mars mesoscalemodelling with mrams

38
CPESS5, ESAC MSL sol 1720 (Ls16), June 8 th 2017 Mars mesoscale modelling with MRAMS Jorge Pla-García 1,2 1 Centro de Astrobiología (CSIC-INTA), Madrid, Spain 2 Southwest Research Institute, Boulder, CO, USA [email protected] Jorge Pla-García 1,2,3 , Scot Rafkin 2 y equipo REMS 1 1 Centro de Astrobiología (CSIC-INTA), Madrid 2 Southwest Research Institute, Boulder, USA 3 Space Science Institute, Boulder, USA [email protected]

Upload: others

Post on 01-Mar-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

CPESS5, ESACMSL sol 1720 (Ls16), June 8th 2017

Mars mesoscale modelling with MRAMS

Jorge Pla-García1,21Centro de Astrobiología (CSIC-INTA), Madrid, Spain

2Southwest Research Institute, Boulder, CO, [email protected]

Jorge Pla-García1,2,3, Scot Rafkin2 y equipo REMS11Centro de Astrobiología (CSIC-INTA), Madrid

2Southwest Research Institute, Boulder, USA3Space Science Institute, Boulder, USA

[email protected]

Datos Académicos:– Ingeniero Superior en Informática, (UPSAM), 2006.– Postgrado Especialidad en Comunicaciones por Satélite (UPM), 2007– Postgrado Especialidad en Instrumentación Astrofísica Avanzada (IScAI), 2009– Master en Ciencia Espacial (UAH), 2010.– Master en Astronomía y Astrofísica (VIU), 2014.– Master en Meteorología y Geofísica (UCM), 2016.– Doctorado en Astrofísica (UCM). "Mesoscale Meteorological Modeling of Mars Mission

Environments”. Director: Scot C. R. Rafkin (SwRI). 2014‐ actualidad.

Experiencia Laboral:– Operador de Telescopio‐Astrofísico, Observatorio del Teide (IAC), Tenerife, 2007‐2009.– Investigador, Centro de Astrobiología (CSIC‐INTA), Madrid, 2009‐ actualidad.* Miembro del equipo de ingeniería del instrumento ExoMars2020 RLS (ESA), 2009‐2012.* Miembro del equipo de ciencia y operador del instrumento MSL REMS (NASA), 2012‐actualidad* Miembro del equipo de ciencia del instrumento TWINS (InSight, NASA), 2016‐actualidad.* Miembro del equipo de ciencia del Consejo de Atmósferas Mars2020 (NASA), 2014‐actualidad.* Miembro del equipo de ciencia del instrumento MEDA (Mars2020, NASA), 2016‐actualidad.

– Investigador Asociado, Southwest Research Institute, Boulder (CO), EEUU, 2014‐ actualidad.– Investigador Asociado, Space Science Institute, Boulder (CO), EEUU, 2016‐actualidad. 

CV

Outline: 7 MRAMS experiments

1. MRAMS Gale simulations vs REMS data. Validation2. Gale crater meteorological interpretations3. Constraining the Curiosity rover (SAM) methane detected

source location through MRAMS4. Mars2020 EDL mesoscale simulations5. Dust storm simulations6. Gale weather report (outreach)7. MRAMS modeling of the water vapor cycle at Mawrth Vallis

CPESS5, June 8th 2017                                   Pla‐Garcia, Rafkin

• Mesoscale model that simulates the circulations of the Martian atmosphere at regionaland local scales [Rafkin et al. 2001]. Applied to MSL landing site at Gale crater. Includes:

• Non hydrostatic dynamics• Conductive regolith model (with CO2 deposition and sublimation)• Water microphysics

• Initialization, boundary conditions and CO2 ice data are taken from a NASA Ames GCM[Kahre, Haberle et al. 2006]:

• Simulation with column dust opacity driven by zonally‐averaged TES retrievals.• Vertical dust distribution is given by a Conrath‐v parameterization that varies with

season and latitude.• NASA Ames two‐stream, correlated‐k radiation

• Topography shadowing and slope radiation effects

MRAMS: Mars Regional Atmospheric Modeling System 

CPESS5, June 8th 2017 Pla‐Garcia, Rafkin

• The simulation is configured with 7 grids. The model is run for 3 sols with 5 grids andthen the 2 additional grids are added and run for at least 3 more sols.

