mario: a stand-alone 16u cubesat to mars · mario: a stand-alone 16u cubesat to mars karthik v....

16
Interplanetary CubeSat Workshop 2019 May 2019 K.V. Mani et al MARIO: A Stand-Alone 16U CubeSat to Mars Karthik V. Mani – Politecnico di Milano Alvaro Sanz Casado – Airbus Defence and Space Vittorio Franzese – Politecnico di Milano Jose Enrique Ruiz Sarrio – Siemens PLM Software Francesco Topputo – Politecnico di Milano

Upload: others

Post on 31-May-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: MARIO: A Stand-Alone 16U CubeSat to Mars · MARIO: A Stand-Alone 16U CubeSat to Mars Karthik V. Mani –Politecnico di Milano ... Reflectarray communication → Successful demonstration

Interplanetary CubeSat Workshop 2019May 2019 K.V. Mani et al

MARIO: A Stand-Alone 16U CubeSat to Mars

Karthik V. Mani – Politecnico di Milano

Alvaro Sanz Casado – Airbus Defence and Space

Vittorio Franzese – Politecnico di Milano

Jose Enrique Ruiz Sarrio – Siemens PLM Software

Francesco Topputo – Politecnico di Milano

Page 2: MARIO: A Stand-Alone 16U CubeSat to Mars · MARIO: A Stand-Alone 16U CubeSat to Mars Karthik V. Mani –Politecnico di Milano ... Reflectarray communication → Successful demonstration

Interplanetary CubeSat Workshop 2019May 2019 K.V. Mani et al

▪ Interplanetary CubeSat missions

• Access to deep space for universities and small spacecraft consortia

• High science-to-investment ratio

• Enhancement of engineering and technology through miniaturisation

• Require primary propulsion system

▪ CubeSat mission scenarios to Mars

• In-situ deployment (e.g. MarCO alongside InSight)

• Stand-alone CubeSat on deep-space cruise (e.g. M-ARGO to asteroids)

2

Introduction

Page 3: MARIO: A Stand-Alone 16U CubeSat to Mars · MARIO: A Stand-Alone 16U CubeSat to Mars Karthik V. Mani –Politecnico di Milano ... Reflectarray communication → Successful demonstration

Interplanetary CubeSat Workshop 2019May 2019 K.V. Mani et al 3

Mission characteristicsMission objectives and highlights

▪ Mission:-Mars Atmospheric Radiation Imaging Orbiter

• Stand-alone CubeSat mission on a hybrid high-thrust low-thrust trajectory travelling from

Earth to observe Mars atmosphere

• Demonstrate the capability to :

‒ Escape Earth

‒ Pursue heliocentric transfer

‒ Achieve ballistic capture

‒ Stabilize and circularise to an operational orbit at Mars

▪ MARIO Highlights

• Supersynchronous GTO [ 295 km x 90000 km] to Mars – stand-alone

• Size - 16 U and ~30 kg

• Dual Chemical-Electric Propulsion

• Autonomous Guidance-Navigation-Control

• Reflectarray communication

• Mission life 5-6 years (6-8 months science)

Orbit raising & Earth escape Heliocentric transfer

Ballistic capture mechanism Operational orbit

Page 4: MARIO: A Stand-Alone 16U CubeSat to Mars · MARIO: A Stand-Alone 16U CubeSat to Mars Karthik V. Mani –Politecnico di Milano ... Reflectarray communication → Successful demonstration

Interplanetary CubeSat Workshop 2019May 2019 K.V. Mani et al 4

Systems designDual chemical—electric propulsion

▪ Two different and independent chemical and electric propulsion

systems in the same spacecraft

▪ Chemical Propulsion Requirements:

• Minimum ∆𝑉 of 445 m/s → 396 m/s Earth esc + 49 m/s Mars stab

• Max 3 N thurst and 600 s burntime → Combination for ∆V distribution and grav

loss control.

• Non-toxic propellants

▪ Chemical propulsion characteristics:

• Propellant: FLP-106 – 64.6% ADN, 23.9% Water, 11.3% MMF – Non-toxic!

