

CCN) 9E515on or organi

ivalent workDesign Asse

of this concee SES include Support Sysurface expt, water ma

trol of the pebsystems anclude but arhment statioigure 1 illusr arrival of tule concepts

ernal view of 

pment Corpohe Mars Onin the exter

SS) module mer the emapproved for

pecifications be export conistration Re5.f. Mars Onization witho

k on the Haessment (80

eptual desigdes the sofystem (PLSSploration. Tanagement, erson and elend componere not limitedon required strates the athe first crews.

f the Mars Ona

oration (Parne Surface rnal Martianfor the Mar

merging asser release in t

may be aontrolled undegulations (ne may not out the receip

abitat ECLS7300009).

n assessmeft-goods andS) that provThe PLSS ffood managectrical coments requiredd to: the hato perform

arrangementw. Figure 2

e Habitat Conare out of vie

ragon) has bExploration

n environmers One Habessment of the public do

available foder Departm(EAR), spec

release anpt of written

SS Module,

ent is limitedd hardware vides the necfunctions ingement and ponents. It d to conductbitat airlockplanned a

t of two ECprovides a

ncept after thw behind the

been contraSuit (SES)

ent and an bitat. This dthe SES coomain.

r the systement of Comcifically undey additionalauthorizatio

please refe

d to the Marassociated

cessary funcnclude comm

waste manis noted that surface op

k, mobility vend unplann

CLSS modulcut-away v

he first crew lae landers). 

acted by Mato be used

Environmendocument seonceptual de

ems detailemmerce, Burer Export Cl technical son from Para

er to Mars O

rs One Surfwith the pr

ctions to surmunication, nagement, at the SES do

perations. Tehicles, exteed maintenes, two rov

view of one

anding (inflat

807

P

rs One to cd by the crental Control erves to comesign and h

ed in this ereau of InduControl Classpecificationagon.

One Habitat

face Exploraressure suitrvive in the power, atm

as well as thoes not inclu

Those other ernal recharance, and

vers, and twof the two

table habitat 

300008B

Page 1 of 36

conduct a ew while and Life

mpile for has been

emerging ustry and ssification ns to any

t ECLSS

ation Suit and the

pressure mosphere he active ude other essential ge ports, recharge

wo supply inflatable

 modules 

Page 6: Mars One Surface Exploration Suit (SES) esign  · PDF file3 LEVEL I SES REQUIREMENTS ... Surface SEA PLSS Functional Breakdown

1Tpab

1De

1

1IWtArptfv

1IhTtwSrdrOw

Opa

1.3 PurposeThe purposeprior to formas the Desigby Section 5

1.4 MethodsDesign, devestablished p

1.5 Mission

1.5.1 Phasn 2022 the

While the gehe rover's ta

As with the round-trip depositions of hat the rov

functions wilvideo stream

1.5.2 Phasn 2025 all

have reacheTwo living uwo life supp

SES spares,rovers take deploy exteradiators, anOne, the firswill be broad

Operations pressurizatioand storage

Fig

e e of this Des

mal definitiongn Requirem.0 of Parago

s velopment, dprocesses.

Concept of

se 1: 1st Roe first settleeneral locatioask is to findCuriosity M

elay in commthe Earth aer has somll be control

m will be broa

se 2: Cargoinitial cargo

ed their destunits (each port units, a , and anotheall componrnal structu

nd prepare fost humans odcast to Eart

will be coon of the haof oxygen a

gure 2: Intern

ign and Dev of the Deve

ments Baselinon’s Configu

documentati

f Operation

ver Deliveryement rover on of the oud the ideal s

Mars Rover, munication (nd Mars in

me autonomled by instruadcast on Ea

o Missions o componentination in scontaining tsupply unit er rover arrivents to the res such aor the later a

on Mars. A sh 24/7/365.

nducted aubitat with a nd potable w

nal view of the

velopment boelopment Cone, Functionration Mana

on and dat

s

y will land o

utpost will bespot within tthe 6 to 40

(depending their orbits) y while muuction from arth 24/7/36

ts of the sesix separate two complecontaining ave on Mars. settlement

as solar panarrival of Masecond video

utonomouslybreathable awater.

e Mars One H

ook is to docomponent Bnal Baselineagement Pla

a managem

on Mars. e known, the area. 0 minute upon the requires

ch of its Earth. A 5.

ettlement landers.

te SES), additional

The two location,

nels and ars Team o stream

y with roboatmosphere

Habitat Housi

cument the eBaseline. Ase, and Level n (E999019

ment will be

otic assista (10.2 psia,

ing Concept 

evolution of s such, this II Allocated).

e in accorda

nce and th3.1 psi O2,

807

P

the SES arcdocument w Baseline as

ance with P

he ECLSS balance N2

(courtesy mar

(courtesy mar

300008B

Page 2 of 36

 

chitecture will serve s defined

Paragon’s

initiates and Ar),

 rs-one.org)

 rs-one.org)

Page 7: Mars One Surface Exploration Suit (SES) esign  · PDF file3 LEVEL I SES REQUIREMENTS ... Surface SEA PLSS Functional Breakdown

1ArgcloasP

PmwC

1Thsccpcnefu

TSMs

Aiaa

1IpaMo

Smocuc

1.5.3 PhasAll water, oready by eagranted the component oow Earth oras the first fosurface suitsPlanet.

Prior to the modules willwater and Communicat

1.5.4 PhasThe Mars Tehumans to ssurface opconnecting capsules aphotovoltaic crew to utiliznew home engaged in tfive cargo units, life sup

The Habitat Soon after aMany of thessolar panels

A short timenstalled by tand to compadditional re

1.5.5 Phasn 2029 Ma

predecessorarrive, the sMars, with hon Earth with

Shortly after modules aoperating/avcrew of 4 lanuntil that scommencem

se 3: Systemoxygen and arly 2026, w

go-for-launof the Mars bit and linkeour astronaus are launch

crew’s dep have achieatmosphere

tions must b

se 4: First Ceam One asset foot on Mperations t

passagewaand assem

panels. Allze the SES.

planet, bethe 24/7/365missions arpport units (e

ECLSS andarrival, regulse tasks canand mainta

e after the athe first crew

plete pressudundancy fo

se 5: Crew rs Team Tw

rs who have ettlement w

high definitioh ample eng

arrival of thand 16 Svailable undends, eight adstrategy evoment of in-situ

m Checkouatmosphere

which is whench of Martransit vehic

ed. In Septeuts along withed on thei

parture, the eved full opee productioe fully opera

Crew Arrivastronauts lanMars! Once tasks incluays betwembling the of these a The explo

egins with 5 broadcastrrive, bringieach includi

d numerousar maintenan only be doining the rov

arrival of thew. Four ECrization of th

or the first cr

Expansion wo, the seccompleted t

will grow in iton video stregagement.

he second cSES will er nominal cdditional SEolves to au manufactu

ut and Crewe productioen the Earths Team Oncle is launchmber historyh a continger journey to

two Habitaerational capon. Other ational as we

al nd in 2027 –

settled in, tude installeen the i remaining

activities reqoration of Maeveryone o. A few weeng additionng a comple

s other Habance by the one by crewvers.

e first crew,CLSS modulehe two new rew in the ev

cond crew othe constructs capacity feams provid

rew, six Habbe in

conditions. EES will accoma better souring of spar

w Launch Ven will be h crew is ne. Each hed into a y is made ent of four o the Red

at ECLSS pability for

essential ell.

– the first their first ing the ndividual g solar quire the ars, their on Earth eks later, nal living ete SES) and

itat systemscrew will be

w members u

, the infrastres are now living modu

vent of contin

of four astroction of the sfor scientific

ding viewers

bitat ECLSSplace andEach time ampany themolution (e.g.res).

erification

systems s

d a third rove

s will have e performedusing the SE

ructure for tavailable to

ules. The twngency oper

onauts, landsettlement. Ac research, s

S d a m

.

uch as El

er.

been operad to ensure ES, such as

the second o nominally swo new ECLrations.

ds. They arAs successiexperiments

807

P

ectrical pow

tional for twcontinued o

s removing d

crew arrivesustain the fSS modules

re received ve Mars Ons, and explo

(courtesy mar

(courtesy mar

(courtesy

300008B

Page 3 of 36

wer and

wo years. operation. dust from

es and is first crew s provide

by their e Teams

oration of

rs-one.org)

 rs-one.org)

 mars-one.org)

Page 8: Mars One Surface Exploration Suit (SES) esign  · PDF file3 LEVEL I SES REQUIREMENTS ... Surface SEA PLSS Functional Breakdown

807300008B

Page 4 of 36

1.6 Reference Documents

Table 1:  Paragon Documents DocNumber TitleE999019   Configuration Management Plan 807300009  Mars One Habitat ECLSS Conceptual Design Assessment 

Table 2:  Other Reference Documents DocNumber TitleSP‐3006  Bioastronautics Data Book JSC‐20584  Spacecraft Maximum Allowable Concentrations for Airborne Contaminants (SMAC) JSC‐63414  Spacecraft Water Exposure Guidelines (SWEGs) NASA‐STD‐4003  Electrical Bonding for NASA Launch Vehicles, Spacecraft, Payloads, and Flight 

Equipment MIL‐STD‐461  Requirements for Control of Electromagnetic Interference Characteristics of 

Subsystems and Equipment JPR 8080.5  JSC Design and Procedural Standards JSC 65828  Structural Design Requirements and Factors of Safety for Space Flight Hardware JSC 65829  Loads and Structural Dynamics Requirements for Space Flight Hardware JSC 28918  EVA Design Requirements and Considerations NASA‐STD‐5017  Design and Development Requirements for Mechanisms NASA‐STD‐5019  Fracture Control Requirements for Spaceflight Hardware NASA‐STD‐6016  Standard Material and Process Requirements for Spacecraft NPR 7150.2A  NASA Software Engineering Requirements NASA‐STD‐8719.13  Software Safety Standard NASA‐GB‐8719.13  Software Safety Guidebook NASA‐STD‐5005  Standard for the Design and Fabrication of Ground Support Equipment ANSI/AIAA S‐081A  Space Systems ‐ Composite Overwrapped Pressure Vessels (COPVs) July 24, 2006 S‐080‐1998e  AIAA Standard for Space Systems ‐ Metallic Pressure Vessels, Pressurized 

Structures, and Pressure Components AIAA S‐120‐2006  Mass Properties Control for Space Systems ICES paper 2008‐01‐1990 

Trade Study of an Interface for Removable/Replaceable Thermal Micrometeoroid Garment 

ICES paper 760954     Study of Development of a Radiation Shielding Kit ICES paper 2006‐01‐2285 

Micrometeoroid and Orbital Debris Enhancements of Shuttle Extravehicular Mobility Unit Thermal Micrometeoroid Garment 

ICES paper 03ICES‐27  I‐Suit Advanced Spacesuit Design Improvements and Performance Testing ICES paper 2006‐01‐2141 

Systems Considerations for an Exploration Spacesuit Upper Torso Architecture 

ICES paper 2003‐01‐2330 

Test Results of Improved Spacesuit Shielding Components 

Page 9: Mars One Surface Exploration Suit (SES) esign  · PDF file3 LEVEL I SES REQUIREMENTS ... Surface SEA PLSS Functional Breakdown

807300008B

Page 5 of 36

2 System-Level Design Drivers

2.1 Overview The SES is designed to provide a controlled environment for a crew member while conducting surface excursion activities (SEA) outside of the Mars One Habitat or other pressurized surface elements. The following system-level Design Drivers are used in the derivation of the SES requirements and are derived from preliminary information exchanges with Mars One, presentations, physical conditions of the Mars environment, and initial assessments made by Paragon. Some modification of the Mission CONOPs (Section 1.5) and these system-level Design Drivers are expected during the early conceptual development phase and they will impact the subsequent SES requirements. As such, these initial inputs to the development of the SES architecture should be reviewed, vetted and agreed upon early in the design process to avoid significant impacts and costly corrections later in the program.

2.2 Atmospheric and Martian Surface Conditions [SLDD.xxx]  Atmospheric Composition  

Consists primarily of Carbon Dioxide (>95%). 

Impact to the Design: The inert gases found in the Martian atmosphere have minimal impact to materials currently used in spacesuit design but will have an impact on technology choices for CO2 control. 

[SLDD.xxx]  Atmospheric Pressure  

The average atmospheric pressure is 600 Pa (~ 0.087 psia). 

