mae 331 lecture 14

Upload: chegrani-ahmed

Post on 04-Apr-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/30/2019 Mae 331 Lecture 14

    1/8

    Linearized Lateral-Directional

    Equations of MotionRobert Stengel, Aircraft Flight Dynamics MAE

    331, 2008

    Spiral, Dutch roll, and roll modes

    Stability derivatives

    Roll-mode responseof roll angle

    Spiral-moderesponse ofcrossrange

    Spiral-mode responseof yaw angle

    Dutch-roll-mode responseof side velocity

    Dutch-roll-moderesponse of rolland yaw rates

    Copyright 2008 by Robert Stengel. All rights reserved. For educati onal use only.http://www.princeton.edu/~stengel/MAE331.html

    http://www.princeton.edu/~stengel/FlightDynamics.html

    6-Component

    Lateral-Directional

    Equations of Motion

    State Vector,6 components

    Nonlinear Dynamic Equations

    v =Y/m + gsin"cos#$ ru+ pw

    yI = cos#sin%( )u+ cos"cos%+ sin"sin#sin%( )v + $sin"cos%+ cos"sin#sin%( )w

    p = IzzL + I

    xzN$ I

    xzIyy$I

    xx$I

    zz( )p + Ixz2 + Izz Izz $Iyy( )[ ]r{ }q( ) IxxIzz $Ixz2( )r = I

    xzL + I

    xxN$ I

    xzIyy$I

    xx$I

    zz( )r + Ixz2 + Ixx Ixx $Iyy( )[ ]p{ }q( ) IxxIzz $Ixz2( )"= p + qsin"+ rcos"( )tan#%= qsin"+ rcos"( )sec#

    x1

    x2

    x3

    x4

    x5

    x6

    "

    #

    $$$$$$$

    %

    &

    '''''''

    = xLD6

    =

    v

    y

    p

    r

    (

    )

    "

    #

    $$$$$$$

    %

    &

    '''''''

    =

    SideVelocity

    Crossrange

    Body * Axis Roll Rate

    Body * AxisYaw Rate

    Roll Angle about Body x Axis

    Yaw Angle about Inertial x Axis

    "

    #

    $$$$$$$

    %

    &

    '''''''

    4- Component

    Lateral-Directional

    Equations of Motion

    State Vector,

    4 components

    Nonlinear Dynamic Equations, neglecting crossrange and yaw angle

    v =Y/m + gsin"cos#$ ru+ pw

    p = IzzL + I

    xzN$ I

    xzIyy$I

    xx$I

    zz( )p+ Ixz2+ I

    zzIzz$I

    yy( )[ ]r{ }q( ) IxxIzz $Ixz2( )r = I

    xzL + I

    xxN$ I

    xzIyy$I

    xx$I

    zz( )r + Ixz2+ I

    xxIxx$I

    yy( )[ ]p{ }q( ) IxxIzz $Ixz2( )"= p+ qsin"+ rcos"( ) tan#

    x1

    x2

    x3

    x4

    "

    #

    $$$$

    %

    &

    ''''

    = xLD4

    =

    v

    p

    r

    (

    "

    #

    $$$$

    %

    &

    ''''

    =

    Side Velocity

    Body ) Axis Roll Rate

    Body ) AxisYaw Rate

    Roll Angle about Body x Axis

    "

    #

    $$$$

    %

    &

    ''''

    4- Component

    Lateral-Directional

    Equations of Motion

    State Vector, 4components

    Nonlinear Dynamic Equations, assuming steady, level, longitudinal flight

    (constant longitudinal variables)

    v =YB /m + gsin"cos#N $ ruN+ pwN

    =YB /m + gsin"cos%N $ ruN + pwN

    p =IzzLB + IxzNB( )IxxIzz $Ixz

    2( )

    r =IxzLB + IxxNB( )IxxIzz $Ixz

    2( )"= p+ rcos"( )tan#N = p+ rcos"( )tan%N

    x1

    x2

    x3x

    4

    "

    #

    $$

    $

    $

    %

    &

    ''

    '

    '

    = xLD4=

    v

    p

    r(

    "

    #

    $$

    $

    $

    %

    &

    ''

    '

    '

    =

    SideVelocity

    Body ) Axis Roll Rate

    Body ) AxisYaw RateRoll Angle about Body x Axis

    "

    #

    $$

    $

    $

    %

    &

    ''

    '