• 𝜌 = 1357 kgm3 [ while 𝑁2𝐻4 ~ 1020 kg

m3 ]

• Thrust – 3 N , Isp = 241.2 seconds (at 𝜖 = 200)

System Mass: 6.59 kg Volume: 7.5 U

▪ High thrust trajectory:

• 6 manouevres, 13 Van Allen Belt crossings, 33 days

▪ Chemical propulsion design & sizing:

• Prop. Mass w/ margin = 5.054 kg

• Prop. Vol – 3.724 lt ~3.7 U

• Thrusters – 2 × 1.5 N

• Tank type – dome-ended cylindrical - Ti-alloy

• Tanks – 4 × 1.025 lt (10% ul.) ~ 4 × 1.6 U

• Tank dim – ∅ 9.4 cm, L = 16.1 cm, t = 0.44 mm

Page 5: MARIO: A Stand-Alone 16U CubeSat to Mars · MARIO: A Stand-Alone 16U CubeSat to Mars Karthik V. Mani –Politecnico di Milano ... Reflectarray communication → Successful demonstration

Interplanetary CubeSat Workshop 2019May 2019 K.V. Mani et al 5

Systems designDual chemical—electric propulsion

▪ Electric propulsion requirements:

• Maximum 4.5 years transfer time

• Max 70 W power consumption

• Combined propulsion mass ≤ 50% total mass

▪ Electric propulsion characteristics:

• Propellant : Iodine

‒ Higher density (4940 kgm3 ) → compactness

‒ Lower ionization potential than Xenon

Max thrust: 1.492 mN Max Isp: 3168 seconds

▪ Low thrust trajectory – 1200 days

▪ Prop. Mass – 4.583 kg (heliocentric) + 1.28 kg (circularization)

▪ Overall system mass : 7.4 kg

Page 6: MARIO: A Stand-Alone 16U CubeSat to Mars · MARIO: A Stand-Alone 16U CubeSat to Mars Karthik V. Mani –Politecnico di Milano ... Reflectarray communication → Successful demonstration

Interplanetary CubeSat Workshop 2019May 2019 K.V. Mani et al 6

Systems designElectrical Power System▪ 2 Solar Arrays each with 4 panels having 25 cells – 200 cells overall

▪ Solar Array Drive Assembly (SADA) for continuous power generation

▪ AzurSpace 3G30C cells:

• 29.8 % BOL efficiency

• 0,93% yearly degradation

• 30.18 cm2 cell area

• 90% of Inherent degradation

ACU

PDU

5 PV input lines (MPPTs)1 MPPT has

20 Cells

ACU

5 PV input lines (MPPTs)

1 MPPT has 20 Cells

PDU

5 V12 V12 V5 V

24 V3.3 V

COMM -HGA

COMM -LGA

COMM - R

IMU

ST ST FSS

FSS

Payload

EPS Dock [Motherboard]

