marius verscheure presentation ecmor

37
History Matching Of A Realistic Stochastic Sub-Seismic Fault Model Marius Verscheure (IFP) Jean-Paul Chilès (Mines Paris) André Fourno (IFP) [email protected]

Upload: mrius

Post on 22-Nov-2014

1.068 views

Category:

Documents


2 download

DESCRIPTION

 

TRANSCRIPT

Page 1: Marius Verscheure Presentation Ecmor

History Matching Of A Realistic Stochastic Sub-Seismic Fault Model

Marius Verscheure (IFP)Jean-Paul Chilès (Mines Paris)André Fourno (IFP)

[email protected]

Page 2: Marius Verscheure Presentation Ecmor

2

Introduction

Forward model

Inverse modeling

Example

Conclusions

Page 3: Marius Verscheure Presentation Ecmor

3

Construction of fractured reservoir models

Why ? Predict reservoir behaviour Enhance production

How ? Integration of : static data (geostatistics, reservoir structure, etc...) dynamic data (well tests, production history)

Dynamic data integration = history matching

Static data

Dynamic data

Model

Page 4: Marius Verscheure Presentation Ecmor

4

Multiscale fracturing

Large scale : Seismic faults Seismic image Deterministic modeling

Medium scale : Sub-seismic faults Invisible on seismic and well logs Large objects Stochastic modeling

Small scale : joints Well logs Stochastic modeling

Page 5: Marius Verscheure Presentation Ecmor

5

Sub seismic faults : issues

Strong influence on hydrodynamic behaviors High permeabilities (or low : sealing) Large objects

Difficult to characterize Invisible on seismics

Problems with modeling How do we model what we cannot see?

Problems with history matching No efficient methods yet

Page 6: Marius Verscheure Presentation Ecmor

6

Objective : History Matching of Subseismic faults

Fluid flow simulation

Optimization

Modify fault positions to reduce the objective function

Statistical coherency must be preserved

Upscaling Simulated data Field data

Objective function

Field observations

Stochastic fault generator

Page 7: Marius Verscheure Presentation Ecmor

7

Introduction

Forward model

Inverse modeling

Example

Conclusions

Page 8: Marius Verscheure Presentation Ecmor

8

Fractal Modeling Definition

Fractal object that is similar whatever the observation scale

Fractal Dimension 1 < Df <2 Df1 : clustered

Df2 : uniformly distributed

Arguments in favor Observation of real fractured networks

Analysis of seismic faults Length distribution Number and shape of faults Spatial distribution Fractal Dimension

Model Extrapolation of seismic faults to smaller observation scales

Df=1.65

Df=1.58

Page 9: Marius Verscheure Presentation Ecmor

9

Modeling fault length distribution

Power Law : n(l) = Al-a

Determination of parameters Analysis of seismic faults determination of a, lmin, lmax

and number of faults to generate

Page 10: Marius Verscheure Presentation Ecmor

10

Modeling spatial distribution

Multiplicative cascade algorithmInitiated with 4 weights

Subdivision of each blockRandom permutation of each Pi in

each blockMultiplication with upper scale

0

1

5.0

4321

24

23

22

21

i

D

P

PPPP

PPPP f

Density map characterized by fractal dimension Df

Page 11: Marius Verscheure Presentation Ecmor

11

Modeling spatial distribution

Fault centers drawn from constrained Poisson point process

Centers are fractal with dimension Df

Page 12: Marius Verscheure Presentation Ecmor

12

Modeling spatial distribution : Conditioning to seismic faults

Algorithm initiated with a low resolution density map

Initial resolution depends on fractal properties

Page 13: Marius Verscheure Presentation Ecmor

13

Flow simulation model : Analytical discretization

Equivalent flow properties computed for each cell

Dual porosity model Porosity : fault volume / cell Equivalent permeability tensor

Page 14: Marius Verscheure Presentation Ecmor

14

Introduction

Forward model

Inverse modeling

Example

Conclusions

Page 15: Marius Verscheure Presentation Ecmor

15

Gradual deformations

Combination of two gaussian realizations : y0 and y1

y0 and y1: same mean, same variance y(t) new realization (same mean, same variance)

Gradually deformable gaussian numbers

y(t) = y0cos(tπ) + y1sin(tπ)