    '

    qN = 0

    "N = 0

    #N =

    $N

  • 7/30/2019 Mae 331 Lecture 14

    2/8

    Lateral-Directional

    Force and Moments

    YB = CYB1

    2"NVN

    2S; Body # Axis Side Force

    LB =

    ClB

    1

    2"NVN

    2Sb; Body # Axis Rolling Moment

    NB =

    CnB

    1

    2"NVN

    2Sb; Body # AxisYawing Moment

    Body-Axis Perturbation

    Equations of Motion

    "xLD

    (t) = FLD"x

    LD(t) +G

    LD"u

    LD(t) + L

    LD"w

    LD(t)

    dim("x) = 4 #1

    dim("u) = 2#1

    dim("w) = 2#1

    "v(t)

    "p(t)

    "r(t)

    "#(t)

    $

    %

    &&&&

    '

    (

    ))))

    =

    *f1

    *v

    *f1

    *p

    *f1

    *r

    *f1

    *#*f2*v

    *f2*p

    *f2*r

    *f2*#

    *f3*v

    *f3*p

    *f3*r

    *f3*#

    *f4*v

    *f4*p

    *f4*r

    *f4*#

    $

    %

    &&&&&&&&

    '

    (

    ))))))))

    "v(t)

    "p(t)

    "r(t)

    "#(t)

    $

    %

    &&&&

    '

    (

    ))))

    +

    *f1

    *+A

    *f1

    *+R*f2*+A

    *f2*+R

    *f3*+A

    *f3*+R

    *f4

    *+A

    *f4

    *+R

    $

    %

    &&&&&&&&

    '

    (

    ))))))))

    "+A(t)

    "+R(t)

    $

    %&

    '

    ()+

    *f1*vwind

    *f1*pwind

    *f2*vwind

    *f2*pwind

    *f3*vwind

    *f3*pwind

    *f4*vwind

    *f4*pwind

    $

    %

    &&&&&&&&&

    '

    (

    )))))))))

    "vwind"pwind

    $

    %&

    '

    ()

    "u1

    "u2

    #

    $%

    &

    '(=

    ")A

    ")R

    #

    $%

    &

    '(=

    Aileron Perturbation

    Rudder Perturbation

    #

    $%

    &

    '(

    "w1

    "w2

    #

    $%

    &

    '(=

    ")A

    ")R

    #

    $%

    &

    '(=

    SideWind Perturbation

    VorticalWind Perturbation

    #

    $%

    &

    '(

    Perturbations from wings-level flight

    vN = 0; pN = 0; rN = 0; "N = 0

    Typical

    Lateral-Directional Initial-Condition

    Linearized Response

    Roll-mode responseof roll angle

    Spiral-moderesponse ofcrossrange

    Spiral-moderesponse of yawangle

    Dutch-roll-mode responseof side velocity

    Dutch-roll-moderesponse of rolland yaw rates

    Dimensional Stability-and-

    Control Derivatives

    "f1"v

    "f1"p

    "f1"r

    "f1"#

    "f2

    "v

    "f2

    "p

    "f2

    "r

    "f2

    "#

    "f3

    "v

    "f3

    "p

    "f3

    "r

    "f3

    "#

    "f4

    "v

    "f4

    "p

    "f4

    "r

    "f4

    "#

    $

    %

    &&&&&&&&

    '

    (

    ))))))))

    =

    Yv Yp + wN( ) Yr * uN( ) gcos+NLv Lp Lr 0

    Nv Np Nr 0

    0 1 tan+N 0

    $

    %

    &&&&

    '

    (

    ))))

    "f1

    "#A

    "f1

    "#R"f

    2

    "#A

    "f2

    "#R"f

    3

    "#A

    "f3

    "#R"f

    4

    "#A

    "f4

    "#R

    $

    %

    &&&&&&&

    &

    '

    (

    )))))))

    )

    =

    Y#A

    Y#R

    L#A L#R

    N#A N#R

    0 0

    $

    %

    &&&&

    '

    (

    ))))

    "f1

    "vwind

    "f1

    "pwind"f

    2

    "vwind

    "f2

    "pwind"f

    3

    "vwind

    "f3

    "pwind"f

    4

    "vwind

    "f4

    "pwind

    #

    $

    %%%%%%%%

    %

    &

    '

    ((((((((

    (

    =

    Yv Yp

    Lv Lp

    Nv Np

    0 0

    #

    $

    %%%%

    &

    '