Impact  to  the  Design:  The  low  atmospheric  pressure will  necessitate  a  spacesuit  pressure equal to or greater than that historically used in both Lunar and microgravity space suits. 

[SLDD.xxx]  Temperature and Thermal Environment 

Annual average temperature range is ‐140°C (‐220°F) to 20°C (70°F). 

Impact  to the Design: Solar cycle  is very similar to Earth, but the variation  is more extreme. Night excursions during the winter months would require that the spacesuit be designed for worst  case  conditions.  Existing  spacesuit  technologies  are  sufficient  to  compensate  for  the temperature  range; however,  evaluations need  to be performed  regarding  convective heat loss to the atmosphere.   The spacesuit may be designed to accommodate various thermal kit options that would accommodate a winter night vs. a summer noon.  As the typical conditions are very cold,  it may make more sense to have a slightly “cold biased” suit that has nominal heating and make special provisions for the rarer times when cooling is needed. 

[SLDD.xxx]  Wind‐blown Regolith (i.e. dust)  

Martian weather  includes dust  storms with potentially high wind velocity and  lingering dust clouds. 

Impact to the Design: Unexpected dust storms are likely to occur during long or short duration surface  operations.  The  reduced  visibility  may  necessitate  a  navigation  system  to  be integrated  to  spacesuit.  Communication  systems must  also  be  capable  of  operating  during these conditions.  

[SLDD.xxx]  Electrostatic and Abrasive Regolith  

Martian Dust may be highly charged and varies in consistency and composition. 

Page 10: Mars One Surface Exploration Suit (SES) esign  · PDF file3 LEVEL I SES REQUIREMENTS ... Surface SEA PLSS Functional Breakdown

807300008B

Page 6 of 36

Impact to the Design: The regolith would likely be attracted to most qualified spacesuit design materials. Materials must be evaluated for abrasion, wear, and durability due to exposure to regolith.    Testing  is  required  to  quantify  this  effect  and  identify mitigation  strategies.  This effort also consists of protection for mobility elements such as bearings. This will also affect suit  element  integration  and  cleaning.  This  is  one  of  the most  significant  impacts  to  the spacesuit. 

[SLDD.xxx]  Superoxides  

 The Martian soil contains "superoxides". 

Impact to the Design: In the presence of ultraviolet radiation, superoxides break down organic molecules.  Materials of construction must be compatible with this environment. Corrosion to metallic parts must also be investigated and evaluated. 

[SLDD.xxx]  Radiation  

There is essentially no protection from the atmosphere or any from a planetary magnetic field. 

Impact to the Design: Unmitigated exposure over hundreds of hours of surface operations will cause  long‐term  medical  harm  to  the  crew  and  degradation  of  several  known  spacesuit materials of construction. Alternate materials will need to be identified and tested for longer durations than previous programs, and/or limited lifetimes established and strictly adhered to.  Localized  radiation  shields may  be  employed  in  the  spacesuit  or  undergarment  to  protect sensitive organs.   Radiation exposure  lifetime  limits may curtail  surface operations  for crew members and restrict them from further surface exploration if mitigation approaches are not developed. 

[SLDD.xxx]  CONOPS and Terrain  

Details of the habitat site and terrain need to be understood. 

Impact  to  the Design: The ability  to  traverse  relatively  flat  terrain and operate a  rover  in a spacesuit  has  been  previously  proven.  The  ability  to  climb  rocks,  construct  a  habitat  in  a gravity environment, and  initiate a  long‐term maintenance and  repair  capability  for habitat systems  such  as primary  structure, electrical power,  life  support  and  communications have not been developed. Along with these tasks comes the likelihood of falls and accidents while in the suit.   Testing and evaluation need to be conducted to  identify durability, mobility and structural requirements for the spacesuit. 

2.3 Other Considerations [SLDD.xxx]  Gravity 

Mars has approximately 3/8th gravity of Earth. 

Impact to the Design: The effective weight of the spacesuit will be more than double of those used  on  the  lunar  surface  if  suits  and  systems  of  equivalent mass  are  utilized.  From  this perspective,  lighter wearable SES elements are more advantageous  to reduce crew member fatigue. 

[SLDD.xxx]  Microbial Load 

As with most objects in close proximity of working humans, the potential for microbial growth and associated loads on the system are high. 

Impact to the Design: The spacesuit will need to be designed to  inhibit microbial growth but also  to  accommodate  the  inevitable  cleaning  that will  be  required.  Resistance  to  cleaning 

Page 11: Mars One Surface Exploration Suit (SES) esign  · PDF file3 LEVEL I SES REQUIREMENTS ... Surface SEA PLSS Functional Breakdown

807300008B

Page 7 of 36

agents and  repair of any abrasions created by  the process of cleaning needs  to be  included and/or reapplication of anti‐microbial treatments. 

[SLDD.xxx]  Mass and Volume 

It is anticipated that the mass and volume of the spacesuit, support equipment and spare parts is a significant factor for both launch mass and volume capacity. 

Impact to the Design: There has always been an emphasis for a lighter, more robust spacesuit across every space program. Separate from mass and volume considerations with regards to surface operations, the transportation costs associated with delivering the SES to the surface will drive  the development costs  (the  lower  the allowable mass and volume,  the higher  the development costs).   System mass and volume targets should be relaxed while still achieving required  comfort,  robustness,  mobility,  visibility  and  operational  simplicity  targets.  Decreasing  emphasis  on maximizing mass  and  volume  reductions minimizes  development costs.  It is critical that launch mass and volume limitations be defined early in the program as imposed  limitations  will  lead  to  increased  costs  in  the  development  of  the  SES  as more complex, efficient and  lower mass/volume product  solutions are developed  to meet  launch constraints. 

It  is  proposed  that  there  would  be  substantial  benefit  to  maintain  smaller  helmets  and eliminating required “hard” elements (e.g. hard upper torso) to minimize storage volume. 

[SLDD.xxx]  Pressurized Element Airlock Interface 

There are many other aspects of the Mars One mission that are expected to evolve and impact the SES design and operation. These include, but are not limited to:  impact of or prevention of contamination to both Mars and the habitat;  inclusion of additional system  in the event that there  is a PLSS failure  in the PLSS;  interfaces with other pressurized elements and emergency repair accommodations 

Page 12: Mars One Surface Exploration Suit (SES) esign  · PDF file3 LEVEL I SES REQUIREMENTS ... Surface SEA PLSS Functional Breakdown

3Failsra

 

 

 

3

3[

3 Level I SFigure 3 throand will be nterfaces thimited to thescope of thisrecharging tassessment.

3.1 Function

3.1.1 AtmoSES.xxx‐PGM

Thermal Laye

AtmM

SES Reqough Figure used to valat will influee habitat airs work. In athe SES wi.

Figure 

nal Require

osphere Ma]  Breathab

crew du

Rationallevels en

Verificat

er PressGarm

osphere Mgmt

uirement5 outline th

lidate the funce the archrlock, any maddition, eleill be requir

4: Surface Ex

Figure 5

ments

anagement ble Atmosphering SEA oper

le: Maintaininsures crew co

tion: (IDAT) – 

ure ent Ou

Thermal Control

ts e assumed

unctionality ahitecture and

mobility vehicements suchred but are

Figure 3: Sur

xploration Pre

5: Surface SEA

ere: The SESrations. 

ing  proper  aomfort and su

TBD 

Exp

PLSS

P

uter Layer

Comm &Tracking

architectureand interfacd design elecles, extern

h as a refurbe also out

rface SEA Suit

essure Suit Fun

A PLSS Functio

shall provide

bsolute  and urvivability. 

Surface ploration Suit 

(SES)

Pressu

ressure Suit

Waste Mgmt

PLSS

&  Pow

e to illustrateces requiredements of thal recharge bishment staof scope o

t System 

nctional Flow

onal Breakdo

e and mainta

partial  press

ure Suit

Drinking WMgmt

wer

e the major fd. There are SES whic ports, etc. ation for cle

of this initia

w Block Diagra

own 

ain breathab

sures,  tempe

Water t Food

C&DH

807

P

functions of re additionah include buthat are ou

eaning, repal conceptua

am 

le atmospher

eratures  and 

d Mgmt PC

Health Monitor

300008B

Page 8 of 36

the SES al Habitat ut are not tside the iring and

al design

re  for  the 

humidity 

Protective Covering

Page 13: Mars One Surface Exploration Suit (SES) esign  · PDF file3 LEVEL I SES REQUIREMENTS ... Surface SEA PLSS Functional Breakdown

807300008B

Page 9 of 36

3.1.2 Water Management [SES.xxx‐PGM]  Potable Water: The SES shall provide source of drinking water for crew during SEA operations.  

Rationale: Access to water during SEAs is necessary to ensure the crew comfort and health, in addition, lack of water will significantly increase crew fatigue susceptibility. 

Verification: (IDAT) – TBD 

3.1.3 Food Management [SES.xxx‐PGM]  Food: The SES shall provide source of high energy food for crew during SEA operations.  

Rationale: Access to food during longer SEAs will be necessary for crew energy to return to the habitat.   This may be accomplished through a  liquid system and  integrated with the potable water. 

Verification: (IDAT) – TBD 

3.1.4 Crew Waste Management [SES.xxx‐PGM]  Waste Management: The SES shall collect and contain feces and urine.  

Rationale:  Fecal waste  collection must  be  performed  in  a manner  that minimizes  possible escape of  fecal  contents  into  the  suit during SEA operations because of  the high  content of possibly pathogenic bacteria contained in the stool. In addition, there is the potential of injury to crew members and hardware  that could result  from such dissemination. The voided urine must be contained by the stowage and disposal hardware to prevent inadvertent discharge in the suit that could result in injury to crew member's mucous membranes or equipment.  

Verification: (IDAT) – TBD 

3.1.5 Thermal Management [SES.xxx‐PGM]  Thermal Management:  The  SES  shall  provide  for  thermal management  of  crew  during  SEA 

operations.  

Rationale:  Maintaining  appropriate  temperature  ranges  maximizes  crew  productivity  and maintains the overall health of the crew.  The SES may in some conditions provide heating and in other conditions provide cooling.  

Verification: (IDAT) – TBD 

3.1.6 Communications & Tracking [SES.xxx‐PGM]  Integrated Communication: The SES shall provide voice communications between the Suit and 

the Habitat and between multiple SES units operating at the same time.  

Rationale: It is vital that suited crew members have two‐way voice communication with other suited crew members as well as  crew members in the  Habitat. 

Verification: (IDAT) – TBD 

[SES.xxx‐PGM]  Tracking: The SES shall provide a means of locating the suited crew member.  

Rationale: If a crew member(s) fails to return from an SEA or requires assistance, a method of locating  that person  is needed.   A  simple  radio beacon  installed  in  the  suit may  satisfy  this requirement. 

Verification: (IDAT) – TBD 

Page 14: Mars One Surface Exploration Suit (SES) esign  · PDF file3 LEVEL I SES REQUIREMENTS ... Surface SEA PLSS Functional Breakdown

807300008B

Page 10 of 36

 

[SES.xxx‐PGM]  HD  Video:  The  SES  shall  create,  record  and  transmit  near  real‐time  (TBR)  high  definition motion imagery (TBR) from a mounted camera.  

Rationale: For safety it is important that video image be recorded and also transmitted to the Habitat.  This video may also be streamed to Earth. 

Verification: (IDAT) – TBD 

3.1.7 Electrical Power [SES.xxx‐PGM]  Power:  The  SES  shall  provide  electrical  power  storage,  distribution  and  may  provide 

emergency generation.  

Rationale: Subsystems within the SES will require electrical power to perform their functions; as a result the SES will require the ability to store and distribute electrical power.  In addition, in the event of an emergency situation, the ability to produce contingency electrical power  is desired.   The emergency power generation may be enough  to maintain minimal  life support and activate an emergency beacon, etc. 

Verification: (IDAT) – TBD 

3.1.8 Command & Data Handling [SES.xxx‐PGM]  Software Updates: The SES shall accept software updates between SEAs.  

Rationale: The ability to reprogram devices and update software is needed for maintainability. Updates  can  be  applied  when  the  SES  is  not  in  use.  Changes  to  configuration  data  and software patches are  included  in  the  scope of  software updates.  Firmware updates may be included where deemed feasible. 

