macroscopic descriptions of biological systems in rn and in …hg94/singapore.pdf · 2020. 1....

63
Macroscopic descriptions of biological systems in R n and in networks Gissell Estrada-Rodríguez 1 (H. Gimperlein 2 , K. J. Painter 2 , J. Štoček 2 and E. Estrada 3 ) 1 LJLL Sorbonne Université, (France). 2 Maxwell Institute and Heriot-Watt University, (U.K.). 3 IUMA, Universidad de Zaragoza, (Spain). Workshop on Mathematical Biology: Modelling, Analysis and Simulations

Upload: others

Post on 16-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Macroscopic descriptions of biological systemsin Rn and in networks

    Gissell Estrada-Rodríguez 1

    (H. Gimperlein 2, K. J. Painter 2, J. Štoček 2 and E. Estrada 3)

    1LJLL Sorbonne Université, (France). 2Maxwell Institute and Heriot-WattUniversity, (U.K.). 3IUMA, Universidad de Zaragoza, (Spain).

    Workshop on Mathematical Biology: Modelling, Analysisand Simulations

  • Introduction

    Chemotaxis

    Superdiffusion

    Experimentalevidence

    Microscopicdescription

    Result I

    T cells

    Result II

    Hitting times

    From Rn tonetworks

    Metaplexdiffusion

    Numerics

    Real-worldexamples

    Conclusions

    Results of this talk

    I From biological systems:

    I Fractional Patlak-Keller-Segel equation:∂tu = c0∇ · (Cα∇α−1u − χu∇ρ) (bacteria E. coli).

    I Space-time fractional diffusion:Ct D

    κutot = ∇ ·(Cα,κ∇α−1utot

    )(T cells in the brain).

    I Study of hitting times for immune cell search strategies.

    I Analysis of diffusion and superdiffusion in complexgeometries:

    I We introduce a network of subdomains, corresponding tothe nodes of a graph.

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 2 / 26

  • Introduction

    Chemotaxis

    Superdiffusion

    Experimentalevidence

    Microscopicdescription

    Result I

    T cells

    Result II

    Hitting times

    From Rn tonetworks

    Metaplexdiffusion

    Numerics

    Real-worldexamples

    Conclusions

    Chemotaxis

    Classical case of chemotaxis: the individual runs for sometime τ , it stops at (x, t) and chooses a new direction at random.τ follows a Poisson process Patlak-Keller-Segel equations:

    ∂tu = ∇ · (C (u, ρ)∇u − χ(u, ρ)∇ρ),∂tρ = Dρ∆ρ+ f (u, ρ).

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 3 / 26

  • Introduction

    Chemotaxis

    Superdiffusion

    Experimentalevidence

    Microscopicdescription

    Result I

    T cells

    Result II

    Hitting times

    From Rn tonetworks

    Metaplexdiffusion

    Numerics

    Real-worldexamples

    Conclusions

    Chemotaxis

    Classical case of chemotaxis: the individual runs for sometime τ , it stops at (x, t) and chooses a new direction at random.τ follows a Poisson process Patlak-Keller-Segel equations:

    ∂tu = ∇ · (C (u, ρ)∇u − χ(u, ρ)∇ρ),∂tρ = Dρ∆ρ+ f (u, ρ).

    Absent/sparse attractant ⇒ change in τ distribution:

    Figure 1: Movement ofDictyostelium cells. From L. Li etal., PLoS one (2008).

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 3 / 26

  • Introduction

    Chemotaxis

    Superdiffusion

    Experimentalevidence

    Microscopicdescription

    Result I

    T cells

    Result II

    Hitting times

    From Rn tonetworks

    Metaplexdiffusion

    Numerics

    Real-worldexamples

    Conclusions

    Chemotaxis

    Classical case of chemotaxis: the individual runs for sometime τ , it stops at (x, t) and chooses a new direction at random.τ follows a Poisson process Patlak-Keller-Segel equations:

    ∂tu = ∇ · (C (u, ρ)∇u − χ(u, ρ)∇ρ),∂tρ = Dρ∆ρ+ f (u, ρ).

    In this talk: τ with long tail fractional diffusion orchemotactic equations that involve non-local, fractionaldifferential operators.

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 3 / 26

  • Introduction

    Chemotaxis

    Superdiffusion

    Experimentalevidence

    Microscopicdescription

    Result I

    T cells

    Result II

    Hitting times

    From Rn tonetworks

    Metaplexdiffusion

    Numerics

    Real-worldexamples

    Conclusions

    Superdiffusion

    Diffusion (Brownianmotion):

    〈x2〉 ∝ t

    Nonlocal diffusion (Lévymotion):

    〈x2〉 ∝ t2/α, 1 ≤ α ≤ 2

    Note: The systems we study don’t directly follow a Lévyprocess in space.