• Horizontal Grid Spacing: Grid 1 (240km), Grid 7 (330m)

• Vertical Grid Spacing: 50 points, 51km model top, 14.5m first layer, 30m initial gridspacing, 2500m maximum grid spacing, 1.12 stretch factor

CPESS5, June 8th 2017                                   Pla‐Garcia, Rafkin

(1) Validation (2) Gale meteo (3) Gale methane (4) Mars2020 EDL  (5) Dust storm (6) Meteo report (7) MV H2Ov 

MSL

Gale: A Region of Complex Topography WithMeteorological Instrumentation (REMS)

MSL provides the first opportunity to look at strongly forced mesoscale meteorology

CPESS5, June 8th 2017 Pla‐Garcia, Rafkin

(1) Validation (2) Gale meteo (3) Gale methane (4) Mars2020 EDL  (5) Dust storm (6) Meteo report (7) MV H2Ov 

More details at Pla‐Garcia, Rafkin et 

al. 2016, Icarus

Model validation: MRAMS vs REMS

PressureGround temperature

Air temperature

(1) Validation (2) Gale meteo (3) Gale methane (4) Mars2020 EDL  (5) Dust storm (6) Meteo report (7) MV H2Ov 

Local Weather is the Sum of Different Scale Circulations

Ls 0 Fallequinox

Ls 90 Winter solstice

Ls 180 Spring equinox

Ls 270Summersolstice

Regional Topographic Dichotomy Circulation

Global Mean Circulation Local Topographic Circulationsat Gale crater

Circulations interact in complex, nonlinear ways to produce observed weather at any give location.

S

N

S

N

NS

NS

N

N

S

S

Gale

Gale

Gale

(1) Validation (2) Gale meteo (3) Gale methane (4) Mars2020 EDL  (5) Dust storm (6) Meteo report (7) MV H2Ov 

Hadley Cell

HadleyCell

DichotomyDownslope

DichotomyDownslope

DichotomyDownslope

FIGHT

Regional scale (dichotomy). Nighttime

DichotomyDownslope

Gale crater circled. Strong Influence of Topographic Dichotomy Except Ls=270Southerly Regional Winds Except at Ls=270: Hadley Cell winds WIN!! 

(Pla‐Garcia et al. 2016, Icarus; Rafkin et al. 2016, Icarus)

(1) Validation (2) Gale meteo (3) Gale methane (4) Mars2020 EDL  (5) Dust storm (6) Meteo report (7) MV H2Ov 

Cross‐Sections: meridional winds and potential temperature 

Warm, capping inversion at all seasons but Ls=270: stronger vertical mixing.  Warm air tends to override crater air mass at other seasons. Mountain wave at Ls=270.  Strong 

downslope winds AND MIXING at Ls=270 along north rim. 

SUMMER SOLSTICE

WINTER SOLSTICEFALL EQUINOX

SPRING EQUINOX

(1) Validation (2) Gale meteo (3) Gale methane (4) Mars2020 EDL  (5) Dust storm (6) Meteo report (7) MV H2Ov 

(Pla‐Garcia et al. 2016, Icarus; Rafkin et al. 2016, Icarus)

Moores et al. 2017, ScienceRafkin, Pla‐Garcia et al. 2016, Icarus

Gravity (mountain) waves driven by dynamical (not buoyancy!) slope winds

(1) Validation (2) Gale meteo (3) Gale methane (4) Mars2020 EDL  (5) Dust storm (6) Meteo report (7) MV H2Ov 

CPESS5, June 8th 2017 Pla‐Garcia, Rafkin

CPESS5, June 8th 2017 Pla‐Garcia, Rafkin

Downslope arrives

Onset of radiational cooling

Extensive mixing from breaking mountain waves slows radiationalcooling

Dichotomy beats back crater downslope; radiative cooling and cold air reestablished.

Shallow turbulent convection and mixing within crater.

