magnesium-based alloys magnesium is hcp at all temperatures up to its melting point of 649 o c it...

29
M ech 473 Lectures ProfessorR odney H erring

Upload: christopher-pitts

Post on 26-Dec-2015

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Magnesium-based Alloys Magnesium is HCP at all temperatures up to its melting point of 649 o C It has relatively high strength – but limited ductility

Mech 473 Lectures

Professor Rodney Herring

Page 2: Magnesium-based Alloys Magnesium is HCP at all temperatures up to its melting point of 649 o C It has relatively high strength – but limited ductility

Magnesium-based Alloys

Magnesium is HCP at all temperatures up to its melting point of 649 oC

It has relatively high strength – but limited ductility at room temperature

It can be easily worked at high temperatures – i.e., at 400 oC

Mg is a highly reactive metal

It reacts with air and moisture – so must be covered with a flux during melting

For covered crucibles the flux is 20% KCl, 50% Mg2Cl, and 15% CaF2.

For open pots the flux is 55% KCl, 34% Mg2Cl, 9% BaCl2 and 2% CaF2.

- strong reducing agents.

Page 3: Magnesium-based Alloys Magnesium is HCP at all temperatures up to its melting point of 649 o C It has relatively high strength – but limited ductility

Magnesium-based Alloys

Magnesium reacts with the SiO2 in clays to form Mg2Si – but it can be safely melted in iron or graphite crucibles.

To obtain a bright, clean casting – the mold is covered with sulphur boric acid or KBF4.

To dissolve magnesium alloy precipitates, it is solution treated at 390 – 410 oC

If the solution temperature is too high –

1) It will “burn” where low melting grain boundary phases are exuded at the surface.

2) A grey-black powder appears on the surface

3) Internal voids form due to evolution of gaseous phases.

Page 4: Magnesium-based Alloys Magnesium is HCP at all temperatures up to its melting point of 649 o C It has relatively high strength – but limited ductility

General Properties of Mg-Alloys

• The corrosion resistance of Mg alloys is improved by using high purity starting materials and modifying practices with respect to caustic fluxes.

• Mg alloys are still susceptible to corrosion in salt atmospheres – a problem for “mag” wheels in snow belt regions – and for marine applications.

• Aircraft are not so critical – but low flying over the ocean – or the use of reactive de-icing fluids – can create problems

Page 5: Magnesium-based Alloys Magnesium is HCP at all temperatures up to its melting point of 649 o C It has relatively high strength – but limited ductility

General Properties of Mg-Alloys

• Mg is also “notch sensitive” – so care has to be taken in design to remove sharp corners – and abrupt changes in section

• Mg has excellent machining properties - but poor machining practice can introduce severe notch brittle effects

• Mg has a modulus of elasticity of 45 GPa – compared to 71 GPa for Al and 200 GPa for steel

Page 6: Magnesium-based Alloys Magnesium is HCP at all temperatures up to its melting point of 649 o C It has relatively high strength – but limited ductility

General Properties of Mg-Alloys• Mg density is 1.8 g/cm – compared to 2.8 g/cm for Al and 7.9 g/cm for steel – on a mass basis, Mg has the greatest stiffness/weight – and steel the least

• Mg is relatively difficult to weld – as it must be protected from the atmosphere by an inert gas – using a tungsten arc or consumable Mg

• It can be welded - like Al – using a gas torch with suitable flux – for temporary repairs in the field.

Page 7: Magnesium-based Alloys Magnesium is HCP at all temperatures up to its melting point of 649 o C It has relatively high strength – but limited ductility

Mg-Al Alloy SystemAl is soluble up in Mg up to ~12.6 wt%

Alloys containing up to 3 wt% Al are solution strengthened

Alloys with 6-9 wt% Al can be precipitation hardened

Page 8: Magnesium-based Alloys Magnesium is HCP at all temperatures up to its melting point of 649 o C It has relatively high strength – but limited ductility

Mg-Al Alloy SystemAt 437 oC Mg forms a eutectic with an intermediate phase –

which has a mean composition of 32 wt%Al – or 33 at%Al – Its chemical formula is actually Mg17Al12

As is brittle - the eutectic is also brittle – as is the major constituent – the eutectic contains 71.4% and 28.6% Mg

Page 9: Magnesium-based Alloys Magnesium is HCP at all temperatures up to its melting point of 649 o C It has relatively high strength – but limited ductility

Mg-Zn Alloy SystemZn is soluble in Mg up to 8.4 wt%

At 341 oC Mg forms a eutectic with an intermediate phase MgZn – which has a mean composition of 54 wt%Zn

As MgZn is brittle – the eutectic is also brittle – as MgZn is the major constituent

Page 10: Magnesium-based Alloys Magnesium is HCP at all temperatures up to its melting point of 649 o C It has relatively high strength – but limited ductility

Mg-Zn Alloy SystemThe eutectic contains 71% and 29% Mg

Page 11: Magnesium-based Alloys Magnesium is HCP at all temperatures up to its melting point of 649 o C It has relatively high strength – but limited ductility

Mg-Mn Alloy System

Mn is soluble in Mg up to 3.4 wt%

The Mg phase forms by a peritectic reaction at 652 oC.

