magnetic field temperature phase diagram of multiferroic

17
Magnetic field temperature phase diagram of multiferroic (NH 4 ) 2 FeCl 5 H 2 O A. J. Clune, K. D. Hughey, A. L. Blockmon, J. L. Musfeldt (UT); J. Nam, M. Lee, J. H. Lee (UNIST); W. Tian, R. S. Fishman (ORNL); J. Fernandez-Baca (ORNL & UT); J. Singleton, M. Lee, V Zapf (LANL) Objectives: explore molecule-based multiferroic (NH 4 ) 2 FeCl 5 ∙H 2 O in high magnetic fields reveal complex B-T phase diagram enable new types of property investigations image of a single crystal

Upload: others

Post on 22-Oct-2021

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Magnetic field temperature phase diagram of multiferroic

Magnetic field – temperature phase diagram

of multiferroic (NH4)2FeCl5∙H2O

A. J. Clune, K. D. Hughey, A. L. Blockmon, J. L. Musfeldt (UT); J. Nam, M. Lee, J. H. Lee (UNIST); W.

Tian, R. S. Fishman (ORNL); J. Fernandez-Baca (ORNL & UT); J. Singleton, M. Lee, V Zapf (LANL)

Objectives:

• explore molecule-based multiferroic (NH4)2FeCl5∙H2O in high magnetic fields

• reveal complex B-T phase diagram

• enable new types of property investigations

image of a single crystal

Page 2: Magnetic field temperature phase diagram of multiferroic

Multifunctional material vs. multiferroics?

Schmidt (1996); Spaldin + Fiebig, Science (2005)

E → P

σ → εH → M

Multifunctional: must combine >1 interesting functionalities

What are they?

ferroelectricity

ferromagnetism ferrotoroidicity

ferroelasticity

Extending this definition to include

non-primary order parameters…

ferrimagnetism antiferromagnetism

Appear in different forms…

single phase

composites

heterostructues

Cross-coupling gives rise to rich phase diagrams!

nanoparticles

Multiferroics: must have >1 primary ferroic order parameter

Page 3: Magnetic field temperature phase diagram of multiferroic

why molecule-based multiferroics?• molecule-based multiferroics

• low energy scales• flexible architecture

• chemical substitution• experimentally accessible fields!

• field-induced transitions to fully-saturated state under-explored

• how to fix this? • develop phase diagrams!• reveal properties

A. Clune, et al., PRB (2017)A. Narayan, et al., Nat. Mater. (2019)

[(CH3)2NH2]Mn(HCOO)3

Page 4: Magnetic field temperature phase diagram of multiferroic

Erythrosiderite (NH4)2FeCl5∙H2O

• space group: Pnma

• Fe+3 = 5/2

• TO/D = 79 K

• TN = 7.25 K

• TFE = 6.9 K

• multiferroic!

• mechanism is curious

(a) (d)(b)

(c)

6.4 6.8 7.20.0

0.5

1.0

1.5

2.0

2.5

J3

J4

J2

J5

-J (

K)

Distance between FeFe (Å)

J1(H

2O)

image of a single crystal

Page 5: Magnetic field temperature phase diagram of multiferroic

oh, the places you will go!

exotic properties emerge when phases compete!

Page 6: Magnetic field temperature phase diagram of multiferroic

Erythrosiderite (NH4)2FeCl5∙H2O

Ackermann, et al, New Journal of Physics (2013)

but what about the high field behavior?

Page 7: Magnetic field temperature phase diagram of multiferroic

Competition between exchange pathways

J1 = -2.51 KJ2 = -1.55 K

J4 = -1.25 K J5 = -0.71 K

J3 = -0.27 K

(a) (d)(b)

(c)

6.4 6.8 7.20.0

0.5

1.0

1.5

2.0

2.5

J3

J4

J2

J5

-J (

K)

Distance between FeFe (Å)

J1(H

2O)

Frustration!

Page 8: Magnetic field temperature phase diagram of multiferroic

Hydro

gen

tate

d, B

|| c

0 10 20 300.0

0.5

1.0

BSat

= 30.3 T

M/M

Sat

Magnetic Field (T)

0.60 K(a)

15 20 25 30

(f)

M

/B

Magnetic Field (T)

0.60 K

1.59 K

2.16 K2.54 K

3.09 K

3.62 K4.12 K

1 2 3 4 5 6

(e)

M

/B

Magnetic Field (T)

0.60 K1.59 K3.09 K4.12 K5.50 K

6.75 K6.25 K

0 10 20 300.0

0.5

1.0 (d)

BSat

= 30.3 T

M/M

Sat

Magnetic Field (T)

0.62 K

0 10 20 300.0

0.5

1.0 (c)

M/M

Sat

Magnetic Field (T)

0.66 K

BSat

= 31.1 T

0 10 20 300.0

0.5

1.0 (b)

BSat

= 30.1 T

M/M

Sat

Magnetic Field (T)

