margeol15 strat

Upload: sidik

Post on 03-Feb-2018

226 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/21/2019 MarGeol15 Strat

    1/42

    Stratigraphy (light)Fossils, Correlation, and Geologic Time

  • 7/21/2019 MarGeol15 Strat

    2/42

    Ooze!!

    What kind of

    ooze is this?

  • 7/21/2019 MarGeol15 Strat

    3/42

  • 7/21/2019 MarGeol15 Strat

    4/42

    Calcareous nannoplanktonIncludes incerta sedis discoasters

    Kingdom Chromista

    Division Heterokonta

    Class Prymnesiophycae

  • 7/21/2019 MarGeol15 Strat

    5/42

    Radiolaria Diatoms, Kingdom Chromista, DivisionHaptophyta

  • 7/21/2019 MarGeol15 Strat

    6/42

    The holy trinity as blessed by the Heberg bible of stratigraphy isLithostratigraphy, Chronostratigraphy,andGeochronology.

    Lithostratigraphy,organization of strata based upon lithologic criteria.

    Geochronology,abstract time units.

    Chronostratigraphy,organization of strata based upon age relations time-rock units Hourglass analogy--duration of sand flow is an hour, but

    the sand itself is not time

    Principles of Stratigraphy

  • 7/21/2019 MarGeol15 Strat

    7/42

  • 7/21/2019 MarGeol15 Strat

    8/42

    Correlation: establish equivalency

    Physical correlationestablish physical equivalency of unit. Dunbar andRodgers prefer "physical facies equivalence" "lithocorrelation" Boggs

    time (temporal) correlationestablish equivalence in time of stratigraphicunits; often the only meaning implied

    Physical correlationPrinciple: Law of SuperpositionMeans of establishing physical correlation

  • 7/21/2019 MarGeol15 Strat

    9/42

    gaps in the record.Derek Ager--more gap than record.Hiatustime gap geochronologic

    Unconformity:physical break in the record.

    Chronostratigraphic & lithostratigraphicsignificance

    Types:1)angular unconformity

    2)disconformityparallel bedding witherosion

    3)paraconformityparallel beds withno

    evidence of a break4)Nonconformitystrata on non-

    layered rock

  • 7/21/2019 MarGeol15 Strat

    10/42

    BIOSTRATIGRAPHY: USING FOSSILS TO CORRELATEindex fossil, one used in correlation; what are the criteria:

    zone: fundamental biostratigraphic unit

    Range zone: based on ranges of one or more taxa

    narrow stratigraphic range

    wide environment toleranceunique and identifiable

  • 7/21/2019 MarGeol15 Strat

    11/42

    Interval zones are generally used in construction of biostratigraphic zones that areused for most age correlations Berggren and Miller (1988) planktonic foraminifera

  • 7/21/2019 MarGeol15 Strat

    12/42

  • 7/21/2019 MarGeol15 Strat

    13/42

    Magnetostratigraphy

    using magnetic field reversals to correlate

    POWERFUL method of correlationapplied to sediments and volcanics

    why so powerful?

    Magnetostratigraphy differs from marine magnetic anomalies:Latter fundamental to seafloor spreading,plate tectonics, andconstruction of geological time scales

  • 7/21/2019 MarGeol15 Strat

    14/42

    What are the sedimentation rates of the three cores shown?

    B/M at

  • 7/21/2019 MarGeol15 Strat

    15/42

    Magnetostratigraphy onDSDP/ODP Cores

    provided an opportunity forintegration with pelagicbiostratigraphy, isotopicstratigraphy

    this led to the "first testabletime scale" Berggren,Kent, Flynn, and Van

    Couvering (1985)

    testable because if we saythe first occurrence of somebug is in Chron C5n (e.g.,Neogloboquadrina acoastensi

    can be checked at othersites versus magstrat.