Verification: (IDAT) – TBD 

[SES.xxx‐SMA]  Status: The SES shall transmit and display the status items.   

Rationale:  These  are  necessary  to  ensure  the  suit  operator  has  adequate  information  to control  the SES  systems and  to provide  telemetry  for  remote  tracking  from  the Habitat,  suit trending,  and  possible  failure  investigations.  A  preliminary  list  of  items  which  should  be included  as  status  items  include:  operational mode,  absolute  suit  pressure,  primary  oxygen pressure,  secondary  oxygen  pressure,  CO2  helmet  inlet  partial  pressure,  battery  current, battery  voltage,  liquid  thermal  garment  (LTG)  inlet  temperature,  ambient  environment pressure, oxygen time remaining, power time remaining, and SEA time elapsed.  

Verification: (IDAT) – TBD 

[SES.xxx‐SMA]  Indicate Pressure: The SES shall  indicate to the suited crew member the  internal pressure of the suit without the use of power.   

Rationale:  Internal  suit pressure  is  considered a  critical operating parameter and  should be available to the crew during any suited pressurized operation.  

Verification: (IDAT) – TBD 

[SES.xxx‐SMA]  Caution & Warning Control System (CWCS) Detection: The SES shall detect and indicate to the crew member faults, significant performance degradation and excessive resource usage.   

Rationale: Indication of these conditions must include both an audible tone and a message on the display which provides additional information about the condition. Examples of conditions 

Page 15: Mars One Surface Exploration Suit (SES) esign  · PDF file3 LEVEL I SES REQUIREMENTS ... Surface SEA PLSS Functional Breakdown

807300008B

Page 11 of 36

which  need  to  be  detected  include,  but  are  not  limited  to,  sensor  failures,  oxygen  leakage, water leakage, high/low electrical current and abnormal metabolic rate.  

Verification: (IDAT) – TBD 

3.1.9 BioMedical [SES.xxx‐PGM]  Biomedical: The SES shall monitor, record, and transmit heart rate of the crew member during 

suited operations as well as other parameters defined by the Mars One medical team (TBR).  

Rationale: Biomedical data transmission to the habitat will be required for medical evaluation of crew members, including during suited operation. The collection and transmission of biomed data must not limit the transmission rate of the remaining suit data.  

Verification: (IDAT) – TBD 

3.2 Performance Requirements [SES.xxx‐PGM]  Exploration Walking: When  in the SES, the crew member shall be capable of walking up a 20 

degree incline (TBR) forwards and sideways when 20% (TBR) of the area is covered by 12.5cm (5 inch) (TBR) diameter rocks on the Martian surface. 

Rationale: Lower body mobility is essential to exploring in terrestrial environments. Balancing center of gravity to ensure proper body control and the ability to recover from falls and kneel is also  imperative  to  exploration.  This  requirement  is  intended  to  capture  necessary  suit functional capability for walking in a Mars equivalent gravity field. 

Verification: (IDAT) – TBD 

[SES.xxx‐ENG]  SEA Nominal Operation Duration: The SES shall sustain the life of the crew member for at least eight (8) hours (TBR) independent of other systems during nominal SEA operations.  

Rationale: 8 hours has been determined to be acceptable amount of time to complete an SEA objective while considering consumables management and balancing crew exertion.    

Verification: (IDAT) – TBD 

[SES.xxx‐ SMA]  Useful Life: The SES shall have a useful life of at least 250 SEAs. 

Rationale: This is a Mars One program office requirement.  The requirement can be met at the system  level with  the  use  of  spares  and  allowable  preventive  and  limited  life maintenance activities. 

Verification: (IDAT) – TBD 

 

[SES.xxx‐PGM]  Emergency  Life  Support:  The  SES  shall provide  at  least 45 minutes  (TBR) of  emergency  life support  independent  of  umbilical  services  during  SEA  operations  after  failure  of  primary oxygen, vent loop, and/or thermal loop.  

Rationale:  In  the  case  of  a  suit  failure,  the  suit must  be  able  to  provide  life  support  for  a sufficient time for the crew to reach a safe haven. Emergency life support includes oxygen for metabolic consumption and leakage make‐up, pressure control to prevent pressures below 3.0 psia, thermal control, and CO2 washout.  

Verification: (IDAT) – TBD 

Page 16: Mars One Surface Exploration Suit (SES) esign  · PDF file3 LEVEL I SES REQUIREMENTS ... Surface SEA PLSS Functional Breakdown

807300008B

Page 12 of 36

[SES.xxx‐PGM]  Emergency  Life Support  Interfaces: The SES  shall  interface  to external umbilical  services  for sustaining life support or recharging the SEA system for extended missions.  

Rationale: In the event the crew leaves the base with a rover, the SES will be required to be in operations for durations greater than the nominal 8 hours while not in contingency operations.  For these operational scenarios, umbilical  interfaces are required for the crew to switch over from a PLSS to a fixed supply of consumables.  

Verification: (IDAT) – TBD 

[SES.xxx‐ENG]  Nominal Suit Pressure :  The  SES  shall  have  a  selectable  suit  pressure  of  between  29.65  kPa (0.29 atm, 4.3 psi) and 44.82 kPa (0.44 atm, 6.5 psi) with a minimum of 3 distinct set points.  

Rationale:  The  suit  pressure  takes  into  consideration  potential  vehicle  operating  pressure, decompression  sickness  (DCS)  risk,  and  operational  efficiencies,  among  other  values.  The distinct set points should be divided evenly within the pressure range.  

Verification: (IDAT) – TBD 

[SES.xxx‐ENG]  System  Charging:  The  rechargeable  systems  shall  be  rechargeable  from  discharge  to  100% capacity within four (4) hours (TBR). 

Rationale: To minimize down  time and allow  for  verification of  charging and  time between installations, 4 hours  is considered acceptable but further studies will be required.   This need also  imposes  requirements  on  the  charging  station, which must  have  sufficient  power  and consumable fluids to recharge the suit in 4 hours. 

Verification: (IDAT) – TBD 

[SES.xxx‐ENG]  Limit Inspired CO2: The SES shall nominally  limit average  inspired CO2 below 3.8 mmHg (TBR) and below 20.0 mmHg (TBR) during emergency operations.  

Rationale: The suit must have a ventilation path such that efficient CO2 washout is achieved in the helmet. Excessive CO2 build up could lead to an onset of cognitive deficit which may pose a hazard to crew during critical operations.  

Verification: (IDAT) – TBD 

[SES.xxx‐ENG]  Metabolic  Rate:  The  SES  shall  accommodate  the  nominal metabolic  profile  in  TBD with  an average metabolic  rate of 350 Watts  (1200 BTU/hr)  (TBR)  for  the Autonomous Operational Duration.  

Rationale:  The  suit must  be  capable  of  providing  thermal  control,  oxygen  supply,  and  CO2 scrubbing under the variable metabolic loads expected during a nominal SEA.  

Verification: (IDAT) – TBD 

 

[SES.xxx‐ENG]  Thermal Protection Performance: The SES shall be compatible with temperatures from ‐128°C (TBR)  to 77°C  (TBR)  for  incidental  contact and  from  ‐93°C  (TBR)  to 57°C  (TBR)  for extended contact.  

Rationale: The suit must be designed to withstand these limits without affecting the structural integrity  of  the  pressure  garment  or  burning  the  crew member.  This  requirement will  drive materials  selection  for  the  pressure  garment,  particularly  the  gloves.  Incidental  contact  is defined as ~3  second bump  contact  (7 kPa) or 30  second brush  contact  (0.7 kPa). Extended contact is not bound by either time durations or pressure range.  

Page 17: Mars One Surface Exploration Suit (SES) esign  · PDF file3 LEVEL I SES REQUIREMENTS ... Surface SEA PLSS Functional Breakdown

807300008B

Page 13 of 36

Verification: (IDAT) – TBD 

[SES.xxx‐ENG]  Touch  Temperatures:  The  SES  shall maintain  the  internal  surface  temperature  within  the range of 10°C (50°F) (TBR) and 45°C (113°F) (TBR) during SEA operations.  

Rationale:  These  values  are  derived  from  the  current  ISS  suit  capability  and  the  touch temperature limits necessary to prevent injury.  

Verification: (IDAT) – TBD 

[SES.xxx‐ENG]  Relative Humidity Tolerance: The SES shall restrict average relative humidity  levels  inside the pressure garment within  the range of 15% RH  (TBR) and 85% RH  (TBR) without the use of a humidifier.  

Rationale: Average humidity must be maintained above the lower limits stated to ensure that the environment  is not too dry  for the nominal  functioning of mucous membranes. Humidity must  be  maintained  below  the  upper  limits  for  crew  comfort,  to  allow  for  effective evaporation,  and  to  limit  the  formation  of  condensation.  Excess moisture  in  the  glove  can contribute to trauma at the fingertips.  

Verification: (IDAT) – TBD 

[SES.xxx‐ENG]  Potable Water:  The  SES  shall  provide  1kg  (TBR)  of  potable water  for  consumption  by  the suited crew member during SEA operations.  

Rationale: In order to maintain proper hydration during SEA, the suited crew member must be able to consume water or other rehydratable nutritional supplements. 1 kg is approximately 34 fluid ounces which is a standard for an 8hr working EVA on ISS.  Further evaluation of workload and water requirements while on a Martian surface is required to finalize this requirement. 

Verification: (IDAT) – TBD 

[SES.xxx‐ENG]  ORU  Change‐out  Time:  The  SES  shall  permit  any  operational  replacement  unit  (ORU) operations to be performed IVA within 30 minutes (TBR) without the use of special tools. 

Rationale:  This  requirement  is  necessary  to  maximize  crew  efficiency  on  SEA  days  in preparation for the SEA and to  limit ORU change‐outs to simple hand motions and eliminate need for special tools.  

Verification: (IDAT) – TBD 

[SES.xxx‐ENG]  Data Storage: The SES shall  record all  sensor  readings and  faults at a minimum 10 Hz  (TBR) during a single SEA.  

Rationale: Data recording will provide a record of the suit health and status during an SEA and other  suit  events  and  will  maintain  the  record  should  there  be  an  interruption  of communication between  the  suit and  the Habitat. This will assist not only  for  trending data during SEA operations and  to  facilitate maintenance, but  is also  intended  to  function  like an aircraft  “black  box”  should  retrieval  of  failure  data  be  necessary  after  catastrophic  events. Recording will last from the time the suit is powered on until the time it is powered off.  

Verification: (IDAT) – TBD 

Page 18: Mars One Surface Exploration Suit (SES) esign  · PDF file3 LEVEL I SES REQUIREMENTS ... Surface SEA PLSS Functional Breakdown

807300008B

Page 14 of 36

[SES.xxx‐ENG]  Speech  Intelligibility:  The  SES  auditory  speech  annunciations  and  communications  shall provide a level of speech intelligibility equivalent to a 95% (TBR) word identification rate.  

Rationale: This requirement ensures that auditory speech annunciations and communications are sufficiently salient and intelligible. The 5% allowable word identification loss is through the entire suit system and assumes no loss at the interface.  

Verification: (IDAT) – TBD 

[SES.xxx‐PGM]  Purge Efficiency: The SES shall have a purge efficiency as good as or better than the ISS space suit capability.  

Rationale: This requirement has historically driven the need for a vent tree inside the pressure garment. Decreased purge efficiency will  result  in  the usage of additional  consumables and longer purge times.  

Verification: (IDAT) – TBD 

3.3 Design & Construction [SES.xxx‐PGM]  Unassisted Suit Operation: The SES shall provide for unassisted operation of all suit functions.  

Rationale:  It  is  necessary  that  the  crew member  can  use  all  features  of  the  suit  without assistance,  including but not  limited  to donning, doffing, umbilical operations,  controls, and status  selections.  Controls  should  include,  but  are  not  limited  to;  operational mode,  radio mode, radio volume, caution and warning status and acknowledge, display  lighting  intensity level, power mode, thermal comfort level and auxiliary heating/cooling. 

Verification: (IDAT) – TBD 

[SES.xxx‐ENG]  Don/Doff Times: The SES shall be designed to support donning and doffing times of less than 10 minutes (TBR) with assistance, and 30 min (TBR) without assistance.  

Rationale: To support break times and crew comfort, donning and doffing time duration of 10 min with the assistance of another crew is desired by the Mars One program office.  However, in contingency operations another crew member may not be available, and as such, additional time may be required to don or doff the suits without assistance. 