Dynamical (not buoyancy!) downslope winds on Mars

(1) Validation (2) Gale meteo (3) Gale methane (4) Mars2020 EDL  (5) Dust storm (6) Meteo report (7) MV H2Ov 

CPESS5, June 8th 2017                                   Pla‐Garcia, Rafkin

Batalla de temperaturas. Al acercarse la medianoche del 4 de Febrero en Boulder (CO, EEUU), las temperaturas oscilaron hasta 12 °C gracias a los vientos descendentes “cálidos” forzados por ondas de montaña. The

Weather Company (editada)

Dynamical (not buoyancy!) downslope winds on Earth

(1) Validation (2) Gale meteo (3) Gale methane (4) Mars2020 EDL  (5) Dust storm (6) Meteo report (7) MV H2Ov 

Mars methane detection and variability at Gale crater (Webster et al., 2015)

CPESS5, June 8th 2017                                   Pla‐Garcia, Rafkin

Ls336

Ls82

(1) Validation (2) Gale meteo (3) Gale methane (4) Mars2020 EDL  (5) Dust storm (6) Meteo report (7) MV H2Ov 

MSL (SAM) METHANE DETECTION

?

?

?Mars methane variability and mixing epochs at Gale crater 

(Pla‐Garcia, Rafkin et al. in preparation 2017)

CPESS5, June 8th 2017 Pla-Garcia, Rafkin

(1) Validation (2) Gale meteo (3) Gale methane (4) Mars2020 EDL  (5) Dust storm (6) Meteo report (7) MV H2Ov 

S

The Atmospheric Circulationis strongly 3D!

(Pla‐Garcia, Rafkin et al. 2016, Icarus; Rafkin, Pla‐Garcia et al. 2016, Icarus)

CPESS5, June 8th 2017 Pla-Garcia, Rafkin

FOUR DIFFERENT GALE METHANE TRACER EXPERIMENT SCENARIOSTO STUDY MIXING

(1) Validation (2) Gale meteo (3) Gale methane (4) Mars2020 EDL  (5) Dust storm (6) Meteo report (7) MV H2Ov 

CPESS5, June 8th 2017 Pla‐Garcia, Rafkin

MSL landing site

NorthSouth

Tracer 1 (methane): < 200 metersTracer 2: 200 – 500 metersTracer 3: 500 – 2000 metersTracer 4: elsewhere

Scenario 1: four gas tracers included into Gale crateratmospheric simulations

Scenario 1: punctual methane release inside the crater

CPESS5, June 8th 2017 Pla-Garcia, Rafkin

S N NS

~50% of mass stays in crater after 10 hours!

Almost all mass is gone from craterafter 10 hours!!!!

Scenario 1: punctual methane release inside the crater

Tracer#4 (outside crater air) fraction*

REST OF THE YEAR

Crater mixing timescale. Grid 4 (9 km resolution)Tracer#4 (outside crater air) fraction*

SUMMER SOLSTICE

*Fraction = Tracer4/(Tracer1+Tracer2+Tracer3+Tracer4)

CPESS5, June 8th 2017 Pla‐Garcia, Rafkin

MSL landing site

NorthSouth

Tracer 1 (methane): < 200 metersTracer 2: 200 – 500 metersTracer 3: 500 – 2000 metersTracer 4: elsewhere

Scenario 2: three gas tracers included into Gale craterwith tracer 1# outside the crater (north rim).

Scenario 2: punctual methane release outside the crater

After 12 hours

Dispersion of a local methane release upstream of the crater

Initial release (northwest crater)

Methane tracer diluted by ~6 orders of magnitude inside crater after 12 hours, regardless of the season.

1 part per billion (ppb) of methane at MSL requires 1 part per mil of methane at release site!

Log10 of tracer #1 fraction (methane) Log10 of tracer #1 fraction (methane)

Rover location CPESS5, June 8th 2017                                   Pla‐Garcia, Rafkin

Scenario 2: punctual methane release outside the crater

CPESS5, June 8th 2017 Pla‐Garcia, Rafkin

Scenario 3: continuous methane release outside the crater 

Summer crater mixing timescale. Grid 5 (3 km resolution)

CPESS5, June 8th 2017                                   Pla‐Garcia, Rafkin

Scenario 3: continuous methane release outside the crater at Ls270. 

1 sol

Timing for SAM measurements is very important!

CPESS5, June 8th 2017 Pla‐Garcia, Rafkin

9 sols

Scenario 3: continuous methane release outside the crater at Ls270. Timing for SAM measurements is very important!