    ((((

    StabilityMatrix

    ControlEffect Matrix

    DisturbanceEffect Matrix

    v

    p

    r

    "

    #

    $

    %%%%

    &

    '

    ((((

    =

    SideVelocity

    Body ) Axis Roll Rate

    Body ) AxisYaw Rate

    Roll Angle about Body x Axis

    #

    $

    %%%%

    &

    '

    ((((

  • 7/30/2019 Mae 331 Lecture 14

    3/8

    "v(t)

    "p(t)

    "r(t)

    "#(t)

    $

    %

    &&&&

    '

    (

    ))))

    =

    Yv Yp + wN( ) Yr * uN( ) gcos+NLv Lp Lr 0

    Nv Np Nr 0

    0 1 tan+N 0

    $

    %

    &&&&

    '

    (

    ))))

    "v(t)

    "p(t)

    "r(t)

    "#(t)

    $

    %

    &&&&

    '

    (

    ))))

    +

    Y,A Y,R

    L,A L,R

    N,A N,R

    0 0

    $

    %

    &&&&

    '

    (

    ))))

    ",A(t)

    ",R(t)

    $

    %&

    '

    ()+

    Yv Yp

    Lv Lp

    Nv Np

    0 0

    $

    %

    &&&&

    '

    (

    ))))

    "vwind"pwind

    $

    %&

    '

    ()

    "#A

    "#R

    $

    %&

    '

    ()=

    Aileron Perturbation

    Rudder Perturbation

    $

    %&

    '

    ()

    "#A

    "#R

    $

    %&

    '

    ()=

    Side Wind Perturbation

    VorticalWind Perturbation

    $

    %&

    '

    ()

    Rolling and yawing motions

    "v

    "p

    "r

    "#

    $

    %

    &&&&

    '

    (

    ))))

    =

    SideVelocity Perturbation

    Body * Axis Roll Rate Perturbation

    Body * AxisYaw Rate Perturbation

    Roll Angle about Body x Axis Perturbation

    $

    %

    &&&&

    '

    (

    ))))

    Body-Axis Perturbation

    Equations of MotionStability Axes

    Alternative set of body axes

    Nominal xaxis is offset from the body centerline bythe nominal angle of attack, N

    Transformation from

    Original Body Axes to

    Stability Axes

    HB

    S=

    cos"N

    0 sin"N

    0 1 0

    #sin"N

    cos"N

    $

    %

    &&&

    '

    (

    )))

    "u

    "v

    "w

    #

    $

    %%%

    &

    '

    (((S

    =HB

    S

    "u

    "v

    "w

    #

    $

    %%%

    &

    '

    (((B

    "p

    "q

    "r

    #

    $

    %%%

    &

    '

    (((S

    = HBS

    "p

    "q

    "r

    #

    $

    %%%

    &

    '

    (((B

    Side velocity ( v) and pitch rate ( q) are unchanged by the transformation

    Stability-Axis Lateral-

    Directional Equations

    Rotate body axes to stability axes

    Replace side velocity by sideslip angle Revise state order

    "#$"v

    VN

    "v(t)

    "p(t)

    "r(t)

    "#(t)

    $

    %

    &&&&

    '

    (

    ))))Body*Axis

    +

    "v(t)

    "p(t)

    "r(t)

    "#(t)

    $

    %

    &&&&

    '

    (

    ))))Stability*Axis

    +

    ",(t)

    "p(t)

    "r(t)

    "#(t)

    $

    %

    &&&&

    '

    (

    ))))Stability*Axis

    +

    "r(t)

    ",(t)

    "p(t)

    "#(t)

    $

    %

    &&&&

    '

    (

    ))))Stability*Axis

  • 7/30/2019 Mae 331 Lecture 14

    4/8

    Stability-Axis Lateral-

    Directional Equations

    "r(t)

    "#(t)"p(t)

    "$(t)

    %

    &

    ''''

    (

    )

    ****S

    =

    Nr N# Np 0

    Yr

    VN+1

    ,

    -.