Verification: (IDAT) – TBD 

 [SES.xxx‐ENG]  Stowed Volume: The SES shall have a PLSS volume that does not exceed TBD dimensions.  

Rationale:  The  PLSS must  not  significantly  interfere with  crew member mobility  and  vision. Additionally,  the  PLSS  will  be  hard  volume  that  cannot  be  compressed,  meaning  storage volume will be a significant consideration. 

Verification: (IDAT) – TBD 

[SES.xxx‐ENG]  Surface SES Mass: The SES shall have a  loaded on back mass of equal to or  less than 125 kg (275 lbm) (TBR).   

Rationale: This control mass  is needed  to ensure  compatibility with mass capability and  the suit’s ability  to meet  functional and performance requirements. Loaded mass  is defined as a fully charged unit, with water, oxygen, cooling, and food sources, as well as with any tools or other ancillary hardware.  

Verification: (IDAT) – TBD 

Page 19: Mars One Surface Exploration Suit (SES) esign  · PDF file3 LEVEL I SES REQUIREMENTS ... Surface SEA PLSS Functional Breakdown

807300008B

Page 15 of 36

3.4 Interfaces

3.4.1 Human Interfaces [SES.xxx‐ENG]  Exploration Anthropometry: The SES  shall be  customizable  to  fit  the  full  size  range of  crew 

members  from  the 5th  (TBR) percentile  Japanese  (TBR)  female  to  the 95th  (TBR) percentile American (TBR) male.  

Rationale: The  full  size  range of  suited  crew members must be able  to  fit,  reach,  view, and operate required interfaces involved in planned tasks. Designers shall closely examine shoulder mobility  issues and hip mobility  issues experienced with  the EMU  in order  to protect 5th  to 95th percentile crew from  injury.   It  is assumed that actual suit fitting for each crew member will be required for these ranges, but compatibility of common parts is required. 

Verification: (IDAT) – TBD 

[SES.xxx‐ENG]  In‐Suit  Noise:  The  SES  shall  limit  the  noise measured  at  the  crew member's  head  to  an A‐weighted Sound Pressure Level (SPL) of less than 55 dB (TBR) for continuous noise.  

Rationale:  The  noise  attenuation  effectiveness  of  hearing  protection  or  communications headsets may not be used to satisfy this requirement. The value defined in this requirement is the  amount  of  sound  pressure  created  by  the  suit  to which  the  crew member  is  exposed. Exterior acoustical environments are not considered.  

Verification: (IDAT) – TBD 

[SES.xxx‐PGM]  Valsalva:  The  SES  shall  allow  a  suited  crew  member  to  perform  a  hands‐free  Valsalva maneuver.  

Rationale:  The Valsalva maneuver  is  performed  by  forcibly  exhaling  against  closed  lips  and pinched nose,  forcing air  into  the middle ear  through  the Eustachian  tube. The maneuver  is used by crew members during suit pressurization and depressurization  to avoid  injury  to  the inner  ear.  The Valsalva maneuver must  be  performed  hands‐free  due  to  the  crew member being unable to access their nose with their hands to perform the maneuver while wearing the pressurized suit.  

Verification: (IDAT) – TBD 

3.4.2 System Interfaces [SES.xxx‐SMA]  Buddy System: The SES  shall provide  capability  to  support another SES with one SES on an 

umbilical for 30 min (TBR). 

Rationale:  In  the  event  of  a  PLSS  failure,  one  crew member  can  connect  their  PLSS  to  the incapacitated PLSS or suit as an emergency system.  Failures of a PLSS should not preclude the ability to operate in the “buddy” mode. 

Verification: (IDAT) – TBD 

[SES.xxx‐ENG]  Radio  Standard:  The  SES  shall  transmit  and  receive  data  and  voice  over  a  TBD  wireless interface. 

Rationale: Radios will be necessary for communications between suited crew members and the Habitat and Rovers.   

Verification: (IDAT) – TBD 

Page 20: Mars One Surface Exploration Suit (SES) esign  · PDF file3 LEVEL I SES REQUIREMENTS ... Surface SEA PLSS Functional Breakdown

807300008B

Page 16 of 36

[SES.xxx‐ENG]  Radiation Monitoring: The SES shall interface with a real‐time emergency radiation monitoring system.  

Rationale: This requirement is intended to make the suit compatible with a powered radiation monitoring  system  near  the  habitat  that  notifies  the  crew  for  absorbed  dose  and  dose equivalent  detecting  and  may  also  include  individual  passive  monitoring  systems  per individual. 

Verification: (IDAT) – TBD 

[SES.xxx‐ENG]  Tether points: The SES shall provide structural attachment points for tethers located TBD.  

Rationale: The crew members may conduct SEA in terrain that requires tethered operations for safety (e.g. areas of extreme incline).  

Verification: (IDAT) – TBD 

[SES.xxx‐ENG]  Auxiliary Lighting: The SES shall provide auxiliary lighting of the surroundings.  

Rationale: The ability to see in the shadows on the planet surface or equipment is necessary to allow the crew member to safely complete tasks.   

Verification: (IDAT) – TBD 

[SES.xxx‐ENG]  Electromagnetic  Interference  and  Compatibility:  The  electromagnetic  signals  from  voice communications,  data  transmittal,  video  transmittal  and  other  electronic  components  shall not interfere with each other or cause malfunction.  

Rationale:  Electromagnetic  Interference  (EMI)  and  electromagnetic  compatibility  (EMC)  are key considerations for any electrical system, particularly for systems that transmit and receive signals. 

Verification: (IDAT) – TBD 

[SES.xxx‐ENG]  Habitat: The SES shall interface with the habitat for ingress and egress of crew, recharging the SEA consumables, and for servicing of the suits. 

Rationale:  The  suit  will  enter  and  exit  the  habitat  on  a  regular  basis  for  crew  usage, refurbishment and  recharging.  It  is assumed a  standard airlock will be used  consisting of a depressurization/pressurization vestibule that will isolate the SEA member from the rest of the habitat.   Upon  equalization with  the  external  environment when  egressing,  or  the  internal environment  for  ingressing,  the  crew will  perform  the  don/doffing  as  required.   Alternative architectures  such as a  rear entry  suit may be employed based on  future  studies  that  show benefit to reduce mass, crew time, or consumables; or to improve overall safety and reliability of the integration system. 

Verification: (IDAT) – TBD 

3.4.3 Natural and Induced Environments [SES.xxx‐ENG]  Exposure to Magnetic Field: The SES shall meet its requirements during and after exposure to 

a DC Magnetic Field of 250 Gauss (TBR).  

Rationale:  Legacy  systems  typically  require  that  the  vehicle  limit magnetic  fields within  SEA worksites  and  translation  path  to  250  Gauss.  The  suit  is  not  expected  to  shield  the  crew member from this field, but it is expected to function nominally in this environment.  

Verification: (IDAT) – TBD 

Page 21: Mars One Surface Exploration Suit (SES) esign  · PDF file3 LEVEL I SES REQUIREMENTS ... Surface SEA PLSS Functional Breakdown

807300008B

Page 17 of 36

[SES.xxx‐ENG]  Solar Ultraviolet:  The SES exposed materials shall withstand solar ultraviolet exposure of 100‐150nm (TBR) wavelength at an intensity of 7.5x10‐3 w/m2 (TBR) over the useful life of the suit.  

Rationale: The SES will be exposed to various solar ultraviolet levels during SEA, and the suits must be able  to continue nominal operation during and after  these exposure periods. NOTE: This will need to be revisited once the Martian environment is explicitly defined. These values are based on a suit designed for LEO and Lunar operations. 

Verification: (IDAT) – TBD 

[SES.xxx‐ENG]  Extreme UV Protection:  The SES exposed materials shall withstand extreme UV of 10‐100nm (TBR) wavelength at an intensity of 2x10‐3 w/m2 (TBR) over the design life of the suit. 

Rationale:  The  suits will  be  exposed  to  various  solar  ultraviolet  levels  during  SEA,  and  they must be able to continue nominal operation during and after these exposure periods.  Exposed materials must withstand  this  environment.   NOTE:  This will  need  to  be  revisited  once  the Martian environment  is explicitly defined. These values are based on a suit designed  for LEO and Lunar operations. 

Verification: (IDAT) – TBD 

[SES.xxx‐ENG]  X‐ray Protection:  The SES materials shall withstand X‐rays of 1‐10nm (TBR) wavelength at an intensity of 5x10‐5 w/m2 (TBR) over the design life of the suit.  

  Rationale: The suits will be exposed to x‐ray radiation during an SEA, and they must be able to continue nominal operation during and after these exposure periods. Any material that  is not specifically shielded from x‐rays must be considered.  NOTE: This will need to be revisited once the Martian environment  is explicitly defined. These values are based on a suit designed  for LEO and Lunar operations. 

Verification: (IDAT) – TBD 

[SES.xxx‐ENG]  Solar  Ionizing Radiation: The SES shall meet  its performance requirements after exposure  to the radiation dose environment defined in TBD.  

Rationale: The suits will be exposed  to various  ionizing  radiation  levels during SEA, and  they must be able to continue nominal operation during and after these exposure periods. Galactic cosmic particles pose a particular problem.  Individual cosmic particles are so energetic as  to require  impractical  amounts  of  shielding.  Hence,  a  few  random  failures  or  temporary anomalies of the electronic system may be expected  from this source as  long as they do not result in catastrophic events. While utilization of rad hardened components is expected, special shielding of electronics from highly energetic particles is not required.  

Verification: (IDAT) – TBD 

[SES.xxx‐ENG]  Plasma: The  SES  shall protect  the  crew  from electrical  shock and meet all  its  requirements while operating in a plasma environment from ‐80V (TBR) to ‐5V (TBR) floating potential.  

Rationale: Electrical arcing between systems at different potentials  is a possible hazard. This potential difference can arise during SEA operations near power generation sites such as solar power farms.   Designs may employ grounding interfaces to control the path of electrical shock to avoid damaging soft goods. 

Verification: (IDAT) – TBD 

Page 22: Mars One Surface Exploration Suit (SES) esign  · PDF file3 LEVEL I SES REQUIREMENTS ... Surface SEA PLSS Functional Breakdown

807300008B

Page 18 of 36

[SES.xxx‐ENG]  High  Abrasion  Dust:  The  SES  shall  meet  its  performance  requirements  after  exposure  to Martian dust.  

Rationale: Based on experience during the Apollo program, it was recognized that dust on the lunar  surface  can  be  especially  harsh  to  equipment  and  poses  a  potential  hazard  to  crew members if carried inside the habitable volumes.  It is believed that the Martian regolith would have  some  of  the  same  potential  effects.   Mitigation  strategies may  include,  but  are  not limited  to,  manual  cleaning  operations,  prevention  of  dust  intrusion,  dust  immobilization, protective personal equipment, design for reliability, etc.  

Verification: (IDAT) – TBD 

 [SES.xxx‐ENG]  Material  Compatibility:  The  SES  shall  be  designed  with  materials  compatible  with  other environments defined in TBD.  

Rationale:  As  the  program  matures,  a  materials  compatibility  document  will  need  to  be developed and matured and will address things such as superoxides and chemical resistance to the Martian environment.  

Verification: (IDAT) – TBD 

[SES.xxx‐ENG]  Visibility, Vision,  and  Clarity:  The  SES  shall  provide  a  viewing  range  of  at  least  120  degree horizontal and at least 90 degree vertical with a clarity of TBD under nominal conditions.  

Rationale:    A  wide  range  of  vision  is  necessary  for  the  crew  member’s  visual  situational awareness.  

Verification: (IDAT) – TBD 

3.5 Safety, Quality, and Mission Assurance [SES.xxx‐SMA]  High Voltage Exposure: The SES shall protect the suited crew member  in  the event that any 

suit surface touches a voltage source of TBD Volts for TBD seconds.   

Rationale:  The Mars  One  program  office  intends  on  using  high  voltage  power  systems  to minimize system sizing and loads with voltages potentially on the order of 1000VDC.  Given the high voltage and rarefied Martian Atmosphere, there  is a risk that the suited crew members may  be  exposed  to  arcing  or  inadvertent  contact.    This  issue  needs  to  be  resolved with  an appropriate control put in place in the suit system by design or operations.  

