mako - an approach to chemical free surface processing for high gradient superconducting rf cavities

25
An Approach to Chemical Free Surface Processing for High Gradient Superconducting RF Cavities Frederick Mako 1 , Ph.D., Bing Xiao 1 , Ph.D. and Larry Phillips 2 , Ph.D., William Clemens 2 1 FM Technologies, Inc., Chantilly, VA, USA, 2 Thomas Jefferson Laboratory, Newport News, VA, USA Work Supported by US DOE under SBIR

Upload: thinfilmsworkshop

Post on 25-Jun-2015

475 views

Category:

Technology


1 download

DESCRIPTION

http://www.surfacetreatments.it/thinfilms An Approach to Chemical Free Surface Processing for High Gradient SRF Cavities (Frederick Mako - 30') Speaker: Frederick Mako - FM Technologies | Duration: 30 min. Abstract Frederick Mako1, Ph.D., Bing Xiao1, Ph.D. and Larry Phillips2, Ph.D. Chemical treatment such as buffered chemical polishing (BCP) or electro polishing (EP) followed by high pressure rinsing (HPR) of niobium (Nb) superconducting RF (SRF) cavities is expensive and complex multistep process. Furthermore, the cavity RF surfaces after the treatment still have numerous bubbles and pits that result from welding. These quench-producing weld defects together with the particulate contamination, result in significant scatter of the multi-cell Nb SRF cavities performance characteristics. This scatter is the major problem in the current manufacturing of the Nb SRF cavities. FM Technologies proposes a new approach to chemical-free processing for multi-cell Nb SRF cavities using an internal electron beam (IEB). Specifically, FMT proposes to develop a new electron gun system that will perform electron beam melting over the entire interior surface of Nb SRF cavities to produce a smooth surface, free from voids, bubbles, and other imperfections. This may allow manufacturing of the Nb SRF cavities with a reduction in the above chemical treatment procedures and increase the cavities high gradient performance. FM Technologies will design, build, test the new IEB system and process samples/cavities and Thomas Jefferson Laboratory will measure RF performance of processed samples/cavities. Preliminary electron beam melting results will be presented. 1FM Technologies, Inc., Chantilly, VA, USA, 2Thomas Jefferson Laboratory, Newport News, VA, USA

TRANSCRIPT

Page 1: Mako - An Approach to Chemical Free Surface Processing for High Gradient Superconducting RF Cavities

An Approach to Chemical Free Surface Processing for High Gradient Superconducting

RF Cavities

Frederick Mako1, Ph.D., Bing Xiao1, Ph.D. and

Larry Phillips2, Ph.D., William Clemens2

1FM Technologies, Inc., Chantilly, VA, USA, 2Thomas Jefferson Laboratory, Newport News, VA, USA

Work Supported by US DOE under SBIR

Page 2: Mako - An Approach to Chemical Free Surface Processing for High Gradient Superconducting RF Cavities

Seven-Cell Nb SRF Cavity at Thomas Jefferson National Accelerator Facility.

Page 3: Mako - An Approach to Chemical Free Surface Processing for High Gradient Superconducting RF Cavities

Pictures Show Typical Defects Occurring Inside The Nb SRF Cavity Cells Around The Equator

EBW Overlaps And Remaining After The Chemical Treatment

Outstanding irregularity (step) near equatorEBW overlap of cell#7 from waveguide.

Many “bubbles” sporadically present inside the weld.

Two other cells have less pronounced feature.Four other cells have no recognizable feature.

Many apparent “deep pits” in heat affected zone.

Electron beam weld

1 mm

Edge of electron beam weld

1 mm

1 mm

1 mm

step

Page 4: Mako - An Approach to Chemical Free Surface Processing for High Gradient Superconducting RF Cavities

Study of Beam Processing for Cavities

Objectives:• Achieve a Smooth Surface with Minimal

Defects and Impurities• Achieve a Low Strain Surface to Reduce

Corrosion• Final Goal is to Attain Reproducible High Q

(>1010) and High Field (40MV/m) Cavities

Page 5: Mako - An Approach to Chemical Free Surface Processing for High Gradient Superconducting RF Cavities

Electron Beam Melted Nb Samples Using J-lab SCIAKY Welder

25 mm

Each single pass melt region is about 6 mm x 74 mm x 0.1-0.2mm deep. A 10 kHz circular to elliptical raster with 0.5 mm diameter 50 keV beam was used.