Platform OBC RW 1

RW 2

RW 3

Chemical PROP

ElectricalPROP

Thermal control

SADA

Batteries

P = 1.9 + 1.9 + 1.9 W

P = 35 W

P = 21 W

P =12 W

P =15 W

P =10 W

P =70 W

P = 1.5 + 1.1 + 1.1 + 0.115 + 0.115 W

P =7 W

P =8 W

P =2 W

I = 1.14 A

I = 0.5 A

I = 0.875 A

I = 1.46 A

I =

1.2

5 A

I = 0.79 A

I = 1.4 A

I = 1.6 A

Nav Cam P =1.4 W

Payload Proc P =8 W

I =

0.8

33

A

PPCU

I = 1.68 A

Op. Mode Power Active Subsystems

Deployment 8.2 W EPS, OBC

De-Tumble 43.6 W EPS, OBC, ADCS, COMR, TCS, MECH

Earth Burn 46.6 W EPS, OBC, ADCS, CPROP, TCS, MECH

Earth Comm 61 W EPS, OBC, ADCS, COMT LGA, TCS, MECH, GNC, PLPROC

Earth Orbiting 40 W EPS, OBC, ADCS, TCS, MECH, GNC, PLPROC

Low-thrust Transfer 110 W EPS, OBC, ADCS, EPROP, TCS, MECH, GNC, PLPROC

Int. Transfer Comm 56.6 W EPS, OBC, ADCS, COMT HGA, MECH

Mars Capture 77.9 W EPS, OBC, ADCS, EPROP Reduced, TCS, MECH, GNC, PLPROC

Mars PL 40 W EPS, OBC, ADCS, PL-CAM, PL-PROC, TCS/2, MECH, GNC

Mars COM 65 W EPS, OBC, ADCS, COMT HGA, MECH, GNC, PLPROC

Mars Eclipse and Safe 29.6 W EPS, OBC, ADCS, TCS

2 × GS Nanopower BPX Batteries GS Nanopower P60 Dock +

2 × ACU + 2 × PDU

8 × GS MSP-A-4-1 (modified)

Page 7: MARIO: A Stand-Alone 16U CubeSat to Mars · MARIO: A Stand-Alone 16U CubeSat to Mars Karthik V. Mani –Politecnico di Milano ... Reflectarray communication → Successful demonstration

Interplanetary CubeSat Workshop 2019May 2019 K.V. Mani et al 7

Systems designCommunication

▪ Reflectarray communication → Successful demonstration by MarCO and ISARA missions

▪ Minimum datarate → 8 kbps ; Maximum distance → 1.5 AU

Near-Earth Communication

• Upto 1 million km

• COTS S-band patch antenna

• 2 W feeding power

• Near-Earth and Deep-space network

• IRIS-V2 transponder

Deep-space Communication

• Beyond 1 million km

• X-band communication

• 10 W feeding power

• Constrained by power and orientation

Power Generation

Communication

Page 8: MARIO: A Stand-Alone 16U CubeSat to Mars · MARIO: A Stand-Alone 16U CubeSat to Mars Karthik V. Mani –Politecnico di Milano ... Reflectarray communication → Successful demonstration

Interplanetary CubeSat Workshop 2019May 2019 K.V. Mani et al 8

NavigationState of art vs Optical Navigation

Earth

Spacecraft

State of the art: Radiometric tracking

One/Two-way ranging + Doppler

• Accurate

• Requires contact with ground stations

• Expensive

Navigation alternative: Optical navigation

• Less accurate w.r.t. radiometric tracking

• Independent from ground stations

• Low cost

Line-of-sight nav

𝒓

𝒓𝑖

𝒓𝑗

ෝ𝝆𝑖

ෝ𝝆𝑗

Sun

Horizon-Based nav

ෝ𝝆𝑖

ෝ𝝆𝑗𝒓

Near-Spherical Body

S/CS/C

Page 9: MARIO: A Stand-Alone 16U CubeSat to Mars · MARIO: A Stand-Alone 16U CubeSat to Mars Karthik V. Mani –Politecnico di Milano ... Reflectarray communication → Successful demonstration

Interplanetary CubeSat Workshop 2019May 2019 K.V. Mani et al

9

Systems designNavigation

Deep Space: Line-of-sight nav

𝒓

𝒓𝑖

𝒓𝑗

ෝ𝝆𝑖

ෝ𝝆𝑗

Sun

Proximity: Horizon-Based navigation

ෝ𝝆𝑖

ෝ𝝆𝑗𝒓

Near-Spherical Body

S/C

S/C

Hyperion IM200 Navigation Camera

Page 10: MARIO: A Stand-Alone 16U CubeSat to Mars · MARIO: A Stand-Alone 16U CubeSat to Mars Karthik V. Mani –Politecnico di Milano ... Reflectarray communication → Successful demonstration

Interplanetary CubeSat Workshop 2019May 2019 K.V. Mani et al 10

Systems designRest of subsystems

▪ Payload and on-board processing• Far-infra red camera for atmospheric

temperature characterisation

• Dedicated PL data processor – UniBAP OBC

▪ Platform OBC• Command and control

• General data processing and storage

• Status and health monitoring

▪ Thermal and structure• Heaters for propellant tanks, feed lines,

batteries etc.

• Radiators for payload heat dissipation

• 16U ISIS structure, radiation shielding, and secondary structure.