Verification: (IDAT) – TBD 

[SES.xxx‐ SMA]  Mean time Between Failures (MTBF): The SES shall have a mean time between failures (MTBF) of not less than 22,500 hours (TBR) of SEA utilization. 

Rationale: Only  failures which  result  in  loss of crew are considered  for  this  requirement. The number  in  this  requirement  is  similar  to  the NASA  estimates  for  a  lunar  outpost  LOC/LOM requirements (LOC=1/17, LOM=1/12 with a hardware usage time of 9404 hours, 3200 of which was EVA time).  

Verification: (IDAT) – TBD 

[SES.xxx‐ SMA]  Mean  time  to Repair  (MTTR): The SES shall have a mean time to repair  (MTTR) of not more than TBD hours. 

Rationale:    Despite  preventative maintenance  and  rigorous  qualification  testing,  it  can  be expected  that  some  parts  of  the  SES will  break.    The  suit must  be  designed  to  be  repaired quickly.  

Page 23: Mars One Surface Exploration Suit (SES) esign  · PDF file3 LEVEL I SES REQUIREMENTS ... Surface SEA PLSS Functional Breakdown

807300008B

Page 19 of 36

Verification: (IDAT) – TBD 

[SES.xxx‐SMA]  Impact Performance: The SES shall meet its requirements following impact at any point with a 5 cm (TBR) diameter ball having the energy equivalent to the worst case rigidly attached mass of the suit, umbilical, tools, and crew member traveling at a rate of at least 60 cm/s (TBR).  

Rationale:  This  requirement  ensures  that  the  suit  components  (whether  hard  or  soft)  will continue  to  operate  normally  following  an  impact  during  SEA.  The  impact  energy must  be specified as a function of system mass and anticipated SEA translation and possible fall and/or translation velocities. This requirement must be met at the highest and lowest suit pressures. 

Verification: (IDAT) – TBD 

[SES.xxx‐SMA]  Eye Protection: The SES  shall  limit crew exposure  to  spectral  radiance and  irradiance at  the crew members' eyes to levels equivalent or lower than current ISS suit performance.  

Rationale:  This  requirement  is  necessary  to  prevent  retinal  photochemical  injury  from exposure.  

Verification: (IDAT) – TBD 

[SES.xxx‐SMA]  Power System Duration: The SES shall have a power system  life of at  least 2 years (TBR) and 750 charge/discharge cycles (TBR).  

Rationale: Current ISS spacesuit batteries are expected to have a  life of 2 years. Batteries are expected to  last a full SEA without recharge or swap out.   Alternative power sources may be developed  or  envisioned  but  will  need  to  accommodate  the  frequency  of  SEAs  and  time between supply drops. 

Verification: (IDAT) – TBD 

[SES.xxx‐SMA]  Fault Tolerance: The SES shall be two fault tolerant (TBR) for catastrophic hazards and single fault tolerant (TBR) for critical hazards or shall receive approval for Design for Minimum Risk (DFMR).  

Rationale: This establishes a minimum of two fault tolerance or DFMR to control catastrophic hazards  and  single  fault  tolerance  to  control  critical  hazards.  It  is  anticipated  that  many functions and components of the suit will pursue DFMR (e.g. oxygen storage tanks). 

Verification: (IDAT) – TBD 

[SES.xxx‐SMA]  Pre‐SEA  Operations  Preventative  Maintenance:  The  SES  flight  hardware  shall  require  no preventive or limited life maintenance prior to first use (TBR).  

Rationale:  This  requirement  addresses  the  desire  to  design  suit  hardware  such  that maintenance not be required during the 32 month period prior to first use (time in transit and on the surface prior to first use).  Activities associated with wipe down and cleaning to ensure viability  of  hardware  are  not  considered  within  the  definition  of  maintenance  for  this requirement. Battery maintenance is generally excluded from this requirement; however crew‐time for battery maintenance must be minimized as much as possible.  

Verification: (IDAT) – TBD 

[SES.xxx‐SMA]  Post‐SEA Operations Preventative Maintenance: The SES hardware shall require no preventive or limited life maintenance prior to the completion of four 8‐hour SEAs (TBR).  

Rationale: This requirement addresses the desire to design suit hardware such that preventive or  limited  life  maintenance  occurs  no  more  frequently  than  once  every  four  SEA  cycles.  

Page 24: Mars One Surface Exploration Suit (SES) esign  · PDF file3 LEVEL I SES REQUIREMENTS ... Surface SEA PLSS Functional Breakdown

807300008B

Page 20 of 36

Activities  associated with wipe  down  and  cleaning  to  ensure  viability  of  hardware  are  not considered within the definition of maintenance for this requirement. Battery maintenance  is generally excluded  from  this  requirement; however crew‐time  for battery maintenance must be minimized as much as possible.  

Verification: (IDAT) – TBD 

[SES.xxx‐ENG]  SOW  Standards:  The  following  technical  and  process  standards  are  derived  from  NASA’s human  spaceflight  program  and  should  be  adhered  to  unless  alternative  standards  are approved by the chief engineer, program manager and customer. 

Rationale: This  list represents a preliminary snapshot of known standards used by NASA and recognized  as  industry  standard.  Standards will  continue  to  be  used  to  ensure  hazard  and quality  controls  for  critical  systems.  If  there are preferred  (company or  industry)  standards, some  effort  should  be  expended  to  ensure  they  are  aligned  with  the  intent  of  the  NASA standards to ensure historical human spaceflight lessons learned are not lost.  

•   NASA‐STD‐4003  Electrical  Bonding  for  NASA  Launch  Vehicles,  Spacecraft,  Payloads,  and Flight Equipment  

•  MIL‐STD‐461‐F Requirements for Control of Electromagnetic Interference Characteristics of Subsystems and Equipment  

•   JPR 8080.5 JSC Design and Procedural Standards  •   JSC 28918 EVA Design Requirements and Considerations •   JSC 65828, Structural Design Requirements and Factors of Safety for Space Flight Hardware •   JSC 65829, Loads and Structural Dynamics Requirements for Space Flight Hardware. x NASA‐STD‐5017 Design and Development Requirements for Mechanisms x NASA‐STD‐5019 Fracture Control Requirements for Spaceflight Hardware •   NASA‐STD‐6016 Standard Material and Process Requirements for Spacecraft•   NASA‐

STD‐6016 Standard Materials and Processes Requirements for Spacecraft •   NPR 7150.2A NASA Software Engineering Requirements •   NASA‐STD‐8719.13 Software Safety Standard •   NASA‐GB‐8719.13 Software Safety Guidebook •   NASA‐STD‐5005 Standard for the Design and Fabrication of Ground Support Equipment •   ANSI/AIAA S‐081A‐ Space Systems ‐ Composite Overwrapped Pressure Vessels (COPVs) July 

24, 2006 x ANSI/AIAA‐120A Mass Properties Control for Space Systems •   S‐080‐1998e  AIAA  Standard  for  Space  Systems  ‐  Metallic  Pressure  Vessels,  Pressurized 

Structures, and Pressure Components  

Verification: (IDAT) – TBD 

Page 25: Mars One Surface Exploration Suit (SES) esign  · PDF file3 LEVEL I SES REQUIREMENTS ... Surface SEA PLSS Functional Breakdown

4TPPhtdi

As

Tst

4

4TsvTpSprN

TTdbTc

Tltab

4 FunctioThe SurfacePressure SuPortable Lifehardware thao the Habi

developmentntegrated Su

As the Apollsome of its p

The followinsuit, and serhe foundatio

4.1 Pressure

4.1.1 HelmThe helmet subcomponevisor. An ilThe helmet wprovide the SEA. The prototype sprecently, ILCNASA’s Z-2

The pressureThe protectidesigned to both opaqueThe sun visocoating from

The helmet wight conditioranslating o

astronaut to by ILC Dove

onal Basee Explorationit itself and e Support Sat provides stat or othet efforts, Safurface Explo

lo A7LB waprimary featu

g definition ves as a poion for trade s

e Suit

met assembly w

ents are thelustration ofwill be a nobest comprelliptical he

pacesuits deC Dover devPlanetary EV

e bubble wilve bubble wencase the

e and tinted or will be sa damage fro

will also incons. This son a planeta

view objectr as part of t

Fi

eline Defin Suit is divall hardwareSystem whiservices to tr life suppofety Reviewsoration Suit (

as the last dures are suit

provides thint of departstudies.

will consist oe pressure bf the proposn-conformalromise for iemisphericaleveloped by veloped the VA spacesu

l be fabricatewill be fabri pressure bregions to p

andwiched bom dust and

lude a lightisystem will ary surface. s close up, the NASA D

igure 8: Adva

nition vided into twe contained ich is an inthe Pressureort umbilicas will be con(SES).

developed oable to the M

he initial basture function

of three majbubble, protsed architec elliptical hein-transit vel helmets hILC Dover slatest versio

uit.

ed from impcated from

bubble for mrovide adeq

between the abrasion.

ng system (provide proj Secondar

such as geo-RATS remo

anced Helmet 

wo major syswithin the snterchangeae Suit when

al. For thenducted at th

perational pMars One ne

seline archital baseline t

or subcomptective bubbcture is showemisphericalehicle operahave been usince the lat

on of this he

act resistantthe same m

maximum proquate protect

pressure an

(see Figure ject type illu

ry illuminatioologic sampote field test

Lighting Syst

stems, 1) thuit and 2) th

able piece o not attache

e design anhe level of th

planetary sueeds.

tecture of thto be used a

ponents. Thble and the wn in Figurl shape size

ations and Mused on NAte 1990s. M

elmet system

t polycarbonmaterial andotection. Thtion from sund protective

8) to providumination toon will also les. A prototing.

tem – Waist E

he he of

ed nd he

it,

he as

hese sun

re 7. ed to Mars ASA Most m for

nate. d be he protectivenlight while e visors to p

e illuminatioo provide abe provide

otype lighting

Entry I‐Suit 

Figure

Figur

807

Pa

e bubble wimaximizing protect the s

on during SEdequate visd that will ag system wa

 

e 6.  Typical SpConfiguratio

 

re 7: Mars OnArchitectu

300008B

age 21 of 36

ll include visibility.

sun visor

EA in low sibility for allow the as tested

pacesuit n. 

ne Helmet ure 

Page 26: Mars One Surface Exploration Suit (SES) esign  · PDF file3 LEVEL I SES REQUIREMENTS ... Surface SEA PLSS Functional Breakdown

4

whao

4

4TcugbtprmnitMi

A

4.1.2 In-Su

wedge, shouhave structuat the top of of the suit th

4.1.4 Arms

4.1.5 GlovThe gloves current Phasused on theglove designby NASA foasks. This

pouring JSrestraint andmanned prenoted to tnspections. o be perform

Mars SEA ren a later sec

Figure 9: HeFree 

CommunicaSystem

Figure 11: I‐SArm Architec

uit Commun Thspin to “sn

4.1Thsim(Fa sfal(S

ulder rotary bral attachmethe waist clorough the in

s The succThe desigmassdesigWaisslim apprbearexpedamaadjuswristmobi

ves will be a

se VI EVA gle Internationn has perforor performins testing alC Lunar d TMG layeessurized cyhe glove More of this

med to verifyequirementsction.

 eads‐

ation m 

 Suit ture 

nication Syshe in-helme

peakers and Figure 9. Itthe spacesu

noopy cap”.

1.3 Upper he upper torsmilar to thaigure 10). Tsystem that ling during UT) will intbearings andent points aosure. Life terfaces at t

proposed cessfully use

shoulder cogn patenteds and packgn was pionst Entry I-Su

bearings coach minimings were

erienced eigage to the sstable axial t end of theility and the

modified veloves (Figurenal Space Srmed well inng critical sso includedSimulant b

ers and theycling. No layers duris type of tesy the glove ds. This will

stem et communic

microphonet is called heuit rather tha

r Torso so will be ant demonstra

The approacis very toleSEA opera

erface with d a hard wait the back osupport conthe back of t

arm architeed on both thonsists of a by ILC Doing volume

neered by ILuit program. coupled with

mizes mainterecently usht very har

suit. The lowrestraint bra

e lower arm ability to qui

ersion of the 12) that ar

Station. Thn recent testsurface EV

d deliberatebetween thn performindamage wang post-tes

sting will needesign meetbe discusse

cation systees mounted eads-free bean worn on

n all-soft waiated in the h minimizesrant of impaations. Th

the base oist entry closof the neck wsumables w

the neck wed

ecture (Figuhe Waist and

two bearingover. The a

while also LC Dover du

This desigh custom penance timed in the d parachutewer arm conackets that p

incorporateickly don an

he re is ts

VA ly

he ng as st

ed ts

ed

em will consaround the

ecause the cthe crew me

st entry archWaist Entr

s mass and pacts associae soft uppeof the helmsure. The Pwedge elem

will pass into dge element

ure 11) had Rear Entryg toroidal coall soft toroi

exhibiting auring the den consists opressure ane and difficStratEx com

e landings, nsists of an provide Vernes a bearingd doff glove

Figure 12: Cu

sist of a hebase of the

components ember’s hea

hitecture ry I-Suit provides

ated with er torso

met neck PLSS will ment and

and out t.

as been y I-Suits. onvolute dal convolua high cycle

evelopment oof custom pand environmculty. Themmercial spoften in natall soft gore

nier sizing fog/disconnects.