Beam current and translation rates varied from 20-250mA and 5-20 inches/minute.

28 plates of Nb with dimensions 3 mm thick x 25.4 mm wide x 88.9 mm long.

Page 6: Mako - An Approach to Chemical Free Surface Processing for High Gradient Superconducting RF Cavities

Magnification of Melt Zone

Melted Region

Un-Melted Region

HIROX digital microscope view of sample #6.

The bottom half of the image shows the smooth melted region that highlights the grain size of about 300-400 µm, while the upper half of the image shows the rough un-melted small grain region.

Page 7: Mako - An Approach to Chemical Free Surface Processing for High Gradient Superconducting RF Cavities

Grain Reference Orientation Deviation (GROD) Map for Nb Flat Sample #7

Both samples #6 and #7 show GROD in the range of 0 – 3° over a distance of 100 – 300 μm.

40mA and 10in. /min.

No chemical etching has occurred.

Page 8: Mako - An Approach to Chemical Free Surface Processing for High Gradient Superconducting RF Cavities

Grain Reference Orientation Deviation (GROD) Map for Nb Flat Sample #15

Samples #14 and #15 show less lattice distortion compared to samples #6 and #7 as measured by GROD from 0 – 2° with the majority of the distortion less than 1°over 100 – 300 μm.

40mA and 18in./min.

No chemical etching has occurred.

Page 9: Mako - An Approach to Chemical Free Surface Processing for High Gradient Superconducting RF Cavities

Grain Reference Orientation Deviation (GROD) Map for Nb Pipe Sample #16

The pipe sample #16 that utilized a double low current (24 mA & 18in./min.) e-beam pass also shows compared to samples #6 and #7with very little lattice distortion as indicated by its GROD with the majority of the distortion less than 1° over 100 – 300 μm.

No chemical etching has occurred.

Page 10: Mako - An Approach to Chemical Free Surface Processing for High Gradient Superconducting RF Cavities

Grain Reference Orientation Deviation (GROD) Map for Deep Drawn Half Cell

Courtesy of Dr. Roy Crooks of Black Laboratories

The section is taken from 3 mm from the equator.

The GROD map shows extreme lattice distortion up to an angular rotation of about 20 degrees.

No chemical etching has occurred.

Page 11: Mako - An Approach to Chemical Free Surface Processing for High Gradient Superconducting RF Cavities

Comparison of Grain Deviation for E-Beam Processed Nb vs. Deep Drawn Nb Cell

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 200

10

20

30

40

50

60

70

80

90

100

Deep Drawn

Sample 6

Sample 7

Sample 14

Sample 15

Double Pass

Maximum Grain Orientation Deviation Angle (deg.)

Frac

tion

of G

rain

s at

Max

imum

Dev

iatio

n A

ngle

(%)

Page 12: Mako - An Approach to Chemical Free Surface Processing for High Gradient Superconducting RF Cavities

Comparison of Grain Deviation for Various E-Beam Processed Nb Samples

1 2 30

10

20

30

40

50

60

70

80

90

100

Sample 6

Sample 7

Sample 14

Sample 15

Double Pass

Maximum Grain Orientation Deviation Angle (deg.)

Frac

tion

of G

rain

s at

Max

imum

Dev

iatio

n A

ngle

(%)

Page 13: Mako - An Approach to Chemical Free Surface Processing for High Gradient Superconducting RF Cavities

HIROX Imaging for Sample #15

Sample #15 shows very smooth HIROX and AFM images in the melt zone.

Page 14: Mako - An Approach to Chemical Free Surface Processing for High Gradient Superconducting RF Cavities

AFM of Sample #15

AFM RMS value of less than 3 nm, which is 1/20 of what can be accomplished by electro-polishing.