CPESS5, June 8th 2017                                   Pla‐Garcia, Rafkin

Mumma et al. 2009

Continuous release experiments show very localized CH4 in contrast with Mumma et al. 2009. Ongoing work: scenarios 3# and 4# (continuous 

release) with a larger release area (B2, Syrtis Major)

Mars 2020 Project

Jet Propulsion LaboratoryCalifornia Institute of Technology

• Joint engineering and science team• Tasked with assessing atmospheric EDL risk• Provide mesoscale simulation results to EDL performance simulation

• Participating Institutions– Jet Propulsion Laboratory

• Gregory Villar• Al Chen• Michael Mischna• David Kass

– Langley Research Center• Som Dutta• Dave Way

– Oregon State University• Dan Tyler• Jeff Barnes

– Southwest Research Institute• Scot Rafkin• Jorge Pla-Garcia

– SETI Institute• David Hinson

– The Open University• Stephen Lewis

– Malin Space Science Systems• Bruce Cantor

Mars2020 Council of Atmospheres(1) Validation (2) Gale meteo (3) Gale methane (4) Mars2020 EDL  (5) Dust storm (6) Meteo report (7) MV H2Ov 

Mars 2020 Project

Jet Propulsion LaboratoryCalifornia Institute of TechnologyMars 2020 Mission Overview

LAUNCH• Atlas V 541 Rocket• Period: Jul-Aug 2020

CRUISE/APPROACH• ~7 month cruise• Arrive Feb 2021

ENTRY, DESCENT & LANDING• MSL EDL System: guided entry,

powered descent, and sky crane• Augmented by range trigger: 16 x 14

km landing ellipse• Augmented by TRN: enables safe

landing at a greater number of scientifically valuable sites

• Access to landing sites ±30° latitude, ≤ - 0.5 km elevation

SURFACE MISSION• Prime mission of 1.5 Mars years• 20 km traverse distance capability• Seeking signs of past life• Returnable cache of samples• Prepare for human exploration of Mars

(1) Validation (2) Gale meteo (3) Gale methane (4) Mars2020 EDL  (5) Dust storm (6) Meteo report (7) MV H2Ov 

CPESS5, June 8th 2017 Pla-Garcia, Rafkin

29

M2020EDL Design Team

CPESS5, June 8th 2017 Pla-Garcia, Rafkin

Top-8 Arrival Characteristics

Site Code Arrival Date Ls Range

(deg)LTST Range

(hh:mm)Entry Azimuth Range (deg)

Entry Lat(degN)

Entry Long (degE)

CLH 2/18/2021 5.5-5.51 13:46-14:23 97.7445 to 85.7433

-13.3168 to -15.5872

165.0772 to165.0779

EBW 2/19/2021 5.79-5.8 13:38-14:25 95.8798 to 82.4065

-23.1014 to -25.6695

-44.5469 to -44.4282

HOL 2/19/2021 5.79-5.81 13:37-14:27 95.2768 to 81.3455

-25.8303 to -28.4919

-46.5112 to -46.3464

JEZ 2/18/2021 5.64-5.65 14:16-14:25 108.4394 to 97.1146

21.9832 to19.9973

67.2696 to66.8976

MAW 2/19/2021 5.78-5.78 14:25-14:28 111.4081 to 99.5018

28.3468 to26.2569

-29.7409 to -30.2892

NES 2/18/2021 5.64-5.65 14:15-14:25 108.2676 to 97.0308

21.5545 to19.5885

66.9597 to66.5720

NIL 2/18/2021 5.65-5.65 14:20-14:27 109.7148 to 98.1445

25.0104 to22.8743

63.9677 to63.4928

SWM 2/19/2021 5.85-5.86 13:46-14:20 99.4199 to 87.6088

-8.1645 to -10.2539

-86.4944 to -86.5588

(green) Open launch window(blue) Close launch window

Entry Altitude Mean Value = 128.8 kmEntry Radius (center to probe) = 3522.2 km

(1) Validation (2) Gale meteo (3) Gale methane (4) Mars2020 EDL  (5) Dust storm (6) Meteo report (7) MV H2Ov 

Mars 2020 Project

Jet Propulsion LaboratoryCalifornia Institute of Technology

• Primary outputs considered in EDL performance– Winds – most influential from parachute deploy to touchdown– Densities – contributes to experienced loads

• Temperatures and pressures were also modeled– However, EDL performance is not as sensitive to these outputs