    7.17.37.59.19.311.35.46.26.57.08.28.58.410.211.112.213.1110020050012.4glacialinterglacial13.1315.115.315.514.114.214.416.22 Raw Susce ptibility050100150200250300903A/B Composite section050100150200250300350 SPECMAP time scaleSite 903 Pleistocene upper Miocenelo. Pleistocene300400 p1 (yellow)p2 (blue)p3 (green)p4 (purple)p5 (orange)p6 (indigo)mid. Pliocene??? NN15

  • 7/21/2019 MarGeol15 Strat

    16/42

    lp ypSite 903 Pleistocenepp

    Correlations UsingMagnetic Susceptibility

    J = kHk = MS = susceptibility(how "magnetizable" the rocks/sediments are)basalt 10-1to 10-2Sediments 10-3to 10-5SI units(dimensionless)

    rapidly measure very closely spaced (cm)on cores

    "pass through" measurement

    can be very useful in correlationproxy of carbonate content

    (faster and easier to measure MS)ODP Leg 138: low carbonate,

    more eolian magnetite grains,therefore higher susceptibilty

    proxy of terrigenous versus pelagic

  • 7/21/2019 MarGeol15 Strat

    17/42

    stage 7stage 1stage 3stage 5stage 9stage 1

    Oxygen IsotopicStratigraphy

    Shackleton showed that thereis a large component of icevolume in late Pleistocene18O records.

    He demonstrated that18Ovariations are synchronousand therefore useful forcorrelation oxygen isotope"stages" (really chrons) 1, 3,

    5, 7... are interglacials, 2, 4, 6,8... are glacials. 4 is a minorglacial. All of other majorglaciations 2, 6, 8, back to 20are spaced roughly 100 k.y.apart

  • 7/21/2019 MarGeol15 Strat

    18/42

    Oxygen isotope/isotopic stratigraphy: Above the SPECMAP time scale

    1) is the backbone of the Pleistocene-Recent (Quaternary) time scale andcorrelations2) is useful for correlations of older sections3) provides a "paleo" thermometer

    4) provides a proxy for global changes in ice volume

  • 7/21/2019 MarGeol15 Strat

    19/42

    Carbon Isotopic Stratigraphy

  • 7/21/2019 MarGeol15 Strat

    20/42

    Sr-isotopesMajor inputs:3 primary sources of Sr input into the oceans: oceanic crust, continental crust, and

    carbonateoceanic crust (basalt) has an average87Sr/86Sr value of 0.7030hydrothermal circulation decreases seawater value

    continental crust (granite composition)87Sr/86Sr value of 0.720river input (0.7111) lower due to weathering of limestones (0.707-0.709)

    carbonate cycle (0.707-0.709) buffers large changes

    seawater87Sr/86Sr value is uniform at any given timewhy? short mixing time of the oceans (1x103years) relative to the long residencetime of Sr (4x106years)

    87Sr/86Sr values of unaltered marine carbonates reflect seawater87Sr/86Sr

    at time of precipitation.why? Strontium substitutes for calcium as a trace element without either strontiumisotope being preferentially substituted into the calcium site

    Burke et al. (1982) used Sr-isotopes as a correlation toolrequires a standard seawater curve with which to correlate Sr values and

    obtain dates

  • 7/21/2019 MarGeol15 Strat

    21/42

    Burke et al. (1982)

  • 7/21/2019 MarGeol15 Strat

    22/42

    Geochronology

    Absolute ages, radiometric dates better said asisotopic age or numerical age

    Radioactivity: Bequerel (1896)

    provided Kelvins missing heatprovided a means of numerical estimating ages;chronometer of deep time

    Isotopic systems generally used to date geological materialsK-Ar and Ar-ArU-PbRb-SrU-Th14C

    Parent Daughter Halflife

  • 7/21/2019 MarGeol15 Strat

    23/42

    Parent Daughter Half life

    Potassium 40 Argon 40 1.25 billionRubidium 87 Strontium 87 4.8 x 1010yearsUranium 235 Lead 207 704 million years

    Uranium 238 Lead 206 4.47 billion yearsThorium 232 Ra 226 1.4 x 1010yearsThorium 230 Ra 228 75,200 yearsCarbon 14 Nitrogen 14 5,730 years