I

urrent Phase V

807

Pa

eads-free sye neck ring a

are attachedad like the tr

te design me life. Theof the originackaged commental sealese spacesupacesuit. Ttural terrained mobility jor enhancedt providing r

Figure 10: WI‐Suit Soft Up

(SUT

VI ISS EMU

300008B

age 22 of 36

ystem of as shown d directly raditional

minimizes e bearing nal NASA mmercial s. This uit rotary This suit , without joint with

d fit. The rotational

Waist Entry pper Torso T) 

Page 27: Mars One Surface Exploration Suit (SES) esign  · PDF file3 LEVEL I SES REQUIREMENTS ... Surface SEA PLSS Functional Breakdown

4IusTfbT(

4Tcmsctosvubittmttwc

4TN

4.1.6 Waisn order to p

utilize an all spacesuit. TThis type of field testing been used sThis waist a(Figure 13) a

4.1.7 BriefThe Mars Oconsist of a mobility joinshow to procost, mobilityype of syste

on the I-Suspacesuit. very good peup to 8.3 psibe of the san the arm sorso mobilithe need for

minimizing mhe type of wo bearing

convolute wa

4.1.8 LegsThe Mars ONASA Z-1 a

st provide the bsoft toroidal

This design mobility joinin the Moja

successfully architecture and bending

f/Hip/Thigh One spacesfabric brief

nts. This aovide the bey, mass andem has bee

uits and theExisting de

erformance id. The hip

ame design section. Thity has beena waist bea

mass is criticextreme m

g hip marraist joint.

s One spacesuand Z-2 spac

best trade bconvolute whas structur

nt was first dave Desert a

in 9 years provides crover to pick

Figure 13: R

suit architecand two be

approach hest trade cod maintenanen used suce recent NAesigns haveduring limiteand leg beapreviously dis approach

n shown to aring especiacal. Figure 1obility attainied with a

uit will utilizecesuits. Th

between mawaist joint simrally redundademonstratedas part of thof NASA D

ritical mobilik up objects

Rear Entry I‐Su

cture will earing hip has been nsidering

nce. This ccessfully ASA Z-1 e shown ed testing arings will discussed to lower eliminate ally when 14 shows ned by a toroidal

e an enhanis design bu

ss, mobility milar to that ant axial resd in the Wa

he Astronauesert RATSity required on the grou

uit Mobility E

ced walkinguilds on the

Figure 14: C

and cycle ldeveloped f

straints and ist Entry I-St Rover Inte

S remote fiefor operatio

nd.

Evaluation on 

g leg joint de lessons lea

Critical SurfacNASA D‐RA

ife, the Marfor the ILC Drequires ver

Suit in 1998 deraction (ASld testing inons such a

an ATV 

developed barned from

e EVA OperatATS Testing in

807

Pa

rs One spacDover I-Suitsry little mainduring NASA

SRO) projecn the Arizonaas sitting on

by ILC Dovethe Mk III a

tions Evaluaten Arizona 

300008B

age 23 of 36

cesuit will s and Z-1 ntenance. A remote t. It has a desert.

n a rover

er for the and I-Suit

ed during 

Page 28: Mars One Surface Exploration Suit (SES) esign  · PDF file3 LEVEL I SES REQUIREMENTS ... Surface SEA PLSS Functional Breakdown

pfo

4TdSaa

4Ta(ciehloapc

4Trcsppsr

Tnmwi

Ttw

4

4Tnppms

programs anfabric with ligon the lower

4.1.9 BootThe boot ardeveloped foSEA comforarchitecture adjustment c

4.1.10 LiquiThe liquid tadvanced li(LCVG) ILC contract. A n Figure 15existing ISS heating/coolioops. Coman improvedprofile vent acoatings.

4.1.11 ThermThe TMG is require techchallenges nsimilar challeperformed topressure retasuit mobility research in t

The atmospnecessitate micro-gravitywork on the ncluding the

The other keo be incorpo

while on SEA

4.2 Portable

4.2.1 OverThe portablenecessary foprimary subspossibly powmember andsubsystems.

nd more thaghtweight titaarm. This t

ts rchitecture wor NASA on rt while alsis sized to t

capability at

id Thermal thermal gariquid coolinDover develpicture of th5. This deEMU LCVG

ing through mfort is improd fabric lineair return du

rmal Micromone area of

hnology devnot experienenges expeo develop maining layersis not restri

this area for

pheric pressthe incorpory TMGs. ThStratEx spa

ermal analys

ey challengeorated into tA.

e Life Suppo

rview e life suppoor the crew systems incwer generatid the habita

n 15 years anium axial type of mobi

will be an ethe Z-2 progo managingthe astronausuit operatio

Garment rment will bng and veloped for NAe current ILesign is enG in that it p

better fit aoved througer layer, hiucts and inte

meteoroid Gf the suit arcvelopment. nced in preverienced on materials nes of the suit.cted and suNASA, yet m

ure on the ration of newhis new insuacesuit has ris and testin

e is the radiathe layers o

ort System

rt system ofmember to

lude Environon; as well at. Each o

of NASA Derestraint brality joint has

evolution of gram. This g operationaut’s foot justonal pressur

be similar tentilation gaASA on a resC LCVG is s

nhanced oveprovides impand targetedh incorporatgh efficiencegral antimic

Garment (TMchitecture th The Martivious operathe lunar s

eeded to sto Novel attacit maintenanmore work is

Martian suw insulation

ulation will hrelevant appng is required

ation environof the TMG t

f the Mars o comfortablnmental Conas commun

of the sectio

esert RATS ackets that p been used

the advancboot is beinal pressure t as terrestrre via a uniq

to the arment search shown er the proved d fluid tion of cy low crobial

MG) hat will ian planeta

ational EVA surface. A op the intruschment and nce time is ms required.

rface and tn materials iave to perfo

plication to ad

nment on thto minimize

One Surfacy and safelntrol and Lif

nication betwons below

remote fieldprovide Vernsuccessfully

ced spacesung designed

loads in eial hiking boue dual ratc

ry surface spacesuits.

very limitedsion of Martermination

minimized.

the extremein comparisoorm more lika Martian TM

he Martian sthe radiatio

ce Suit systely operate wfe Support; ween crew mprovides an

Figure

d testing. Tier sizing simy up to 8.3 p

uit walking to provide lo

excess of 8oots are todchet and cab

and atmos. The Mart

d amount ofrtian soil int methods arILC Dover h

e thermal gon to those ke a winter pMG, althoug

urface. Newon dosage a

em provideswhile in the power stora

members ann overview

e 15: ILC Dove

807

Pa

The design imilar to thospsid.

boot currenong duration

8.3 psid. Tay. There i

ble system.

sphere bringtian soil wilf research hto the structre required thas perform

radient requused for Lu

parka. Rech more deve

w materials n astronaut

s all of the fpressure s

age, distribund between

of the maj

er EMU LCVG

300008B

age 24 of 36

is all soft e utilized

tly being n walking The boot is also fit

g unique l provide

has been tural and to ensure

med some

uired will unar and ent TMG elopment

will have receives

functions uit. The tion, and the crew or PLSS

Page 29: Mars One Surface Exploration Suit (SES) esign  · PDF file3 LEVEL I SES REQUIREMENTS ... Surface SEA PLSS Functional Breakdown

807300008B

Page 25 of 36

4.2.2 Communications Two-way radios will be used to facilitate voice communications between crew members and the habitat. A multi-channel system in which the user will be able to select the channel, enable or disable the microphone, or as required go into a voice-activated mode will enable multiple crews to function without creating a significant amount of chatter from the Mars One population. The communications subsystem requires a significant amount of interface definition with the other systems and as such the specifics of a baseline are not available.

4.2.3 Power Storage, Distribution, and Generation Power storage would be provided by rechargeable primary batteries, most likely lithium ion. Power would be limited to 28VDC and 5VDC power for pumps/fans and electrical instrumentation, respectively. Small form factor batteries for power storage represent a high technical risk for SEA operations. Due to the limited number of charge/discharge cycles that a battery can endure, a power storage design that utilizes power carts to the maximum extent possible would be considered. In future suit upgrade cycles, it may be possible to integrate thin film solar panels into the suit to produce electrical power and minimize the discharge of the batteries.

 Figure 16:  Power Subsystem Schematic 

4.2.4 Environmental Control and Life Support Environmental control is provided by a system based on Paragon’s patented Metabolic Temperature Swing Adsorption (MTSA) technology, as shown in Figure 17. There are three main loops to this system. The first loop (green) is the air revitalization system that removes CO2, moisture and trace contaminants from the exhaled gas. The second loop shown in blue is a fluid loop that provides temperature control to the suited crew member. Last is a CO2 circuit that uses liquid CO2 to facilitate MTSA operation and provide cooling supplemental cooling.

Page 30: Mars One Surface Exploration Suit (SES) esign  · PDF file3 LEVEL I SES REQUIREMENTS ... Surface SEA PLSS Functional Breakdown

4Tha

Ug

Tois

TPeamAaeesoiutob

4.2.4.1 PreThe life suphumidity leveand CO2.

Utilizing the gaseous oxy

The pressureof the suit. Ts maintained

The revitalizPLSS by a exhalant is uadsorbed COmoisture, whAfter leavinga desiccant exhaled gasexchanger toselective adonboard tankn the MTSAup by the wahermal cont

oxygen metaback to the s

Figur

ssure Contrpport systemels, tempera

high pressuygen are use

e control andThis is a purd by a suit p

zation loop bblower. Th

used to raiseO2 to the athich is then dg the first MT

bed where s is warm ano cool the gsorbent andk to remove

A bed. The arm side flowtrol loop heabolically cosuited crew m

re 17:  MTSA P

rol and Revitm maintains ature and ab

ure O2 and ted to mainta

d revitalizatire oxygen sressure regu

begins with he exhalant e the tempetmosphere. directed to aTSA bed the

the exhaland dry but sgas and thed the gas is heat generCO2-free ga

w. The tempat exchange

onsumed bymember.

Pressure, Tem

talization a breathab

bsolute pres

the gas storin the suit O

on loop creaystem that iulator. A rel

the warm, mthen flows rature of onThis also c

an accumulatexhalant pant is warmestill rich in Cn to the secs further coated during

as then flowsperature of ther. Finally,

y the crew m

mperature and

ble atmosphssures, as w

rage systemO2 levels as w

ates a habitas pressurizelief valve pre

moist, CO2 rthrough a Me of the sat

cools the extor that can

asses througed by the mCO2. The flcond MTSAooled. Thisthe exother

s back to thehe oxygen isadditional o

member and

d Air Revitaliz

here by remwell as mana

m on the Marwell as total

able atmosped between events the su

rich gas beiMTSA bed turated CO2xhaled gas abe utilized b

gh a trace comoisture remlow then go

A bed wheres process urmic adsorpte regen heas adjusted ooxygen is ad converted

zation System

moving partiaging the pa

rs One Habpressure.

here for the 4.3 and 6.5 uit from ove

ing pulled frwhere metasorbent bed

and condenby the liquid ontaminant cmoval procesoes through e the CO2 isuses chilled tion of the Cat exchangeonce more asdded from tto CO2 and

807

Pa

m. 

iculates, maartial pressur

bitat system,

crew membpsia. This

r-pressuriza

rom the suitabolic heatds, thus releses out mothermal con

control assemss. At this a regenera

s removed bliquid CO2

CO2 by the ar where it iss if flows thrtanks to rep

d then the fl

300008B

age 26 of 36

aintaining res of O2

tanks of

ber inside pressure

ation.

t into the from the

easing its ost of the ntrol loop. mbly and point the

ative heat by a CO2

from an adsorbent s warmed rough the place the low goes

Page 31: Mars One Surface Exploration Suit (SES) esign  · PDF file3 LEVEL I SES REQUIREMENTS ... Surface SEA PLSS Functional Breakdown

807300008B

Page 27 of 36

In the preceding paragraph two different MTSA beds were described. Each MTSA bed has a finite capacity to adsorb CO2. When that limit is reached it is switched with the other MTSA bed that has been desorbing. Depending upon the sizing of the beds this switching could be a physical swap or accomplished via manual or automated valves.