Page 15: Mako - An Approach to Chemical Free Surface Processing for High Gradient Superconducting RF Cavities

Magnification of Melt Zone

Melted Region

Un-Melted Region

Grain Boundary Step

HIROX digital microscope view of sample #6.

Grain boundary steps show up in higher heating rate samples.

Page 16: Mako - An Approach to Chemical Free Surface Processing for High Gradient Superconducting RF Cavities

AFM of Sample #6 at Grain Boundary

Page 17: Mako - An Approach to Chemical Free Surface Processing for High Gradient Superconducting RF Cavities

Chemical Free Half-Cell Processed in the J-lab E-beam SCIAKY Welder

Electron Gun

Half Cell

Page 18: Mako - An Approach to Chemical Free Surface Processing for High Gradient Superconducting RF Cavities

Finished E-Beam Processed Half-Cell

The beam parameters were: 40 mA, 0.5mm diameter beam, travelling at 18 inches per minute, the melting diameter is about 6 mm with a circular pattern at 10 kHz.

Page 19: Mako - An Approach to Chemical Free Surface Processing for High Gradient Superconducting RF Cavities

Summary of Beam Parameters for A Smooth Low Strain Surface

• Both HIROX & AFM suggest that a smoother surface is attained with lower heating rates

• EBSD (GROD) maps suggest a lower strain surface is attained at lower heating rates

• Desired Beam Parameters are: 50keV, 40mA, 46cm/min. in single pass or 50keV, 24mA,46cm/min. in double pass

Page 20: Mako - An Approach to Chemical Free Surface Processing for High Gradient Superconducting RF Cavities

Electron Gun and Beam Transport Design

• Two Strategies: Ballistic Focusing and Magnetized Beam

CRITERIA:– Can process from iris to equator and the circumference– Prevent Nb vapor arcing– Can tolerate beam induced thermal radiation & filament

heat load– Beam Parameters ~50kV, up to 200mA, spot ~1mm– Focal Length 30-100cm.

Page 21: Mako - An Approach to Chemical Free Surface Processing for High Gradient Superconducting RF Cavities

Ballistic Focusing Gun-For In or Out of Cavity Processing

High Voltage Insulator

Grid Provides 1st Focus, V=-50 to -51kV, Current Not Effected

Anode, V=0

Cathode & Filament,

V=-50kV

Magnetic & Radiative Heat Shield, Water Cooled,V=0

Dipole w Soft Iron Case provides 2nd Focus, V=0

Quadrapole Provides Rastering, Circle or Ellipse, V=0

46mm

Diameter

Page 22: Mako - An Approach to Chemical Free Surface Processing for High Gradient Superconducting RF Cavities

Ballistic Focusing Gun-Electron Beam Trajectory

Helmholtz Coils Provide R-Z Beam Scanning from Iris to Equator.

q Scanning Provided by Rotating either Gun or Cavity or Helmholtz coils on Axis.

Page 23: Mako - An Approach to Chemical Free Surface Processing for High Gradient Superconducting RF Cavities

Magnetized E-Beam Gun

Simple Gun Design Only Needs Cathode, Grid & Anode

Page 24: Mako - An Approach to Chemical Free Surface Processing for High Gradient Superconducting RF Cavities

Magnetized E-Beam Gun-Electron Beam Trajectory

Beam location is dependent on bucking coil position.

50 keV, 50 mA, 3 mm diameter.

Also, beam position can be adjusted by changing the bucking coil current.

Page 25: Mako - An Approach to Chemical Free Surface Processing for High Gradient Superconducting RF Cavities

Summary and Conclusions

• Beam Parameters Have Been Determined to Give a Smooth Low Strain Surface using a Conventional Rastered Beam

• Two Gun Designs Examined (Ballistic & Magnetized Beams) to Meet the Above Beam Conditions With & Without Rastering for Both Internal & External Gun Operation

• Maintaining a Constant Beam Power Density on the Cavity Surface Will Require Computer Controls

• Further Sample Studies are Required Before Gun Selection