    Exponential decay (natural log function):

    rapid at first, reaches an asymptote;all follow exponential decay functions:

    Radioactive decay,heat flow (cooling),subsidence (function of cooling)

    amount of parent00.1250.250.3750.50.6250.750.8751 012345678910time

  • 7/21/2019 MarGeol15 Strat

    24/42

  • 7/21/2019 MarGeol15 Strat

    25/42

    Time Scales

    Why are time scales important?

    provides us with a means of evaluating therelationships of geological data in the time domain

    need estimates of rates of processes

    in order to establish a precise time scale, all of therequisite temporal correlations must be established

    The time scale becomes the ruler against which all

    geological events & processes are measured.

  • 7/21/2019 MarGeol15 Strat

    26/42

    A "pure" time scale consists of numerousradiometric dates tied to the stratigraphicrecord

    Only good example is the last 4.5 millionyears: geomagnetic polarity time scale(GPTS) of Cox and Dalrymple

    We do not have the luxury of such numerousdates in other parts of the record

    Construction of geological time scale requiresa ruler to scale time

  • 7/21/2019 MarGeol15 Strat

    27/42

    what is the ruler or vernier for interpolation?

    biochronology: constant rate of evolutionis this assumption ridiculous?? who in their right mind would use this.you do. e.g., 4 ammonite zones in Aptian surprisingly have the same

    duration. e.g., the Kent and Gradstein (1985) Jurassic time scale that ispart of the DNAG first relatively precise Cenozoic time scale (Berggren,1972) based largely on biochronology

    magnetochronologyassumption of constant sea floor spreading rates between keyreversalsused for last 160 m.y. Berggren et al., 1985; Cande and Kent, 1992can do magnetochronology in a sedimentary section,but you assume constant sedimentation rates betweenmagnetochronozonal boundaries plug biostratigraphy, isotopicstratigraphy into magnetostratigraphy

    "radiochronology"assume constant sedimentation rates between levels with radiometricdates Odin 1982

    astrochronologyMilankovitch pacemaker provides predicted ages for astronomicallyforced geological variations

  • 7/21/2019 MarGeol15 Strat

    28/42

    Hilgen, F.J. and Krijgsman, W. (1999). Cyclostratigraphy andastrochronology of the Tripoli diatomite formation(pre-evaporite Messinian, Sicily, Italy), Terra Nova, 11, 16-22. [PDF]

    Astrochronology/cyclostratigraphySedimentary cycles reflect climatic oscillationsthat are ultimately controlled by the Earth'sorbital cycles.Therefore, sedimentary cycles can be used toconstruct astronomical time scales. Using this

    method an astronomical time scale has beenestablished for the late Miocene (6.8-12.0 Ma)to Recent. Such time scales arefundamental to an increasing number ofapplications in many disciplines.

  • 7/21/2019 MarGeol15 Strat

    29/42

    Errors in time correlations

    Cenozoic

    Biostratigraphyplanktonic foraminifera. widely used. 0.1 m.y to 2m.y. typically 0.5 m.y.calcareous nannoplankton. widely used. similar resolution as foraminiferaradiolarians. mostly equatorial Pacific.diatoms. moderately used. not well calibrated to GPTS

    Sr-isotopeslate Eocene-Oligocene 1 to 0.6 m.y. (at the 95% confidence interval).

    Miocene-Recent22.8 to 15.6 Ma 0.6 m.y. (1 analysis @ 95% CI) to0.4m.y. (3 analyses@ 95% CI) 15.2 to ~10 Ma 1.2 m.y. (1 analysis @ 95% CI) to0.8m.y. (3analyses @ 95% CI) ca. 10 and 7 Ma, poor resolution.7-4.8 Ma0.4m.y. (3 analyses @ 95% CI)4.8-2.5 Ma1.6Ma (3 analyses @ 95% CI)

    2.5-0 Ma0.3 m.y(3 analyses @ 95% CI)