New realization Realization 0 Realization 1

t : gradual deformation parameter

Page 16: Marius Verscheure Presentation Ecmor

16

Gradual deformation of a Poisson point process

Non stationarity : density map

Each point drawn independantly

Y(t) U(t) X(t)gaussian numbers uniform numbers coordinates

inverse CDFSequential algorithm

Page 17: Marius Verscheure Presentation Ecmor

17

Gradual deformation of the multifractal map

P1(t) P2(t) P3(t) P4(t) so that:

variation of t continuous deformation of the cascade process (patented)

0)(

1)()()()(

5.0)()()()(

4321

24

23

22

21

tP

tPtPtPtP

tPtPtPtP

i

D f

Page 18: Marius Verscheure Presentation Ecmor

18

Reduction of the objective function

Fault migration continuous Hydrodynamic response continuous Objective function continuous

Optimization with gradient based algorithms (Gauss-Newton, SQPAL, etc...)

Initial Model

Objective function

History matched Model

Page 19: Marius Verscheure Presentation Ecmor

19

Introduction

Forward model

Inverse modeling

Example

Conclusions

Page 20: Marius Verscheure Presentation Ecmor

20

Example : Synthetic model 1060 subseismic faults Generated with commercial software 60 years of water flooding 121 x 150 x 7 3D simulation grid 4 producers , 11 Injectors

Reference fault network

Page 21: Marius Verscheure Presentation Ecmor

21

Example : Initial model

-Seismic fault network used to calculate initial low resolution density map (a)

-multiplicative cascade algorithm (b)

-final density map used to draw a population of fault centers (c)

-Initial fault model (d)

(a) (b) (c)

(d)

Page 22: Marius Verscheure Presentation Ecmor

22

Initial hydrodynamic response

Response different from reference model History matching necessary

Initial water cut levels for P1, P2, P3 P4. Field production data (red), simulated values (yellow)

Page 23: Marius Verscheure Presentation Ecmor

23

History Matching

Reservoir divided by zone Objective function evolution

Gauss Newton optimizer Good convergence speed few objective function evaluations

Page 24: Marius Verscheure Presentation Ecmor

24

History Matching

History matched water cut levels for P1, P2, P3 P4. Field production data (red), simulated values (yellow)

Page 25: Marius Verscheure Presentation Ecmor

25

Conclusions

Forward model Realistic Well suited to petroleum problems Gradually deformable

Inverse modeling Model consistency is unchanged Few parameters to optimize Gradient based optimization possible (fewer fluid flow

simulation runs) Good geological model given the restrictions brought

by the gradual deformation method Efficient optimization

Page 26: Marius Verscheure Presentation Ecmor

26

Future work

Account for sealing faults

Include diffuse fracturing history matching

Page 27: Marius Verscheure Presentation Ecmor

27

[email protected]

Thank you for your attention

Page 28: Marius Verscheure Presentation Ecmor

28

Some more slides...

Page 29: Marius Verscheure Presentation Ecmor

29

Example : Reference model

450 subseismic faults Df=1.65 matrix = 50 mD faults = 3.5E5 mD,

e=0.1m 10 years of water flooding

P1

P2

P3

Page 30: Marius Verscheure Presentation Ecmor

30

Example : Initial model

Page 31: Marius Verscheure Presentation Ecmor

31

Example : Matched Model

0

100

200

300

400

500

600

700

800

Objective function evolution

Page 32: Marius Verscheure Presentation Ecmor

32

Page 33: Marius Verscheure Presentation Ecmor

33

Generation of Poisson points

Points generated using density map

Calculate Discrete Cumulated Distribution Function from density map in X direction, then in Y direction

Generate uniform numbers on the CDF axis

Inversion of these number yields non stationnary Poisson point coordinates

Gradual deformation is done on the uniform numbers

1 – Generate Points

2 – Propagate Faults

3 – Merge Families

Page 34: Marius Verscheure Presentation Ecmor

34

Interpolation

Page 35: Marius Verscheure Presentation Ecmor

35

Determination of fractal dimension

Two point correlation function

Compute the distance between each couple of fault centers

If points are fractalfD

d rrNN

rC )(1

)(22

N: Number of points, Nd(r): number of pairs of points with distance d < r

Df : fractal dimension

small faults are invisible deviation

Modeling objectiveAdd the missing faults without modifying the fractal dimension

Page 36: Marius Verscheure Presentation Ecmor

36

3D faults

2D faults are extended and clipped on a corner point grid

Page 37: Marius Verscheure Presentation Ecmor

37

Deformation of the network

Gradual deformation Density map Poisson point process Length distribution

Pros Fractal dimension and length distribution unchanged One parameter to control all fault positions Local deformations (to match specific well)