0.62 K

3.0 4.5 6.0

M

/B

Magnetic Field (T)

3.5 4.0 4.5

M

/B

Magnetic Field (T)

3.0 4.5

M

/B

Magnetic Field (T)

3.5 4.0 4.5

M

/B

Magnetic Field (T)

Mag

net

ic f

ield

|| a

Hydrogentated Deuterated

Mag

net

ic f

ield

|| c

Driving to the fully saturated state

• two sets of transitions

• Blow field < 6 T

• BSat ≈ 30 T

• shape consistent with

3D materials

Page 9: Magnetic field temperature phase diagram of multiferroic

Derivatives to reveal magnetic transitions

Hydro

gen

tate

d, B

|| c

0 10 20 300.0

0.5

1.0

BSat

= 30.3 T

M/M

Sat

Magnetic Field (T)

0.60 K(a)

15 20 25 30

(f)

M

/B

Magnetic Field (T)

0.60 K

1.59 K

2.16 K2.54 K

3.09 K

3.62 K4.12 K

1 2 3 4 5 6

(e)

M

/B

Magnetic Field (T)

0.60 K1.59 K3.09 K4.12 K5.50 K

6.75 K6.25 K

0 10 20 300.0

0.5

1.0 (d)

BSat

= 30.3 T

M/M

Sat

Magnetic Field (T)

0.62 K

0 10 20 300.0

0.5

1.0 (c)

M/M

Sat

Magnetic Field (T)

0.66 K

BSat

= 31.1 T

0 10 20 300.0

0.5

1.0 (b)

BSat

= 30.1 T

M/M

Sat

Magnetic Field (T)

0.62 K

3.0 4.5 6.0

M

/B

Magnetic Field (T)

3.5 4.0 4.5

M

/B

Magnetic Field (T)

3.0 4.5

M

/B

Magnetic Field (T)

3.5 4.0 4.5

M

/B

Magnetic Field (T)

Mag

net

ic f

ield

|| a

Hydrogentated Deuterated

Mag

net

ic f

ield

|| c

(a) (d)(b)

(c)

6.4 6.8 7.20.0

0.5

1.0

1.5

2.0

2.5

J3

J4

J2

J5

-J (

K)

Distance between FeFe (Å)

J1(H

2O)

Page 10: Magnetic field temperature phase diagram of multiferroic

J1

J2J4

J5 J3

0 2 4 6 80

5

10

15

20

25

30

35

Mag

net

ic F

ield

(T

)

Temperature (K)0 2 4 6 8

0

5

10

15

20

25

30

35

Mag

net

ic F

ield

(T

)

Temperature (K)0 2 4 6 8

0

5

10

15

20

25

30

35

Mag

net

ic F

ield

(T

)

Temperature (K)A. Clune, et al., npj Quant. Mater. (2019); Ackermann, et al., New Journal of Physics (2013); W. Tian, et al., PRB (2018)

• previous studies only went to 15 T

• transition to fully polarized state at 30.3 T

• linked to J1

J1

J1

Developing the phase diagram (hydrogenated B ║ c)

Page 11: Magnetic field temperature phase diagram of multiferroic

(NH4)2FeCl5.H2O… the full view

A. Clune, et al., npj Quant. Mater. (2019); Ackermann, et al., New Journal of Physics (2013); W. Tian, et al., PRB (2018)

Page 12: Magnetic field temperature phase diagram of multiferroic

electric polarization across the magnetic quantum phase transition?

A

- +

- +

P

B

Pulsed fields = very low noise!

Pulse up to 65 T

Page 13: Magnetic field temperature phase diagram of multiferroic

electric polarization across the magnetic quantum phase transition

consequences of Type II multiferroic:

ferroelectricity derives from magnetic order

Page 14: Magnetic field temperature phase diagram of multiferroic

spin-lattice interactions in multiferroics

[(CH3)2NH2]Mn(HCOO)3 (NH4)2FeCl5∙H2O

U

tJ AFM

2

~

K. D. Hughey, PRB 96, 180305 (2017).

phonon mode links

ferroicities!

?

Page 15: Magnetic field temperature phase diagram of multiferroic

Spin-phonon coupling in Ruby?

NH4 and H2O

librations

Page 16: Magnetic field temperature phase diagram of multiferroic

evaluate coupling constants?

Page 17: Magnetic field temperature phase diagram of multiferroic

What we learned…• able to drive molecular multiferroics into the

fully saturated state at realizable fields

• generated a rich + complex B-T phase diagram

• opens door to exploring high field properties

A. Clune, et. al, npj Quant. Mater. (2019)

We thank

NSF and NHMFL for

support of this work!

(a) (d)(b)

(c)

6.4 6.8 7.20.0

0.5

1.0

1.5

2.0

2.5

J3

J4

J2

J5

-J (

K)

Distance between FeFe (Å)

J1(H

2O)