As there are no intermediate phases for precipitation hardening – Mg-Mn alloys are strengthened by solid solution hardening alone.

Page 12: Magnesium-based Alloys Magnesium is HCP at all temperatures up to its melting point of 649 o C It has relatively high strength – but limited ductility

ASTM Designation for Mg Alloys1. Two capital letters indicate the two principal alloying elements.

A Aluminium M Manganese

B Bismuth N Nickel

C Copper P Lead

D Cadium Q Silver

E Rare Earth R Chromium

F Iron S Silicon

H Thorium T Tin

K Zirconium Z Zinc

L Beryllium

Page 13: Magnesium-based Alloys Magnesium is HCP at all temperatures up to its melting point of 649 o C It has relatively high strength – but limited ductility

ASTM Designation for Mg Alloys2. Two digits indicate the rounded off percentages of the alloying elements, e.g., AZ63 = Mg + 6%Al + 3%Zn

3. A following capital letter – indicates the chronological order of an alloy – with the same major constituents – but with different minor elements.

4. A letter and number – indicate condition and properties

F As fabricated

O Annealed

H10, H11 Slightly strain hardened

H23, F24, H26 Strain harden and partially annealed

T4 Solution treated

T5 Artificially aged

T6 Heat treated and artificially aged

Similar to Al alloys

Page 14: Magnesium-based Alloys Magnesium is HCP at all temperatures up to its melting point of 649 o C It has relatively high strength – but limited ductility

Compositions of Mg-Alloys

Mg – Mn (1.2 – 1.5%) – solution hardening

Mg – Al (3-6%) + Zn (0.4 – 1.5%) – solution hardening

Mg – Al (6 – 10%) + Zn (2 -3%) – precipitation hardening

Mg – Zn (3.5 – 6.5%) + Zr (0.55 – 1.0%) – precipitation hardening

Mg – Rare Earths* (0.75 – 1.75%) + Zn (3.5 – 5.0%) + Zr (0.4 – 1.0%) – precipitation hardening

Mg – Ce (6%) – precipitation hardening

These alloys are solution treated at 390 – 410 oC and then air cooled.

Due to the low melting temperature – this allows ageing at room temperature, i.e., natural ageing – after solution treatment – they do not have to be tempered.

* - Mo, Nb, Ta, W

Page 15: Magnesium-based Alloys Magnesium is HCP at all temperatures up to its melting point of 649 o C It has relatively high strength – but limited ductility

We will discuss these alloys in turn

*

•- as fabricated** - artificially aged

**

Page 16: Magnesium-based Alloys Magnesium is HCP at all temperatures up to its melting point of 649 o C It has relatively high strength – but limited ductility

Wrought Mg-Alloys

• All solid solution Mg alloys can be hot forged at 300 – 400 oC in hydraulic presses – rather like hammers.• Extrusions can also be made from all alloys – to obtain a fine grain size extrusions are made from very fine pellets• M 1A, AZ31B and AZ61A – can be rolled into sheet at temperatures ~200 oC• These alloys are not heat treatable.

Page 17: Magnesium-based Alloys Magnesium is HCP at all temperatures up to its melting point of 649 o C It has relatively high strength – but limited ductility

Wrought Mg-Alloys

• AZ80A and ZK60A are effectively solution treated after forging – because of the hot working temperature is close to 400 oC – so precipitation hardening during subsequent aging at room temperature occurs.• AZ80A and ZK60A are used for “high” temperature ~150 oC – applications• ZK60A – T5 –contains no Al – so is more expensive – but has greater strength and ductility than AZ80A.