    Magnetostratigraphy< 10 k.y. when sure of identification of reversal boundarychrons on the order of 0.2 to 2.6 m.y. (e.g., Chron C24r) durationhiatuses complicate record

    need magnetobiostratigraphy and circular reasoning

  • 7/21/2019 MarGeol15 Strat

    30/42

    Astronomical chronology18O has long been primary means of correlation for Bruhnes

    resolution as fine as 5-10 k.y. (1/4-1/2 of a precessional cycle)astronomical time scale complete for the past 10+ m.y. (back through late Miocene)preliminary astronomical time scale for >10 Ma, 25-33 Ma

    pieces being used in older record (e.g., 55-55.5 Ma)Late Triassic has an astronomical time scale anchored to the basalts (201 Ma)

    Mesozoic

    Cretaceousplanktonic foraminifera widely used for Late Cretaceouscalcareous nannoplankton. widely used.ammonites widely used throughout. zones provide better than 0.5 m.y. relative ageswhen present; tied to bentonites in western Interior: true (absolute age)chronology can approach

  • 7/21/2019 MarGeol15 Strat

    31/42

    N23

    CALCAREOUS NANNOPLANKTON

    Martini (1971) Bukry (1973, 1975)

    NN21 CN15

    NN20 CN14b

    NN19

    NN18

    NN16

    NN15 +

    NN17

    CN14a

    CN13b

    CN13a

    CN12b

    CN11b

    CN11a

    CN10c

    NN13

    NN14

    CN10bNN12

    NN11bCN9b

    CN10a

    CN12a

    CN12d

    CN12c

    Berggren (1973, 1977, this work)TIME(Ma)CHRONS

    1

    C1n

    2

    3

    4

    5

    C1r

    C2n

    C2r

    C2An

    C2Ar

    C3n

    C3r

    C3An.1n

    LATE

    PLANKTONICFORAMINIFERA

    INDO-PACIFICATLANTIC

    1 r

    2r

    2r

    1

    1

    2

    3n

    1

    2

    3

    nr

    4n

    rn

    nr

    r

    rn

    n

    r

    n

    Gt. miocenica Gl. fistulosusIZ

    Gt. pseudomiocenica Gl. fistulosusIZ

    D. altispira Gt. miocenicaIZ

    D. altispira Gt. pseudomiocenica

    IZD. altispira

    Gt. pseudomiocenica IZ

    PL5

    PL4

    PL3Gt. margaritae Sph. seminulina IZ

    PL2G. nepenthes

    Gt. margaritae IZ

    b

    a

    Gt. cibaoensis G. nepenthesISZ

    Gt. tumida

    Gt. cibaoensisISZ

    M14 Gt. lenguaensis Gt. tumida I Z

    PL6

    a

    bGt.truncatulinoidesPRZ

    Gl. fistulosus -Gt. tosaensis

    ISZ

  • 7/21/2019 MarGeol15 Strat

    32/42

    nr

    TIME(Ma)

