making the most of long-range models for av/cv planning

1
Automated Personal Mobility Environment (APME) Driver- Assisted Monitored Fleet Private Common Use Shared Fleet Technology Level 3+ Level 4 Level 4 Level 4 Driver Driver required to take over System monitor required No driver required No driver required Typical Use Automation- available and automation- only areas; requires driver to vehicle control transition Public transit, shuttle services on fixed routes Private ownership, vehicle sharing restricted to small group of authorized users; auto occupancy equivalent to current levels Common-use subscription or general on-demand services; shared vehicles and shared rides Poten7al Opera7ng Environments Capacity Enhancing AV/CV User Op7miza7on TV, Radio Traffic Apps Close Environment Op7miza7on CACC Platooning Lane Assignment User Level Network Assist Departure Time Assist Route Assist Lane Assist Demand Responsive Infrastructure TMC Signal Adjust Automated Personal Mobility Environment DepartureTime Control RouteBased Speed HarmonizaBon Dynamic SignalizaBon VehicleUse OpBmizaBon Increasing Network Control AV/CVs and infrastructure Personal communicaBons and Internet of Things Shared economy and changes in acBvity paJerns Improving Safety/Reliability CoordinaBng Traffic Flow Removing the Driving Task AV/CV Impacts Travel Behavior by: Making the Most of Long-Range Models for AV/CV Planning Thomas A. Williams, Research Scientist, Texas A&M Transportation Institute (t-williams@tti. tamu.edu) Hao Pang, Graduate Assistant Researcher, Texas A&M Transportation Institute ([email protected]) Research Sponsored by: Research Conducted by: Kevin Hall, Research Scientist, Texas A&M Transportation Institute ([email protected]) AV/CV Forecas7ng Challenge TxDOT Research Project 06848: TransportaBon Planning ImplicaBons of Automated/Connected Vehicles AV/CV Modeling Alterna7ves Modeling Results Modeling: Other Impacts Automated/Connected Vehicle technology (AV/CV) is expected to have significant impacts on travel behavior. The potenBal transforma7ve nature of these technologies to alter or influence future travel behavior and demand is quite significant. Accepted approaches to planning and implemenBng transportaBon systems will be challenged. Uncertainty regarding legacy systems, such as fixedroute transit operaBons also exists. Scenarios are being envisioned where AV/CV may drama7cally increase capacity. AV/CV may have unintended consequences, such as altering land use paPerns, and have deep impacts to the choices surrounding mobility. Work is progressing on traffic simula7on models to model AV/CV vehicle interacBon. AcBvitybased models may provide another framework where personal transport choices may be modeled in greater detail needed to determine AV/CV impacts. However, a large majority of the metropolitan planning organizaBons (MPOs) in the United States sBll uBlize tradi7onal three or fourstep tripbased models. How can exis7ng planning tools be used to iniBally address or understand possible outcomes of AV/CV technologies unBl observed data and new demand modeling systems are implemented to address this latest technological innovaBon in personal travel? This team tested various modificaBons of trip generaBon, distribuBon, mode choice, and assignment to indicate poten7al long range impacts of AV/CV. AON CAMPO 2040 scenario, allornothing assignment Baseline Base CAMPO 2040 scenario Baseline S1 CAMPO 2040 + add a lane for Expressways and above Shoulder running, lane width S2 Increase all freeway links to 4000 vphpl Platooning, headway, accel/decel S3 Increase arterials by 10% vphpl Coordinated arrivals, headway, accel/decel S4 ProporBonally move the transit trips to SOV and HOV (2 and 3+ ) RoboTaxi, APME, parBal shared S5 Move all transit trips to SOV only RoboTaxi, APME, 100% private S6 Move transit trips to HOV only RoboTaxi, APME, 100% shared AV/CV longrange modeling experiments using Capital Area Metropolitan Planning OrganizaBon (CAMPO) modeling system 0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% Base S1 S2 S3 S4 S5 S6 AM VMT by V/C Ra7o 0 0.5 0.5 1 1 and above 0 0.5 1 1.5 2 2.5 Base S1 S2 S3 S4 S5 S6 Travel Time Index VHT_AM / VHT_FF_AM Growth AllocaBon (Land Use) Urban Form (Internal Trip Capture) Time of Day Trip Rate and Frequency Trip Length Mobile PopulaBons Freight Trucks Delivery and Commercial Intercity Travel 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 Types of Inaccuracies In Models: Modeling Uncertainty Error = Lack of CalibraBon Data Modeling Error = StaBsBcal EsBmaBon Error Forecast Error = Error in Input Forecast Data

Upload: texas-am-transportation-institute

Post on 16-Apr-2017

194 views

Category:

Technology


2 download

TRANSCRIPT

Page 1: Making the Most of Long-Range Models for AV/CV Planning

Automated  Personal  Mobility  Environment  (APME)  

Driver-Assisted

Monitored Fleet

Private Common Use Shared Fleet

Technology Level 3+ Level 4 Level 4 Level 4 Driver Driver required

to take over System monitor required

No driver required

No driver required

Typical Use

Automation-available and automation-only areas; requires driver to vehicle control transition

Public transit, shuttle services on fixed routes

Private ownership, vehicle sharing restricted to small group of authorized users; auto occupancy equivalent to current levels

Common-use subscription or general on-demand services; shared vehicles and shared rides