Page 18: Magnesium-based Alloys Magnesium is HCP at all temperatures up to its melting point of 649 o C It has relatively high strength – but limited ductility

Microstructures of Mg-Alloys - 1

AZ31 Alloy – Annealed after hot working

AZ31 Alloy – cold rolled into sheet – work hardened

Page 19: Magnesium-based Alloys Magnesium is HCP at all temperatures up to its melting point of 649 o C It has relatively high strength – but limited ductility

Microstructures of Mg-Alloys - 2

M 1A Alloy – Annealed

Particles in grain boundaries are impurities

Page 20: Magnesium-based Alloys Magnesium is HCP at all temperatures up to its melting point of 649 o C It has relatively high strength – but limited ductility

Microstructures of Mg-Alloys - 2

ZK60 Alloy – Extruded from pellets

To obtain fine grain size (0.001 mm)

Page 21: Magnesium-based Alloys Magnesium is HCP at all temperatures up to its melting point of 649 o C It has relatively high strength – but limited ductility

Sand Cast Mg-Alloys• Mg reacts with SiO2 – causing the skin of the casting to be blackened (oxidized) to an appreciable depth below the surface.• To obtain a bright surface – “inhibitors” – such as sulphur, boric acid or KBF4 – are mixed with the molding sand.• The reactive nature of Mg also means that sand cast alloys are subject to microporosity – caused by evolution of hydrogen* – with a consequent deterioration of its mechanical properties• Insoluble gases – such as He and Cl – are bubbled through the melt before casting to remove reactive gases such as H.• * - similar to Al alloys

Page 22: Magnesium-based Alloys Magnesium is HCP at all temperatures up to its melting point of 649 o C It has relatively high strength – but limited ductility

Sand Cast Mg-Alloys• It is also evident from the phase diagrams that sand cast alloys will contain brittle networks of eutectic constituents• To improve the ductility of these castings they can be solution treated to dissolve the eutectic constituents – and this treatment also increases the tensile strength• Aging a solution-treated alloy strongly increases the yield point – and slightly lowers the ductility – but has relatively little effect on the ultimate strength• Increasing the amount of Al increases the strength – compared AZ63 with AZ92 – but lowers the casting quality and increases the amount of microporosity• The stronger Mg-Zn-Zr alloys are also more difficult to cast.

Page 23: Magnesium-based Alloys Magnesium is HCP at all temperatures up to its melting point of 649 o C It has relatively high strength – but limited ductility

Microstructures of Sand Cast Mg-Alloys - 1

Grain boundary constituent is Mg17Al12

Grain boundary constituent is local Mg17Al12

Page 24: Magnesium-based Alloys Magnesium is HCP at all temperatures up to its melting point of 649 o C It has relatively high strength – but limited ductility

Microstructures of Sand Cast Mg-Alloys - 2

EM62 Alloy – As Cast

The eutectic constituent is Mg9Ce

AZ91B Die Casting Alloy – As CastThe Mg17Al12 eutectic is very fine because of chill casting

Page 25: Magnesium-based Alloys Magnesium is HCP at all temperatures up to its melting point of 649 o C It has relatively high strength – but limited ductility

Die Cast Mg-Alloys• Die cast alloys have excellent dimensional tolerances – and can be formed in complicated shapes as the liquid is forced into a steel mold under pressure.

• Alloy AM60A is used for auto wheels.

• Alloy AS41A is used for crankcases for air cooled engines like VWs

• AZ91B is a general purpose alloy – recently used for dash boards in GM trucks

Die cast alloys are significantly stronger than sand cast alloys – as they are not susceptible to microporosity.

Page 26: Magnesium-based Alloys Magnesium is HCP at all temperatures up to its melting point of 649 o C It has relatively high strength – but limited ductility

Mechanical Properties of Mg-Alloys(intermediate step)

Page 27: Magnesium-based Alloys Magnesium is HCP at all temperatures up to its melting point of 649 o C It has relatively high strength – but limited ductility

Effect of Grain Size on Mechanical Properties

• Superheating Mg-Al alloys to about 250 oC above the melting point just before casting refines the grain size and improves the strength.Note: This is the only metal that can be grain refined by superheating – usually it has the opposite effect!

Page 28: Magnesium-based Alloys Magnesium is HCP at all temperatures up to its melting point of 649 o C It has relatively high strength – but limited ductility

Effect of Grain Size on Mechanical Properties

The grain size can also be refined by applying one of the following treatments at 760 oC – i.e., just before casting:

1) Vigorous stirring2) Bubbling acetylene, methane, propane or

carbon tetrachloride3) Stirring in 0.003% carbon – as graphite or

lamp black – or Al4C3.

Page 29: Magnesium-based Alloys Magnesium is HCP at all temperatures up to its melting point of 649 o C It has relatively high strength – but limited ductility

The End

Any questions or comments?