    /

    01

    Y#

    VN

    Yp

    VN

    gcos2NVN

    Lr L# Lp 0

    tan2N 0 1 0

    %

    &

    '''''

    (

    )

    *****S

    "r(t)

    "#(t)

    "p(t)

    "$(t)

    %

    &

    ''''

    (

    )

    ****S

    +

    N3A N3RY3A

    VN

    Y3R

    VNL3A L3R

    0 0

    %

    &

    '''''

    (

    )

    *****S

    "3A(t)

    "3R(t)

    %

    &'

    (

    )*+

    N# NpY#

    VN

    Yp

    VNL# Lp

    0 0

    %

    &

    '''''

    (

    )

    *****S

    "#wind"pwind

    %

    &'

    (

    )*

    "x1

    "x2

    "x3

    "x4

    #

    $

    %%%%

    &

    '

    ((((

    =

    "r

    ")

    "p

    "*

    #

    $

    %%%%

    &

    '

    ((((

    =

    Stability+ AxisYaw Rate Perturbation

    Sideslip Angle Perturbation

    Stability+ Axis Roll Rate Perturbation

    Stability+ Axis Roll Angle Perturbation

    #

    $

    %%%%

    &

    '

    ((((

    Why Modify the Equations?

    Dutch-roll mode is primarily described by stability-axis yawrate and sideslip angle

    Roll and spiral mode are primarily described by stability-axisroll rate and roll angle

    Linearized equations allow the three modes to be studied

    Stable Spiral

    Unstable Spiral

    Roll

    Dutch Roll, top Dutch Roll, front

    Why Modify the

    Equations?

    FLD

    =

    FDR

    FRS

    DR

    FDR

    RSFRS

    "

    #$

    %

    &'=

    FDR

    small

    small FRS

    "

    #$

    %

    &'(

    FDR

    ~ 0

    ~ 0 FRS

    "

    #$

    %

    &'

    Effects of Dutch roll perturbations

    on Dutch roll motion

    Effects of Dutch roll perturbations

    on roll-spiral motion

    Effects of roll-spiral perturbationson Dutch roll motion

    Effects of roll-spiral perturbations on

    roll-spiral motion

    ... but are the off-diagonal blocks really small?

    Stability, Control, and

    Disturbance Matrices

    FLD =FDR

    FRS

    DR

    FDR

    RSFRS

    "

    #$

    %

    &'=

    Nr

    N( Np 0

    Yr

    VN

    )1*

    +, -

    ./ Y

    (

    VN

    Yp

    VN

    gcos0NVN

    Lr

    L( Lp 0

    tan0N 0 1 0

    "

    #

    $$$$$

    %

    &

    '''''

    GLD

    =

    N"A

    N"R

    Y"A

    VN

    Y"R

    VN

    L"A

    L"R

    0 0

    #

    $

    %%%%%

    &

    '

    (((((

    LLD

    =

    N" NpY"

    VN

    Yp

    VN

    L" Lp

    0 0

    #

    $

    %%%%%

    &

    '

    (((((

    "x1"x

    2

    "x3

    "x4

    #

    $

    %%%%

    &

    '

    ((((

    =

    "r")

    "p

    "*

    #

    $

    %%%%

    &

    '

    ((((

    "u1

    "u2

    #

    $%

    &

    '(=

    ")A

    ")R

    #

    $%

    &

    '(

    "w1

    "w2

    #

    $%

    &

    '(=

    ")A

    ")R

    #

    $%

    &

    '(

  • 7/30/2019 Mae 331 Lecture 14

    5/8

    Second-Order Models of

    Lateral-Directional Motion

    Approximate LTI Spiral-Roll Equation

    Approximate LTI Dutch Roll Equation

    "xDR

    =

    "r

    "#$

    %&

    '

    ()*

    Nr

    N#

    Yr

    VN

    +1,

    -.

    /

    01

    Y#

    VN

    $

    %

    &&&

    '

    (

    )))

    "r

    "#

    $

    %&

    '

    ()+

    N2R

    Y2R

    VN

    $

    %

    &&

    '

    (

    ))"2R +

    N#

    Y#

    VN

    $

    %

    &&

    '

    (

    ))"#

    wind

    "xRS ="p

    "#$

    %&

    '

    ()*

    Lp 0

    1 0

    $

    %&

    '

    ()"p

    "#

    $

    %&

    '

    ()+

    L+A

    0

    $

    %&

    '

    ()"+A +

    Lp

    0

    $

    %&

    '

    ()"pwind

    2nd-order-model eigenvalues are close to those of the 4th-order model

    Eigenvalue magnitudes of Dutch roll and roll roots are similar

    Fourth- and Second-

    Order Models and

    Eigenvalues

    Fourth-Order ModelF = G = Eigenvalue Damping Freq. (rad/s)