4.2.4.2 Temperature Control The temperature control loop keeps the suited crew member comfortable, allowing them to perform their tasks at high efficiency. Warm cooling water exits the suit and enters a reservoir (the same reservoir that accepted the condensed moisture from the air revitalization system). A pump pulls water from the reservoir and forces it through a series of heat exchangers. The first HX thermally conditions the oxygen returning to the crew member. The next two cool the water by utilizing the same CO2 used to cool the second MTSA bed. This thermally conditioned water then returns to the suited crew member. The liquid CO2 required for the environmental control system is produced at the Habitat modules as part of the In Situ Gas Processor.

The environmental control will likely require provisions for both heating and cooling, depending on the environment and operational scenario. Paragon’s experience shows that the wearing of thermal undergarments, the use of cooling and heating loops and/or electrical heaters, etc. are all very specific to the operating environment. The baseline system would be a liquid thermal garment with peripheral heaters for extremities combined with selected undergarments (long underwear, socks and gloves) that would be tried, tested and evaluated by each member of the crew and customized to their preference. While detailed thermal modeling is still required, having a slightly “cold biased” suit will probably be the best approach given the environmental conditions. This means that the nominal thermal control will be heating with cooling only required on occasion. A system-level trade is required to develop the optimum solution as more heating requires additional electrical power.

4.2.5 Command and Data Handling The Command and Data Handling (CDH) system monitors the data being generated by various SES sensors and subsystems, accepts commands from the suited crew member and makes the necessary adjustments to the suit’s operating parameters. Additionally, the CDH also sends data to the Habitat and receives commands in the event that the crew member is incapable of doing so. Finally, the CDH records and displays data, including caution and warning information.

 Figure 18:  Command and Data Handling Subsystem Schematic 

Data Modem

Data Acquisition Board with

Logical Programming

Antenna

Crew Data Display

Data Recorder

Suit Data Inputs Suit Commands

Video Camera

Antenna

Transmitter

Video Recorder

Page 32: Mars One Surface Exploration Suit (SES) esign  · PDF file3 LEVEL I SES REQUIREMENTS ... Surface SEA PLSS Functional Breakdown

807300008B

Page 28 of 36

4.2.6 Health Monitor The health monitor records and transmits information on the suited crew member’s heart rate, heart rhythm and other potential parameters such as breathing rate, core temperature and skin temperature. There are multiple ways to obtain this information, ranging from sensors attached to the skin, chest straps and swallowed data pills that transmit wirelessly. This data is then fed to the CDH subsystem where it is read, recorded and transmitted to the Habitat. Balancing the needs of medically necessary data with the opportunity to gather scientific information on Martian colonists will ultimately determine the breadth of data recorded.

Page 33: Mars One Surface Exploration Suit (SES) esign  · PDF file3 LEVEL I SES REQUIREMENTS ... Surface SEA PLSS Functional Breakdown

807300008B

Page 29 of 36

4.3 Master Equipment List (MEL) Table 3 shows a breakdown of the estimated on-back mass of the conceptual SES (including wet mass) broken down to the primary subsystem-level components, and total estimated mass to complete 1000 surface excursions. Per AIAA S-120A, a 30% mass growth allowance (MGA) is added given this early level of design fidelity.

Table 3:  SES MEL, On‐back Mass, and Mission Mass Estimates 

Subsystem  Component Mass (kg)  

Pressure Suit 

Helmet/Protective Visor  3.2Shoulder (Pair)  3.6Lower Arm (Pair)  2.7SUT  2.3Waist  3.6Hip/Brief  5.9Leg  4.1Boot  3.2Cover Layer  2.3

Subtotal  30.9

PLSS 

Structure  17.2ECLSS   28.6Avionics  11.8

Subtotal  57.6  SES Dry Mass Total  88.5Wet Mass  Liquid CO2 Coolant  8.0  Gaseous O2 (primary and emergency)   4.0  Coolant Water  1.0  Food  0.1  Drinking Water   1.0  Subtotal  14.1  On‐back SES Dry + Wet Mass Total  102.6Spares  Estimated mass of spares to complete 1000 SEAs (250 per SES)  1200.0

Pre‐Deployed SES Assets 

Four SES (dry mass)   354.090% of Spares  1080.0

Subtotal  1434.0SES Assets Delivered with the Crew 

Four SES (dry mass)   354.010% of Spares  120.0

Subtotal  474.0  Eight Suits + Spares to Complete 1000 SEAs (250 per SES)  1908.0SES Total  30% MGA  572.4  Total Estimated Dry Mass with MGA  2480.4

Page 34: Mars One Surface Exploration Suit (SES) esign  · PDF file3 LEVEL I SES REQUIREMENTS ... Surface SEA PLSS Functional Breakdown

807300008B

Page 30 of 36

5 Risk and Opportunity Management

5.1 Cost and Schedule Risk Drivers

5.1.1 Robustness of Design

5.1.1.1 Service Life Due to the unique nature of the mission, a service life must be established for the SES at the system and subsystem level. Service life will have to account for the fact that replacement parts and suits will require significantly better logistical management due to the time and distance required for transport. Service life needs to be magnitudes higher than any previously developed suit system.

Historically, spacesuit life is driven by cycle life. Simply put, mobility joints can only be flexed so many times and bearings can only be rotated under load for some time before bearings balls or races exhibit unacceptable wear. Cycle life is usually tracked at the component level and sometimes lower. For the ISS EMU program, glove life is defined at the pressure bladder, restraint and TMG level. Each of these subcomponents has a different life based on results of Certification Cycle Testing.

The current ISS EMU is certified for 25 EVAs. NASA requires a factor of safety of 2 on cycle life resulting in a minimum of 50 EVAs worth of manned cycling. During the original ISS EMU suit certification, most of the suit was actually cycled to 100 EVAs because there is a requirement to cycle the suit on both primary axial restraint webbings and secondary restraint webbings. All of this testing was performed at 4.3 psid to a micro-G cycle model developed by reviewing Skylab EVAs and early EMU EVAs. This resulted in a cycle model that is very arm and glove cycle intensive with very little waist and lower torso cycles.

A SEA cycle model does not currently exist. There is some operational experience from Apollo but the duration was very limited with only three days on the lunar surface per mission. NASA has done some recent work looking at what types of motions or activities a suited crew member will have to perform. This includes activities like hammering, digging, lifting, kneeling to pick up an object on the ground, walking, jogging and surface vehicle ingress/egress. Significant forward work will be required to define all activities, number cycles, cycle rates, tool interfaces and surface object interfaces like rocks. It should also be noted that the only operational EVA suit (ISS EMU) has been cycled to at most 100 EVAs. The current requirement for Mars One is 250 SEAs. This is more than twice any previous operational EVA suit has been cycled to. Given that this is a SEA cycle model coupled with a dusty environment, obtaining the required cycle life will be much more challenging than for micro-G EVA. This uncertainty drives the spares mass to be conservatively high at this point in the program phase.

5.1.1.2 Serviceability There is a need to evaluate the ability of using the specialized equipment and materials in the Mars One habitat. The SES subsystems could be specifically designed for ease of serviceability, however, the effort to train the crew members will be substantial. Hard goods should be designed extremely robust to ensure a long service life or be repairable or modified using a “plug and play” mentality of smaller easily transported spare parts. This requirement will take some development effort.

5.1.1.3 Maintainability The suit must be maintainable by the crew with limited supply of tools and equipment as resupply will be costly and infrequent. The time available to maintain the suit is unknown at this time but may be assumed to be short for early missions due to the unknowns of other system requirements, so Mean Time to Replace (MTTR) is particularly important.

The suit must be designed for simplicity, reliability and ruggedness. The first objective should be to reduce the need for maintenance; 2nd should be to make maintenance easy; and 3rd should be to minimize limited life items that require replacement.

Page 35: Mars One Surface Exploration Suit (SES) esign  · PDF file3 LEVEL I SES REQUIREMENTS ... Surface SEA PLSS Functional Breakdown

807300008B

Page 31 of 36

5.1.1.4 Mass Typical of all launch programs, mass is critical. As a result, the drive to reduce the overall mass of the SES will increase the complexity and cost of the suit. Spacesuit mass is always a significant requirement on any space program. The two primary mission phases that drive mass requirements are vehicle launch mass and suit mass enabling efficient locomotion in partial G SEA. Current chemical rocket technology limits the mass of the vehicle, crew and supplies in order to escape earth’s atmosphere and provide propulsion to make the long trip to Mars. This is normally the driving constraint on deep space programs. Once on the Martian surface, astronauts will experience 3/8G when performing an SEA. The most efficient (lowest energy expended) method of locomotion is affected by the suit system mass and center of gravity (CG). A light weight suit may not allow for normal walking or jogging motions. The suit mass and mobility must be evaluated in environments such as zero G aircraft in order to understand and train for the most efficient Martian surface locomotion.

5.1.1.5 Stowage Volume Stowage volume for the suit will be at a premium, both for the transit phase to Mars and while on the planet. It will be imperative to minimize this volume as much as practical.

5.1.2 Safety and Crew Productivity

5.1.2.1 Suit Pressure The pressure of the suit will drive all structural components of the suit design. Choice of suit pressure is a multivariable trade space, highly linked with choice of habitat pressure, the desired pre-breath cycle time, mobility requirements and CONOPS. Suit pressure is a driving requirement but also one that is often not well understood. In the spacesuit design world, 3.5 psia is about the lowest allowable pressure that can ensure human physiological safety, but operation in this regime requires significant pre-breathe time. Higher pressures reduce the need for pre-breathe, but decrease suit mobility. The current ISS EMU EVA spacesuit operates nominally at 4.3 psia to minimize the forces affecting suit torque and range of motion but this pressure still requires significant oxygen pre-breathe time. If operating from a vehicle or habitat environment at 14.7 psia, NASA considers the lowest pressure requiring zero pre-breathe to be approximately 8.3 psia. However, if the crew members can be acclimated to lower pressures, then both suit pressure and pre-breathe time can be reduced.

5.1.2.2 Anthropometric Range The suit design must accommodate the challenges associated with outfitting the specified anthropometric range. Legacy EVA Suit systems have not been able to preserve the intended functionality for operators who are on the smaller end of the typical NASA anthropometric range. This may drive the program towards custom suits, but this may affect the interchangeability of the suit components. Suits in a few basic sizes that are adjustable over a smaller range may be alternate approach.

5.1.2.3 Mobility The suit must provide adequate mobility to construct and maintain the Martian outpost as well as provide the ability to explore the Martian surface. Tasks that may be performed include fine motor skills (i.e. using tools to build the outpost), walking, climbing (climbing ladders or a Martian cliff), bending over to pick up an item, and driving rovers. It is expected that this requirement will evolve as the CONOPS matures.

5.1.2.4 Dexterity The SES gloves will drive advancements of existing EVA glove technologies. Traditionally, gloved-hand dexterity has come at the expense of accommodating durability and environmental protection requirements – all of which will need to be improved for a manned mission to Mars.

Page 36: Mars One Surface Exploration Suit (SES) esign  · PDF file3 LEVEL I SES REQUIREMENTS ... Surface SEA PLSS Functional Breakdown

807300008B

Page 32 of 36

5.1.2.5 On-Back Mass On-back mass is the complete mass of the suit system that the crew must wear during excursions. Although Mars gravity is ~37% of Earth’s, the crew may be over-taxed by the weight of the suit when they first get to Mars when it is envisioned that many SEAs are required.

Suit mobility for walking and working requires bearings—especially at the higher pressures needed to preclude or reduce pre-breathing requirements, and bearings have historically been heavy components. Aluminum or composite bearing housings, holding steel bearing races will reduce weight compared to traditional all-steel bearings, and will last considerably longer than all-aluminum bearings.