    CHRONS

    5C3n

    C3r

    C2Ar

    MIDDLELATE MIOCENE TIME SCALE

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    C3An

    C3ArC3Bn

    C3Br

    C4n

    C4rC4An

    C4Ar

    C5n

    C5r

    C5AnC5Ar

    C5ACn

    C5ADnC5ADr

    C5Br

    C5Bn

    PL1

    M14

    M13

    b

    a

    M12

    M11M10

    M9M8

    M7

    M6

    M5b b

    b

    a

    Gl.cibaoensis G.nepenthes

    ISZ

    Gl.tumida Gl.cibaoensis

    IRZ

    Gl. lenguaensis - G. tumida IZ

    N. acostaensis -

    Gl. extremus/

    Gl. plesiotumida

    ISZ

    N.mayeri N.acostaensis

    IZ

    G. nepenthes / N.mayeri Conc.RZ

    Gl.f.robusta G.nepenthes IZ

    Gl.f.robustaTot.RZ

    Gl.f.lobata Lin.Z

    Gl.fohsis.s.Lin.Z

    Gl.peripheroacutaLin.Z

    O.sutur. Gl.peripher.IZ

    Pr.glomerosa Orb.suturalis

    ISZ

    Mt9

    Mt8

    Mt7

    Mt6

    Mt5

    N17

    N16

    N15

    N14

    N13

    N12N11

    N10

    N9

    N8

    Gl. puncticulata IZ

    Gl. sphericomiozeaIZ

    Gl. conomiozea/Gl. mediterranea -Gl. sphericomiozea

    IZ

    N. mayeri Gl. conomiozea

    IZ

    Gl.nepenthes / N.mayeri Conc.RZ

    Gl.peripheroronda G.nepenthes

    IZ

    Orb.suturalis /

    Gl.peripheroronda

    Conc.RZ

    Pr.glomerosa Orb.suturalis

    ISZ

    AN7

    AN6

    AN5

    AN4

    Gl.scitulaPRZ

    N. nymphaTRZ

    Gl.miozeaPRZ

    PLANKTONIC FORAMINIFERA(SUB)TROPICAL TRANSITIONAL (SUB)ANTARCTIC

    Berggren (this work) Blow(1969) Berggren (1985, this work) Berggren (1992)

    N

    19

    N18

    Gl.f.lobata Gl.f.robusta

    IZ

    Mt10

    b

    a

    Gl. extremus/

    Gl. plesiotumida -

    Gl. lenguaensis

    ISZ

    1

    2

    4n

    2n

    3 rn

    r

    r

    n

    1 r

    1r/n

    3r2

    1

    1

    2n

    2r

    n

    r

    1

    1

    1

    2

    1

    1

    12n

    nr

    2r/n3r

    2n

    2n

    3r

    23

    r

    n

    r

    r

    n

    n

    r

    r

    r

    n

    n

    rn

    n

    r

    n

    n

    n

    C5AAnC5AAr

    C5ABr

    C5ABn

    CALCAREOUSNANNOPLANKTON

    Martini (1971)Bukry (1973, 1975)

    NN13ab

    c

    d

    b

    a

    ab

    c

    d

    b

    a

    c

    NN12

    NN10

    NN9 a&b CN7 a&b

    NN8 CN6

    NN5 CN4

    NN4 CN3

    NN7

    NN6

    b

    a

    NN14

    CN8

  • 7/21/2019 MarGeol15 Strat

    33/42

    CALCAREOUSNANNOPLANKTONMartini (197Bukry (1973, 197)

    NN5CNN4

    NN3NN2

    NP2NN1

    C

    CCa

    C

    TIME(Ma)CHRONSC5ADnC5ADr

    151617

    18192021

    222324

    C5BnC5BrC5CnC5CrC5Dn

    C5DrC5EnC5ErC6nC6rC6AnC6ArC6AAnC6AArC6BnC6BrC6CnC6Cr

    M7M6abbaM5M4

    M3M2

    baP22

    N10N9N8N7

    N6

    N4

    P22

    Gl.peripheroacuta

    Lin.ZO.sutur. Gl.peripher.IZPr.glomerosa Orb.suturalisISZPr.sicana Pr.glomerosaISZ Pr.sicana Pr.glomerosaISZG.bispherica PRSZCat.dissimilis Gl.birnageaeISZGlobigerinatellainsueta Catapsydrax dissimilisConc.RZCatapsydraxdissimilisIZ

    Gl.kugleri Gq.dehiscensConc.RSZGd.primordiusISZG.ciperoensisIZ

    Mt6Mt5Mt4Mt3

    Mt2

    Mt1ba

    ab

    P22

    Orb.suturalis/

    Gl.peripherorondaConc.RZPr.glomerosa Orb.suturalisISZG.miozea PRZGl.praescitula -Gl.miozeaIZGloborotaliaincognita GloborotaliasemiveraPRZGl.kugleri Gq.dehiscensConc.RSZGd.primordiusISZG.ciperoensisIZ