    -0.1079 1.9011 0.0566 0 0 -1.1196 0.00883-1 -0.1567 0 0.0958 0 0 -1.2

    0.2501 -2.408 -1.1616 0 2.3106 0 -1.16e-01 + 1.39e+00j 8.32E-02 1.39E+000 0 1 0 0 0 -1.16e-01 - 1.39e+00 8.32 -02 1.39 +00

    Dutch Roll ApproximationF = G = Eigenvalue Damping Freq. (rad/s)

    -0.1079 1.9011 -1.1196 -1.32e-01 + 1.38e+00 9.55 -02 1.38 +00-1 -0.1567 0 -1.32e-01 - 1.38e+00 9.55 -02 1.38 +00

    Roll-Spiral Approximation= = genva ue amp ng req. rad s

    -1.1616 0 2.3106 01 0 0 -1.16

    Comparison of Second- and Fourth-Order

    Initial-Condition Responses of Business Jet

    Fourth-Order Response Second-Order Response

    Speed and damping of responses is adequately portrayed by 2nd-order models

    Roll-spiral modes have little effect on yaw rate and sideslip angle responses

    Dutch roll mode has large effect on roll rate and roll angle responses

    Approximate

    Dutch Roll Mode

    "r

    "#$

    %&

    '

    ()=

    Nr

    N#

    Yr

    VN

    *1+

    ,-

    .

    /0

    Y#

    VN

    $

    %

    &&&

    '

    (

    )))

    "r

    "#

    $

    %&

    '

    ()+

    N1R

    Y1R

    VN

    $

    %

    &&

    '

    (

    ))"1R

    "DR

    (s) = s2 # N

    r+

    Y$VN

    %

    &'

    (

    )*s+ N$ 1#

    Yr

    VN

    %&'

    ()*+ N

    r

    Y$VN

    +

    ,-.

    /0

    1nDR

    = N$ 1#Yr

    VN

    %&'

    ()*+ N

    r

    Y$

    VN

    2DR

    = # Nr+

    Y$VN

    %

    &'

    (

    )* 2 N$ 1#

    Yr

    VN

    %&'

    ()*+ N

    r

    Y$VN

    "nDR

    = N# + Nr

    Y#

    VN

    $DR

    = % Nr+

    Y#

    VN

    &

    '(

    )

    *+ 2 N# + Nr

    Y#

    VN

    With negligible Yr

    Characteristicpolynomial,natural frequency,and damping ratio

  • 7/30/2019 Mae 331 Lecture 14

    6/8

    Weathercock Stability: Yaw Acceleration

    Sensitivity to Sideslip Angle,N

    N" #$C

    n

    $"

    %V2

    2

    &

    '(

    )

    *+Sb

    Izz

    =Cn"

    %V2

    2

    &

    '(

    )

    *+Sb

    Izz

    Vertical tail, fuselage, and wing are principalcontributors to directional stability Side force contributions times respective moment arms

    Non-dimensional stability derivative

    > 0 for stability

    Dimensional stability derivative

    Cn" # Cn"( )Vertical Tail + Cn"( )Fuselage + Cn"( )Wing + Cn"( )Propeller

    Contributions to

    Directional Stability,N

    Cn"( )Fuselage =

    #2K VolumeFuselage

    Sb

    K= 1"dmax

    Lengthfuselage

    #

    $%

    &

    '(

    1.3

    Cn"( )Vertical Tail # aFin$vt

    SFin

    lvt

    Sb= a

    Fin$

    vtV

    vt

    Vertical tail

    Vvt=

    SFin

    lvt

    Sb=Vertical TailVolume Ratio

    Fuselage

    "vt="

    elas1+ #$

    #%&'( )

    *+V

    Tail

    2

    VN

    2

    &

    '(

    )

    *+

    aFin= () Lift slope of isolated finreferenced to fin area, SFin

    VTail= Airspeed at vertical tail;scrubbing lowers VTail,propeller slipstreamincreases VTail

    , Sidewash: Deflection of flow

    from freestream direction dueto wing-fuselage interference

    Contributions to

    Directional Stability,N

    Cn"( )Wing = 0.75CLN#+ fcn $,AR,%( )CLN2

    Cn"( )Propeller Propeller fin effect Function of blade geometry,

    number of blades, thrustcoefficient, and advance ratio

    J= V/nd

    n= rpm

    d= propeller diameter

    " = Sweep angleAR= Aspect ratio$=Taper ratio%= Dihedral angle

    Wing Differential drag

    Interference effects

    see NACA-TR-819

    Side Acceleration Sensitivity

    to Sideslip Angle, Y

    Side-force sensitivity tosideslip angle, Y

    Y" # CY"$V2

    2m

    %&'