Mesoscale Model Outputs

Example of Mesoscale ProductsNorth East Syrtis – East-West Winds

Density at Candidate SitesPlot Credit: Dutta

Mars 2020 EDL CDR

Mars 2020 Project

Jet Propulsion LaboratoryCalifornia Institute of TechnologyLSW3 CoA Assessment

# Site Atmosphere Comments

1 Nili Fossae

2 North East Syrtis

3 Jezero

4 South West Melas

• Noticeable difference in wind profiles between models• Challenging to model this site, i.e. low confidence• Ellipse is placed in tight area• If ellipse was in larger area, then EDL can tolerate more uncertainty

5 Mawrth • Slight differences between models• EDL can tolerate more uncertainty at this site

6 Holden

7 Eberswalde

8 Columbia Hills • Moderate differences between models

Future work will only focus on North East Syrtis, Jezero, and Columbia HillsFuture work will only focus on North East Syrtis, Jezero, and Columbia Hills

Discrepancies at SWM lowered confidence in modeling such areasDiscrepancies at SWM lowered confidence in modeling such areas

Mars Meteorology JpGU Pla-García 20/05/17 32

(1) Validation (2) Gale meteo (3) Gale methane (4) Mars2020 EDL  (5) Dust storm (6) Meteo report (7) MV H2Ov 

Radiatively Active vs. Passive Dust

• Solutions diverge after initial lifting event.• Passive lifting has higher opacity for longer; active circulation disperses and mixes dust.• Lifting moves toward edges of storm in active scenario.

(1) Validation (2) Gale meteo (3) Gale methane (4) Mars2020 EDL  (5) Dust storm (6) Meteo report (7) MV H2Ov 

Pla‐García, Rafkin, Leung et al. 2017 to be submitted

More Detached Dust Layers at t=1900

• Radiatively active dust is needed to produce detached dust layers.

• Detached dust layers do not extend higher than 20 km.• Dust in passive simulation remains mostly confined to boundary layer.

Rafkin ‐‐ Dust Storms 34

Rad. Active Dust Rad. Active Dust Rad. Passive Dust

WeatherreportMarsYear33,Month10Year3,Month5sinceCuriositylandedonMars

JorgePla‐García1,2,AntonioMolina1,JavierGómez‐Elvira1andMSL‐REMSteam1Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid 28850, Spain

2Space Science Institute, Boulder CO 80302, USA

The tenth month of the thirty third Mars year1goes from sol21534 to 1581. Therover drove uphill along 200meters and climbed 15meters in elevation onAeolisMons3–an average slopeof 7.5%–during these47 sols. The area is located on theBagnold dunes that overlie theMurray formation, composed of a fluvial‐lacustrinemixture of materials, mostly fractured mudstones, with dark sand banks coveringtheminpatches.AccordingtotheSunposition,thismonthgoesfrom270to300solarlongitude4(Ls),beingthefirstsummermonth–ofthree–inthesouthernhemisphere.AtmosphericpressureAs can be noted in Fig. 1, the annual maximum of atmospheric pressure5wasmeasuredduringthepreviousmonth,matchingwiththehighestCO2sublimation(iceturningintogas)inthemartiansouthpole.Theatmosphericpressurebeginstodropduring thismonth. As the autumn equinox approaches, the CO2 in the atmospherestartstofreezeoverthesouthernpolarcap,decreasingtheairpressure.Asexpected,the atmospheric pressure is lower this month compared to the same month ofpreviousyears,sincetheroverisclimbingAeolisMons–thehighertheelevation,thelowertheairpressure.

Figure 1. Average pressure evolution measured by REMS instrument inside Gale crater (Source:CentrodeAstrobiología)

http://cab.inta‐csic.es/rems/es/informe‐meteorologico‐anno‐33‐mes‐10/

(1) Validation (2) Gale meteo (3) Gale methane (4) Mars2020 EDL  (5) Dust storm (6) Meteo report (7) MV H2Ov 

noticias programas deportes a la carta en directo

Portada Madrid Nacional Internacional Sociedad Economía Cultura Deportes

00:10 08 de junio de 2017

Madrid hoy: 34º / 19º

Programación 00:10 Diario de la noche 01:00 Con C Mayúscula

La meteorología en Martese estudia desde Torrejónde Ardoz

NOTICIAS > SOCIEDAD > NOTICIA

(1) Validation (2) Gale meteo (3) Gale methane (4) Mars2020 EDL  (5) Dust storm (6) Meteo report (7) MV H2Ov 

¡[email protected]‐csic.es