    AN4

    AN3

    AN2

    AN1

    AP16

    Gl.miozeaIZ

    Gl.praescitulaIZ

    Gl.incognitaPRZ

    Gl.brazieriPRZG.euaperturaIZ

    PLANKTONIC FORAMINI(SUB)TROPICALTRANSITIONAL(SUB)ANTARCTICBerggren (this work)Blow(1969)Berggren (1985;this work)Berggren (1992)

    N5

    1123n

    2n

    r

    nr

    1

    11123n

    22n3r

    2nn

    nnr

    r

    rnnnrr

    r

    nnr

    OLIGOCENE TIME SCALE

  • 7/21/2019 MarGeol15 Strat

    34/42

    NN1

    NN2CN1a&b

    b

    a

    c

    b

    a

    (1)

    (2) (2)

    TIME(Ma)

    CHRONS

    23

    24

    25

    26

    27

    28

    29

    30

    31

    32

    33

    34

    35

    36

    37

    C6BnC6Br

    C6CnC6CrC7n

    C7AnC7Ar

    C7r

    C8n

    C8r

    C9n

    C9rC10n

    C10r

    C11nC11r

    C12n

    C12r

    C13n

    C13r

    C15n

    C15r

    C16r

    C16n

    C17n

    PLANKTON ZONES

    FORAMINIFERA(Berggren & Miller, 1988; this work)

    M1b G. kugleri/G. dehiscensCRZ

    M1a Gl. primordius PRZ

    P22Gl. ciperoensis

    PRZ

    bGl. angulisuturalis

    P. opimas. s.

    ISZ

    aGl. angulisuturalis/Ch. cubensisCRSZ

    P20 Gl. sellii PRZ

    P19T. ampliapertura

    IZ

    P18T. cerroazulensis

    Pseudohastigerinaspp.

    IZ

    P16 Cr. inflataTRZ

    P17 T. cerroazulensis IZ

    P15

    P. semiinvoluta

    IZ

    1

    1

    23n

    1 nr

    1

    2n

    2n

    1

    12n

    n

    nr

    2nr

    nr

    2n

    n

    n

    nr

    r

    r

    1

    2n

    1n

    nr

    CALCAREOUS NANNOPLANKTON

    Martini (1971)Bukry (1973, 1975)

    NP25

    NP24

    NP23

    NP18

    NP21

    CP18

    NP19-20

    CP15

    CP17(1)

    CP16

    NP22

    EOCENE TIME SCALE

  • 7/21/2019 MarGeol15 Strat

    35/42

    NP13 CP11

    NP12

    NP11

    NP10

    NP9

    CP10

    a

    b

    a

    c

    b

    a

    c

    b

    a

    ba

    b

    b

    a

    ba

    NP16

    CP9

    CP8

    r

    TIME(Ma)CHRONS

    C12rC12n

    56

    55

    54

    53

    52

    51

    50

    49

    48

    47

    46

    45

    44

    43

    42

    41

    40

    39

    38

    37

    36

    35

    34

    33

    32

    31

    PALEO-CENE LATE

    THANE-TIAN

    C13r

    PLANKTON ZONESFORAMINIFERA

    P19 T. ampliapertura IZ

    P18Ch. cubensis

    Pseudohastigerinaspp.

    IZ

    P16 Cr. inflataTRZP17 T. cerroazulensis IZ

    P15 P. semiinvoluta IZ

    P14 Tr. rohri M. spinulosaPRZ

    P13 Gl. beckmanniTRZ

    P12 M. lehneri PRZ

    P11 G. kugleri /M.aragonensisCRZ

    P10 H. nuttalli IZ

    P9 P. palmerae - H. nuttalliIZ

    P8 M. aragonensis PRZ

    P7M. aragonensis/M. formosa

    CRZ

    M. formosa/M.lensiformis

    M.aragonensis ISZ

    P6 M.velascoensis - M. formosa/M.lensiformisISZ

    M. velascoensisIZ

    c

    b

    aP4 M. soldadoensis/Gl. pseudomenardii CRSZc

    Berggren & Miller(1988) ThisWork

    b

    aP6

    P5P5

    C13n

    C15n

    C16r

    C17r

    C19n

    C18r

    C19r

    C20n

    C20r

    C21n

    C21rC22n

    C22r

    C23r

    C24rC25n

    C24n

    C23n

    C15r

    C16n

    C17n

    C18n

    1

    2n

    1

    23n

    n

    1

    2n

    n

    r

    nr

    n/r

    1

    2n

    nr

    1

    3n2n/r

    nr

    CALCAREOUS NANNOPLANKTON

    Martini (1971)Bukry (1973, 1975)