    ()*S

    CY" # CY"( )Fuselage + CY"( )Vertical Tail + CY"( )Wing

    CY"( )Vertical Tail # aFin$vtS

    Fin

    S

    CY"( )Fuselage # %2

    SBaseS; SB =

    &dBase2

    4

    CY"( )Wing =%CDParasite, Wing % k'2

    k="AR

    1+ 1+ AR2

    Fuselage, vertical tail, and wing are principal contributors

  • 7/30/2019 Mae 331 Lecture 14

    7/8

    Yaw Damping Due to

    Yaw Rate, Nr

    Cn r " Cn r( )Vertical Tail + Cn r( )Wing

    Cn r

    ( )Wing

    = k0C

    L

    2

    + k1CDParasite,Wing

    k0and k1 are functions of aspectratio and sweep angle

    Wing contribution

    Vertical tail contribution

    " Cn( )Vertical Tail =# Cn$( )Vertical Tail

    rlvt

    V

    %&'

    ()*=# C

    n$( )Vertical Taillvt

    b

    %

    &'

    (

    )*

    b

    V

    %

    &'

    (

    )*r

    Cn

    r( )

    vt=

    +" Cn( )Vertical Tail

    + rb2V( )

    =

    +" Cn( )Vertical Tail+r

    =#2 Cn$( )

    Vertical Tail

    lvt

    b

    %

    &'

    (

    )*

    r =rb

    2VN

    Yaw Damping Due to Yaw Rate, Nr

    Dimensional stability derivative

    Nr "Cnr#V

    N

    2

    2Izz

    $

    %&

    '

    ()Sb

    =

    Cn r

    b

    2VN

    $

    %&

    '

    ()

    #VN

    2

    2Izz

    $

    %&

    '

    ()Sb

    =Cnr

    #VN

    4Izz

    $

    %&

    '

    ()Sb

    2 < 0 for stability

    High wing-sweep anglecan lead to Nr> 0

    Approximate Roll

    and Spiral Modes

    "p

    "#$

    %&

    '

    ()=

    Lp 0

    1 0

    $

    %&

    '

    ()"p

    "#

    $

    %&

    '

    ()+

    L*A

    0

    $

    %&

    '

    ()"*A

    "RS(s) = s s#Lp( )$S = 0

    $R = Lp

    Characteristic polynomial has real roots

    Roll rate is damped by Lp Roll angle is a pure integral of roll rate

    Roll Damping Due to Roll Rate,Lp

    Lp " Clp#VN

    2

    2Ixx

    $

    %&

    '

    ()Sb = Cl

    p

    b

    2VN

    $

    %&

    '

    ()

    #VN2

    2Ixx

    $

    %&

    '

    ()Sb = Cl

    p

    #VN

    4Ixx

    $

    %&

    '

    ()Sb

    2

    Clp

    ( )Wing

    =

    " #Cl( )Wing"p

    = $CL%

    12

    1+ 3&

    1+ &

    '

    ()

    *

    +,

    Wing with taper

    Thin triangular wing

    Clp

    ( )Wing

    = "#AR

    32

    Clp" Cl

    p( )

    VerticalTail+ Cl

    p( )

    HorizontalTail+ Cl

    p( )

    Wing

    Vertical tail, horizontal tail, and wing areprincipal contributors

    < 0 for stability

  • 7/30/2019 Mae 331 Lecture 14

    8/8

    Roll Damping Due to

    Roll Rate,Lp

    Vertical tail

    Tapered horizontal tail

    p =pb

    2VN

    Clp

    ( )ht=

    " #Cl( )ht"p

    = $CL%ht

    12

    Sht

    S

    &

    '(

    )

    *+1+ 3,

    1+ ,

    &

    '(

    )

    *+

    pb/2VNdescribes helix anglefor a steady roll

    Cl p( )vt=

    "#Cl( )vt"p

    =

    $

    CY%vt

    12

    Svt

    S

    &

    '(

    )

    *+

    1+ 3,

    1+ ,

    &

    '(

    )

    *+