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 4 / 26

  • Introduction

    Chemotaxis

    Superdiffusion

    Experimentalevidence

    Microscopicdescription

    Result I

    T cells

    Result II

    Hitting times

    From Rn tonetworks

    Metaplexdiffusion

    Numerics

    Real-worldexamples

    Conclusions

    Experimental evidence for superdiffusion

    Figure 1: MSD ofDictyostelium cells in absenceof a chemotactic signal. FromL. Li et al., PLoS one (2008).

    Figure 2: Distribution oftumble (gray) and run (black)intervals from the E. coli.From E. Korobkova et al.,Nature (2004).

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 5 / 26

  • Introduction

    Chemotaxis

    Superdiffusion

    Experimentalevidence

    Microscopicdescription

    Result I

    T cells

    Result II

    Hitting times

    From Rn tonetworks

    Metaplexdiffusion

    Numerics

    Real-worldexamples

    Conclusions

    Microscopic description

    Consider an individual in a medium in Rn with an attractantconcentration ρ(x, t):

    I Running probability: ψ(·, θ, τ) =(S(ρ,Dθρ)S(ρ,Dθρ)+τ

    )αwhere

    Dθρ = ∂tρ+ cθ · ∇ρ, θ ∈ S = {|x| = 1} and 1 < α < 2.

    I The stopping frequency during a run phase is

    β(·, θ, τ) = −∂τψ(·, θ, τ)ψ(·, θ, τ)

    .

    I The turn angle distribution is given byk(·, θ; η) = `(·, |η − θ|) where

    ∫S k(·, θ; η)dθ = 1.

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 6 / 26

  • Introduction

    Chemotaxis

    Superdiffusion

    Experimentalevidence

    Microscopicdescription

    Result I

    T cells

    Result II

    Hitting times

    From Rn tonetworks

    Metaplexdiffusion

    Numerics

    Real-worldexamples

    Conclusions

    Microscopic description

    Consider an individual in a medium in Rn with an attractantconcentration ρ(x, t):

    I Running probability: ψ(·, θ, τ) =(S(ρ,Dθρ)S(ρ,Dθρ)+τ

    )αwhere

    Dθρ = ∂tρ+ cθ · ∇ρ, θ ∈ S = {|x| = 1} and 1 < α < 2.

    I The stopping frequency during a run phase is

    β(·, θ, τ) = −∂τψ(·, θ, τ)ψ(·, θ, τ)

    .

    I The turn angle distribution is given byk(·, θ; η) = `(·, |η − θ|) where

    ∫S k(·, θ; η)dθ = 1.

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 6 / 26

  • Introduction

    Chemotaxis

    Superdiffusion

    Experimentalevidence

    Microscopicdescription

    Result I

    T cells

    Result II

    Hitting times

    From Rn tonetworks

    Metaplexdiffusion

    Numerics

    Real-worldexamples

    Conclusions

    Microscopic description

    Consider an individual in a medium in Rn with an attractantconcentration ρ(x, t):

    I Running probability: ψ(·, θ, τ) =(S(ρ,Dθρ)S(ρ,Dθρ)+τ

    )αwhere

    Dθρ = ∂tρ+ cθ · ∇ρ, θ ∈ S = {|x| = 1} and 1 < α < 2.

    I The stopping frequency during a run phase is

    β(·, θ, τ) = −∂τψ(·, θ, τ)ψ(·, θ, τ)

    .

    I The turn angle distribution is given byk(·, θ; η) = `(·, |η − θ|) where

    ∫S k(·, θ; η)dθ = 1.

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 6 / 26

  • Introduction

    Chemotaxis

    Superdiffusion

    Experimentalevidence

    Microscopicdescription

    Result I

    T cells

    Result II

    Hitting times

    From Rn tonetworks

    Metaplexdiffusion

    Numerics

    Real-worldexamples

    Conclusions

    General strategy

    I The density σ(x, t, θ, τ) satisfies

    ∂τσ + ∂tσ + cθ · ∇σ︸ ︷︷ ︸Run phase

    = −βσ︸︷︷︸Tumble phase

    σ(·, η, 0)︸ ︷︷ ︸Particles immediatelystarting a new run

    =

    ∫ t0

    ∫S

    (βσ)k(·, θ;η)dθdτ .

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 7 / 26

  • Introduction

    Chemotaxis

    Superdiffusion

    Experimentalevidence

    Microscopicdescription

    Result I

    T cells

    Result II

    Hitting times

    From Rn tonetworks

    Metaplexdiffusion

    Numerics

    Real-worldexamples

    Conclusions

    General strategy

    I The density σ(x, t, θ, τ) satisfies

    ∂τσ+∂tσ+cθ·∇σ = −βσ, σ(·, η, 0) =∫ t0

    ∫S

    (βσ)k(·, θ;η)dθdτ .