    NP21

    NP19-20CP15

    NP18

    NP17

    P

    ALEOCENE TIME SCALE

  • 7/21/2019 MarGeol15 Strat

    36/42

    P7

    c

    b

    a

    P4

    P2

    P1

    PLANKTON ZONESFORAMINIFERA

    P& 0

    . /

    .

    . /

    .

    .

    . . /.

    ./

    .

    . .

    . .

    .

    .

    . .

    . .

    . & .

    31

    6

    3

    ./.

    . .

    . .

    &(1988)

    5

    6

    5 .

    1

    2

    1

    3 2/

    (1971) (1973, 1975)

    9

    8

    6

    5

    7

    7

    4

    4

    3

    21

    32

    1

    6

    5

    8

    11

    10

    1012

    9

    TIME(Ma)CHRONS

    51

    52

    53

    54

    55

    56

    57

    58

    59

    60

    61

    62

    63

    64

    65

    66

    67

    68

    C23n

    C23r

    C24n

    C24r

    C25r

    C25n

    C26n

    C27n

    C27r

    C28nC28r

    C29r

    C30n

    C30r

    C31n

    C29n

    C26r

  • 7/21/2019 MarGeol15 Strat

    37/42

  • 7/21/2019 MarGeol15 Strat

    38/42

  • 7/21/2019 MarGeol15 Strat

    39/42

  • 7/21/2019 MarGeol15 Strat

    40/42

  • 7/21/2019 MarGeol15 Strat

    41/42

    GEOLOGICFORMATIONSCORES MAGNETICPOLARITY

    NEWARK BASIN

  • 7/21/2019 MarGeol15 Strat

    42/42

    AGE

    200 Ma

    205

    210

    215

    220

    225

    230E6

    E7

    E8

    E9

    E10

    E11

    E12

    E13

    E14

    E15

    E16

    E17

    E18

    E19

    E20

    E21

    E22

    E5

    E23

    E24 6261

    60

    59

    58

    57

    56

    55

    54

    53

    52

    51

    50

    49

    48

    47

    46

    45

    44

    43

    42

    41

    40

    39

    38

    37

    36

    35

    34

    33

    32

    31

    3029

    28

    27

    26

    25

    24

    23

    22

    21

    20

    19

    18

    17

    16

    15

    14

    13

    12

    11

    10

    98

    7

    6

    5

    4

    3

    2

    1

    CYCLE

    (GPTS)

    MEMBERS

    FORMATIONSCORES

    PREAKNESS

    Pine RidgeTTSSRRQQ

    PPOO

    NNMMLLKK

    II

    Cedar GroveUkrainian

    JJ

    EEDD

    Tumble FallsSmith Corner

    Ewing Creek

    Prahls Island

    Tohicken

    Skunk Hollow

    Nursery

    Byram

    Wilburtha

    Princeton

    T-U

    SR

    Q

    Neshanic

    Livingston

    Kilmer

    Perkasie

    LM

    I

    Walls Island

    EF

    Warford

    K

    C

    FF

    CC

    BBAAZ

    MetlarsY

    Scudders Falls

    Exeter

    Graters

    C u t t a l o s s a

    RaR-1RaR-2

    RaR-3RaR-4RaR-5RaR-6

    RaR-7

    RaR-8

    FELTVILLE

    ORANGE MT.

    TOWACO

    HOOK MT.BOONTON

    MAGNETIC POLARITY

    201 Ma Ar/Ar202 Ma U/Pb*

    PALYNOFLORALZONES (Depth)