▪ Attitude Dynamics and Control System• 3 Hyperion RW400 Reaction Wheels

• 1 STIM300 IMU

• 2 Hyperion ST400 Star Trackers

• 2 Solar MEMS NanoSSOC Sun Sensors

• Additional Cold Gas systems for desaturation

Hyperion RW400 STIM300 Hyperion ST400 NanoSSOC-D60

Skylabs NanoOBC

UniBAP OBC e20xx/e21xxCustom payload

Page 11: MARIO: A Stand-Alone 16U CubeSat to Mars · MARIO: A Stand-Alone 16U CubeSat to Mars Karthik V. Mani –Politecnico di Milano ... Reflectarray communication → Successful demonstration

Interplanetary CubeSat Workshop 2019May 2019 K.V. Mani et al 11

System configuration

Payload

IRIS V2 Comm

Star Tracker

Reactionwheel

Sun sensor

Nav cam

Chemical propellant

tank

Pressurisertank Batteries

PayloadProcessor

Iodine tank

PPCUEPS

SADAIon thruster

Chemicalthruster

IMU

Page 12: MARIO: A Stand-Alone 16U CubeSat to Mars · MARIO: A Stand-Alone 16U CubeSat to Mars Karthik V. Mani –Politecnico di Milano ... Reflectarray communication → Successful demonstration

Interplanetary CubeSat Workshop 2019May 2019 K.V. Mani et al 12

Mass budget

Subsystem Mass PercentageStructure 4,326 14,42EPS 3,964 13,21Communications 2,046 6,82ADCS 2,014 6,71Navigation 0,06 0,20

Chemical Propulsion 6,59 21,96

Electric Propulsion 7,4 24,66Mechanisms 0,65 2,17OBC 0,06 0,20TCS 0,3 1,00Payload 2,3 7,66Harness 0,3 1,00

Total 30,01 100

Structure14.42%

EPS13.21%

Communications6.82%

ADCS6.71%

Navigation0.20%

Chemical Propulsion21.96%

Electric Propulsion24.66%

Mechanisms2.17%

OBC0.20%

TCS1.00% Payload

7.66%

Harness1.00%

MASS BUDGET

Page 13: MARIO: A Stand-Alone 16U CubeSat to Mars · MARIO: A Stand-Alone 16U CubeSat to Mars Karthik V. Mani –Politecnico di Milano ... Reflectarray communication → Successful demonstration

Interplanetary CubeSat Workshop 2019May 2019 K.V. Mani et al 13

Conclusion

▪ MARIO – Stand-alone CubeSat mission from Earth to Mars

▪ Dual chemical-electric propulsion enables high-thrust—low-thrust trajectory that balances flight time

and mass

▪ Reflectarray communication enables data transmission over 1.5 AU distance

▪ Continuous power generation is ensured using SADA

▪ Mission is feasible in the very near-future

▪ High science-to-investment ratio

Page 14: MARIO: A Stand-Alone 16U CubeSat to Mars · MARIO: A Stand-Alone 16U CubeSat to Mars Karthik V. Mani –Politecnico di Milano ... Reflectarray communication → Successful demonstration

Interplanetary CubeSat Workshop 2019May 2019 K.V. Mani et al

▪ Elaboration and detailed design of:

• Payload

• Attitude dynamics

• Thermal control system

• Granular operations

▪ We are looking for possible collaborations!

14

Future work

Page 15: MARIO: A Stand-Alone 16U CubeSat to Mars · MARIO: A Stand-Alone 16U CubeSat to Mars Karthik V. Mani –Politecnico di Milano ... Reflectarray communication → Successful demonstration

Interplanetary CubeSat Workshop 2019May 2019 K.V. Mani et al 15

MARIO Team

Karthik V. Mani Álvaro Sanz Casado Vittorio Franzese

Francesco Topputo

Page 16: MARIO: A Stand-Alone 16U CubeSat to Mars · MARIO: A Stand-Alone 16U CubeSat to Mars Karthik V. Mani –Politecnico di Milano ... Reflectarray communication → Successful demonstration

Interplanetary CubeSat Workshop 2019May 2019 K.V. Mani et al

QUESTIONS?

16