One option may be to forego the PLSS for some tasks that are in close proximity to the Habitat or perhaps a mobile support cart. The crew members could then be serviced by an umbilical rather than the PLSS, thereby reducing on-back mass. This of course does limit crew member range.

5.1.2.6 Tracking and Communication System Communication is a critical safety feature and will likely require redundancy in the event of a failure. This is especially critical during long excursions on a rover where visual contact to the habitat is lost and support is needed.

Identifying the best means of remotely tracking a crew member will be important as well. This will allow fast recovery should the crew member become stranded or incapacitated over the horizon.

5.1.3 Environmental

5.1.3.1 Dust/Contamination Mitigation The outer layer of the SEA Suit and cleaning systems must provide adequate dust mitigation to protect the suit and maintain functionality. The SEA Suit and cleaning systems must mitigate Martian regolith contamination of the living environment. The don/doff methods and location must mitigate contamination into the suit or onto the undergarments. Methods for cleaning undergarments must be incorporated into the habitat design.

Very little work has been done to understand the impacts to spacesuits from Martian regolith. NASA JSC has constructed a “Martian Rock Yard” to perform analog testing but this regolith does not take into account all the information learned from the JPL Mars Rover programs.

The largest body of data is experience from Project Apollo and testing performed by NASA on and off over the last 20 years as part of Desert RATS planetary analog testing. The Apollo experience exemplifies the concerns with future planetary SEAs as several issues became apparent after only 3 days of lunar EVA:

x Spacesuit leakage rose significantly in only 3 days of EVAs

x Zippers and hard closure mechanisms started to bind

x Dust brought back into the lunar lander created a bad odor when exposed to oxygen

A significant body of work is required to develop materials that will repel and/or keep dust from penetrating into the suit layers. Dust intrusion not only damages suit materials it can also change the outer layer optical properties thereby changing the overall suit emissivity and degrading thermal performance.

5.1.3.1.1 Dust Tolerant Bearing Seals The current state of the art is oil-loaded felt seals. There is limited data on the performance of this technology against Apollo regolith simulant and no testing against Mars regolith simulant. NASA is

Page 37: Mars One Surface Exploration Suit (SES) esign  · PDF file3 LEVEL I SES REQUIREMENTS ... Surface SEA PLSS Functional Breakdown

807300008B

Page 33 of 36

starting work in this area again but the current focus is lunar soil. Development work is needed to understand the limits of current environmental seals and what technology is needed to obtain a reasonable time before maintenance.

5.1.3.1.2 Dust Tolerant Materials and Attachment Methods for Planetary TMGs Technical paper 2008-01-1990 from the International Conference on Environmental Systems (ICES) discusses some of the recent work performed in this area. This paper is provided with this Mars One Conceptual Design paper.

5.1.3.2 Thermal Comfort Mars has a thin atmosphere that minimizes the effectiveness of MLI, so alternate methods of thermal protection from the environment will be required. In colder conditions the suit may require additional insulating layers similar to a winter jacket (and LTG cooling in warmer conditions) that do not reduce mobility.

5.1.3.3 CO2 Removal The MTSA system for the PLSS requires the use of zeolite beds that have a finite CO2 adsorbtion capability. In the system shown in Figure 17 two beds are in the system. One is adsorbing while the other is desorbing. Detailed design is needed to determine the optimum size of these beds and the method of switching the mode from adsorption to desorption. It may make sense to use smaller beds that are fixed in place with valving to switch modes. Switching could also be done manually, or larger beds could be used that would last the entire mission. In this case the switching would be done as part of post SEA refurbishment.

5.1.3.4 Radiation Protective Materials The need for advanced flexible materials for radiation protection on spacesuits has been around for more than 20 years. The materials must be lightweight, flexible and high in hydrogen. Limited testing and evaluation has been done with polyethylene based materials and tungsten-loaded silicone. The ICES paper “Study of Development of a Radiation Shielding Kit” is provided with the Mars One Suit Conceptual Design paper. This paper discusses flexible radiation material requirements, selection and incorporation into an astronaut protective vest and blanket.

Radiation dosage over the length of Mars mission is a concern that must be addressed. Recent data from the Mars Curiosity Rover shows that radiation dosage for the transit to Mars is much worse than exploration on the Martian surface. However, the total exposure for long duration stays on the surface is still a question. In any event, concerns about an increased risk of cancer from radiation exposure must be tempered by the inherent risks with this mission. The following text is an excerpt from an article in Scientific American December 9, 2013.

A mission consisting of a 180-day cruise to Mars, a 500-day stay on the Red Planet and a 180-day return flight to Earth would expose astronauts to a cumulative radiation dose of about 1.01 Sieverts, measurements by Curiosity's Radiation Assessment Detector (RAD) instrument indicate. To put that in perspective: The European Space Agency generally limits its astronauts to a total career radiation dose of 1 Sievert, which is associated with a 5-percent increase in lifetime fatal cancer risk. A 1-sievert dose from radiation on Mars would violate NASA's current standards, which cap astronauts' excess-cancer risk at 3 percent.

"It's certainly a manageable number," said RAD principal investigator Don Hassler of the Southwest Research Institute in Boulder, Colo., lead author of a study that reports the results Dec. 9 in Science.

NASA is working with the National Academies’ Institute of Medicine to evaluate what appropriate limits would be for a deep-space mission, such as one to Mars.

Page 38: Mars One Surface Exploration Suit (SES) esign  · PDF file3 LEVEL I SES REQUIREMENTS ... Surface SEA PLSS Functional Breakdown

UeSS

The nroutedurinMars

The galacsupeexplostorm

RAD0.64 the jo

But Mthus data the Grays)

Using the Cexposure in Sieverts of rSEA days be

new results e to Mars andg Curiosity's

s, where it to

RAD measctic cosmic rnova

osions.html),ms on our ow

's data showmillisieverts

ourney to Ma

Mars' radiatifar should nhave been g

GCR flux is .

Figure 19

Curiosity Rohalf, the tra

radiation. Uefore reachin

represent thd on the Reds eight-monuched down

urements crays (GCRsexplosions and solar e

wn sun.

w that astrons of radiationars, at 1.84 m

ion environmnot be viewegathered nerelatively lo

9: Radiation C

over readingansit to Mars

Using Europeng their total

he most comd Planet's su

nth cruise thn in August 2

over two dis), which a

(http://energetic pa

nauts explorin per day. Thmillisieverts

ment is dynaed as the finear the peakow (because

Climate on M

gs and assus and 250 dean Space Al career radi

mplete pictureurface. Theyhrough spac2012.

ifferent typeare accelera/www.space.articles (SEP

ring the Marthe dose rateper day.

amic ([Figurenal word, Hak of the sun'se solar plasm

Mars (source: S

uming a Madays of 12 hAgency limitation dose.

e yet of the y incorporatece and the r

es of energated to incre.com/11425-Ps), which a

tian surface e is nearly th

e 19]), so Cassler stresss 11-year acma tends to

Scientific Ame

artian habithour SEAs wts each astr

radiation ene data that Rrover's first

getic-particle edible spee-photos-sup

are blasted i

would accuhree times g

Curiosity's msed. For exactivity cycle,o scatter ga

erican Decem

tat would cwill result in

ronaut could

807

Pa

nvironment eRAD gathere300 days o

radiation —eds by far-oernovas-stainto space b

umulate abougreater durin

measurementample, RAD a time whe

alactic cosm

mber 9, 2013)

ut the surfan approximad perform 11

300008B

age 34 of 36

en ed on

— off ar-by

ut ng

ts D's en ic

ace SEA ately 0.45 150 more

Page 39: Mars One Surface Exploration Suit (SES) esign  · PDF file3 LEVEL I SES REQUIREMENTS ... Surface SEA PLSS Functional Breakdown

807300008B

Page 35 of 36

5.2 Opportunities to Reduce Risk

5.2.1 Future Studies The following studies are recommended prior to significant investments to minimize the risk for development and the ultimate mass of SES hardware transported to the Martian surface.

x SEA cycle model development and optimized sparing/refurbishment plan

x Certification protocol – tools/interfaces, test scenario definition, cycle rates, etc.

x Radiation dosage over total SEA time – limits, Martian surface condition, suit TMG protection level

x TMG layup and attachment method (multi-mission: space vacuum & Mars atmosphere)

5.2.2 Precursor Tests (Mars Rover 2020) The following tests are recommended to validate design assumptions required for developing man rated surface suit systems.

x Evaluation of rotary bearing dust seals in rover vehicle

x Evaluation of ability of proposed suit TMG materials to shed or repel Mars dust

x Continued measurements of surface radiation levels at planned Mars One landing site

5.2.3 Minimize Suit Pressure Pressure suit systems such as the current EMU experience development and certification anomalies primarily due to mobility requirements. These anomalies usually result in significant cost and schedule impacts. They usually arise from repetitive motion of the person against the suit bladder, hardware and soft-goods rubbing and abrading, and local stress concentrations at fabric seams and axial restraint attachment interfaces during pressure and/or range of motion cycling. The potential for these anomalies goes up as pressure increases.

Minimizing suit pressure is key to reducing cost, schedule risk, suit complexity, and increasing reliability. Significant testing in industry has occurred for suits at or below 29.65 kPa (0.29 atm, 4.3 psi). As stated in sections 4.1.7 and 4.1.8, ILC has done some testing at 57.23 kPa (0.56 atm, 8.3 psi) but there is no operational experience and there is limited data on reliability. There is some industry experience with soft and hard mobility joints up through operation at 101.35 kPa (1 atm, 14.7 psi) but again the operational use data is limited. The Mars One program would benefit from choosing a vehicle/habitat pressure that allows zero pre-breathe suit operation at or around 29.65 kPa (0.29 atm, 4.3 psi). This merely requires proper acclimatization. The city of El Alto, Bolivia sits at an elevation of 13,615 ft (8.8 psia). Almost one million people live in this city. In the USA, Leadville, Colorado is at over 10,000 ft elevation (10 psia). People have been living and working in this mining town for over 150 years. Therefore it would seem reasonable to have a habitat pressure of 9-10 psia with a 20% oxygen concentration without adverse health effects. This would then allow the suit pressures and pre-breathe times to be reduced.

5.2.4 Additive Manufacturing One technology area that has the potential to greatly reduce cost and risk, and in fact might be considered almost essential for Mars One, is Additive Manufacturing or 3D printing. Given the limited amount of supplies that will be available to the Mars One crew, it will be impossible to bring spares of all parts to account for any potential contingency or needed repair. With developments in 3D printing technology, the crew members would not need to bring any spares; instead they could make the

Page 40: Mars One Surface Exploration Suit (SES) esign  · PDF file3 LEVEL I SES REQUIREMENTS ... Surface SEA PLSS Functional Breakdown

807300008B

Page 36 of 36

needed parts as different needs arise. The crew members would need to bring the 3D printing machines and raw materials with them, and if the need arises for a replacement item such as a spare nut or bolt, a specialty tool, etc. then they could just “manufacture” it as needed. This eliminates the need to prepare the crew members for every possible contingency, and also eliminates the worry that they will get to the surface of Mars and realize they desperately need something that they don’t have – and won’t get for at least two years. Ideally, the parts for the original equipment would already be designed and built using 3D printing to the greatest extent possible to ensure that replacement parts could be generated.

Many current space suit components could be manufactured with 3D printing. Additionally, 3D printing of textiles is just beginning to emerge as a viable technology. Given the structured nature of space suits (as compared to traditional garments); it is possible to envision many of the suit components being manufactured by 3D printing. This technology could significantly reduce the need for serviceability and long service life items. However, for the near-term, suit fabrics and all but rudimentary non-structural parts are only envisioned, but Mars One could push this technology for future missions.

5.2.5 Common Parts As much as practical, use of common parts and interchangeable components throughout the vehicle would enable the crew to reuse components from systems that are broken to support maintenance on other systems. The Mars One program should work to establish standards for use on the Martian outpost (i.e. Metric or English) and be prepared to prioritize commonality over optimization.

5.2.6 Establish Common Interfaces Early As the SEA Suit requirements will be driven by interfaces with the rover, air-lock, SEA tools and recharge system, establishing common interfaces early supported by a strong systems engineering team with excellent communication between the designers will ensure any interfaces issues will be minimized.