Poten7al  Opera7ng  Environments  

Capacity  Enhancing  AV/CV  User  Op7miza7on  •  TV,  Radio  •  Traffic  Apps  Close  Environment  Op7miza7on  •  CACC  •  Platooning  •  Lane  Assignment  User  Level  Network  Assist  •  Departure  Time  Assist  •  Route  Assist  •  Lane  Assist  Demand  Responsive  Infrastructure  •  TMC  Signal  Adjust  Automated  Personal  Mobility  Environment  •  Departure-­‐Time  Control  •  Route-­‐Based  Speed  HarmonizaBon  •  Dynamic  SignalizaBon  •  Vehicle-­‐Use  OpBmizaBon  

Increasing  Network  Co

ntrol  

Ø  AV/CVs  and  infrastructure  Ø  Personal  communicaBons  

and  Internet  of  Things  Ø  Shared  economy  and  

changes  in  acBvity  paJerns  

•  Improving  Safety/Reliability  •  CoordinaBng  Traffic  Flow  •  Removing  the  Driving  Task  

AV/CV  Impacts  Travel  Behavior  by:  

Making the Most of Long-Range Models for AV/CV Planning

Thomas A. Williams, Research Scientist, Texas A&M Transportation Institute (t-williams@tti. tamu.edu)

Hao Pang, Graduate Assistant Researcher, Texas A&M Transportation Institute ([email protected])

Research Sponsored by: Research Conducted by:

Kevin Hall, Research Scientist, Texas A&M Transportation Institute ([email protected])

AV/CV  Forecas7ng  Challenge  

TxDOT  Research  Project  0-­‐6848:  TransportaBon  Planning  ImplicaBons  of  

Automated/Connected  Vehicles  

AV/CV  Modeling  Alterna7ves  

Modeling  Results  

Modeling:  Other  Impacts  

Automated/Connected  Vehicle  technology  (AV/CV)  is  expected  to  have  significant  impacts  on  travel  

behavior.    The  potenBal  transforma7ve  nature  of  these  technologies  to  alter  or  influence  future  travel  behavior  and  demand  is  quite  significant.    

Accepted  approaches  to  planning  and  implemenBng  transportaBon  systems  will  be  

challenged.  Uncertainty  regarding  legacy  systems,  such  as  fixed-­‐route  transit  operaBons  also  exists.    

Scenarios  are  being  envisioned  where  AV/CV  may  drama7cally  increase  capacity.  AV/CV  may  have  unintended  consequences,  such  as  altering  land  use  paPerns,  and  have  deep  impacts  to  the  choices  surrounding  mobility.    

Work  is  progressing  on  traffic  simula7on  models  to  model  AV/CV  vehicle  

interacBon.  AcBvity-­‐based  models  may  provide  another  framework  where  personal  transport  choices  may  be  modeled  in  greater  detail  needed  to  determine  AV/CV  impacts.    However,  a  large  majority  of  the  metropolitan  

planning  organizaBons  (MPOs)  in  the  United  States  sBll  uBlize  tradi7onal  three-­‐    or  four-­‐step  trip-­‐based  models.    

How  can  exis7ng  planning  tools  be  used  to  iniBally  address  or  understand  possible  outcomes  of  AV/CV  technologies  unBl  observed  data  and  new  demand  modeling  systems  are  implemented  to  address  this  latest  technological  innovaBon  in  personal  travel?  This  team  tested  various  modificaBons  of  trip  generaBon,  distribuBon,  mode  

choice,  and  assignment  to  indicate  poten7al  long  range  impacts  of  AV/CV.    

AON   CAMPO  2040  scenario,    all-­‐or-­‐nothing  assignment   Baseline  

Base   CAMPO  2040  scenario   Baseline  

S1  CAMPO  2040  +  add  a  lane  for  Expressways  and  above   Shoulder  running,  lane  width  

S2   Increase  all  freeway  links  to  4000  vphpl   Platooning,  headway,  accel/decel  

S3   Increase  arterials  by  10%  vphpl   Coordinated  arrivals,  headway,  accel/decel  

S4  ProporBonally  move  the  transit  trips  to  SOV  and  HOV  (2  and  3+  )   RoboTaxi,  APME,  parBal  shared  

S5   Move  all  transit  trips  to  SOV  only   RoboTaxi,  APME,  100%  private  

S6   Move  transit  trips  to  HOV  only   RoboTaxi,  APME,  100%  shared  

AV/CV  long-­‐range  modeling  experiments  using  Capital  Area  Metropolitan  Planning  OrganizaBon  (CAMPO)  modeling  system  

0.00%  

10.00%  

20.00%  

30.00%  

40.00%  

50.00%  

60.00%  

70.00%  

Base   S1   S2   S3   S4   S5   S6  

AM  VMT  by  V/C  Ra7o  

0  -­‐  0.5  

0.5  -­‐  1  

1  and  above  

0  

0.5  

1  

1.5  

2  

2.5  

Base   S1   S2   S3   S4   S5   S6  

Travel  Time  Index  

VHT_AM  /  VHT_FF_AM  

Growth  AllocaBon  (Land  Use)  Urban  Form  (Internal  Trip  Capture)  Time  of  Day  Trip  Rate  and  Frequency  Trip  Length  Mobile  PopulaBons  Freight  Trucks  Delivery  and  Commercial  Intercity  Travel  

2010   2015   2020   2025   2030   2035   2040   2045   2050   2055  

Types  of  Inaccuracies  In  Models:  Modeling  Uncertainty  Error  =    Lack  of  CalibraBon  Data  Modeling  Error  =  StaBsBcal  EsBmaBon  Error  Forecast  Error  =  Error  in  Input  Forecast  Data