    I Scaling: (x, t, c , τ) 7→ (x/ε, t/ε, c0/εγ , τ/εµ) for µ > 0and 0 < γ < 1, where ε = τ̄ /T .

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 7 / 26

  • Introduction

    Chemotaxis

    Superdiffusion

    Experimentalevidence

    Microscopicdescription

    Result I

    T cells

    Result II

    Hitting times

    From Rn tonetworks

    Metaplexdiffusion

    Numerics

    Real-worldexamples

    Conclusions

    General strategy

    I The density σ(x, t, θ, τ) satisfies

    ∂τσ+∂tσ+cθ·∇σ = −βσ, σ(·, η, 0) =∫ t0

    ∫S

    (βσ)k(·, θ;η)dθdτ .

    I Scaling: (x, t, c , τ) 7→ (x/ε, t/ε, c0/εγ , τ/εµ) for µ > 0and 0 < γ < 1, where ε = τ̄ /T .

    I Integrate out τε∂t σ̄ + ε

    1−γc0θ · ∇σ̄ = −(1− T )A,

    σ̄(·, θ) =∫ t0σ(·, θ, τ)dτ, Tφ(η) =

    ∫Sk(·, θ; η)φ(θ)dθ,

    A =∫ t0Bε(·, θ, t − s)σ̄(x− cθ(t − s), s, θ)ds.

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 7 / 26

  • Introduction

    Chemotaxis

    Superdiffusion

    Experimentalevidence

    Microscopicdescription

    Result I

    T cells

    Result II

    Hitting times

    From Rn tonetworks

    Metaplexdiffusion

    Numerics

    Real-worldexamples

    Conclusions

    General strategy

    I The density σ(x, t, θ, τ) satisfies

    ∂τσ+∂tσ+cθ·∇σ = −βσ, σ(·, η, 0) =∫ t0

    ∫S

    (βσ)k(·, θ;η)dθdτ .

    I Scaling: (x, t, c , τ) 7→ (x/ε, t/ε, c0/εγ , τ/εµ) for µ > 0and 0 < γ < 1, where ε = τ̄ /T .

    I Integrate out τε∂t σ̄ + ε

    1−γc0θ · ∇σ̄ = −(1− T )A.

    A =∫ t0Bε(·, θ, t − s)σ̄(x− cθ(t − s), s, θ)ds.

    I Conservation equation: ∂tu + c0∇ · w = 0 where

    u := 1|S|∫S σ̄dθ and w :=

    εγ

    |S |∫S θσ̄dθ.

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 7 / 26

  • Introduction

    Chemotaxis

    Superdiffusion

    Experimentalevidence

    Microscopicdescription

    Result I

    T cells

    Result II

    Hitting times

    From Rn tonetworks

    Metaplexdiffusion

    Numerics

    Real-worldexamples

    Conclusions

    Nonlocal Patlak-Keller-Segel equation

    Assuming that τ is distributed according to a power law withexponent α then, the motion of the individuals is described by1

    ∂tu = c0∇ · (Cα∇α−1u − χu∇ρ) ,

    Cα = −π(τ0c0)

    α−1(α− 1)sin(πα)Γ(α)

    (|S | − n2ν1)|S |(1− ν1)

    > 0 and χ =τ1c0τ0

    .

    I Cα can be determined from the microscopic parameters.I For s ∈ (0, 2) the fractional gradient is defined

    [Meerschaert et al. (2006)]

    ∇su(x, t) = 1|S |

    ∫Sθ(θ · ∇)su(x, t)dθ.

    1ER-Gimperlein-Painter. “Fractional PKS equations for chemotacticsuperdiffusion”. In: SIAP 78 (2018).

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 8 / 26

  • Introduction

    Chemotaxis

    Superdiffusion

    Experimentalevidence

    Microscopicdescription

    Result I

    T cells

    Result II

    Hitting times

    From Rn tonetworks

    Metaplexdiffusion

    Numerics

    Real-worldexamples

    Conclusions

    Nonlocal T cell movement: Experimental evidence

    Immune cells in thebrain.

    T cells:

    From T. Harris et.al., Nature(2012).

    I Further experiments show longwaiting times which combinedwith the long runs give rise to ageneralized Lévy walk.

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 9 / 26

  • Introduction

    Chemotaxis

    Superdiffusion

    Experimentalevidence

    Microscopicdescription

    Result I

    T cells

    Result II

    Hitting times

    From Rn tonetworks

    Metaplexdiffusion

    Numerics

    Real-worldexamples

    Conclusions

    T cells: Long runs + Long waiting times

    New ingredients: The running and waiting time probabilities,for α ∈ (1, 2) and κ ∈ (0, 1) are

    ψ(x, τ) =( τ0(x)τ0(x) + τ

    )α, and ψr (r) =

    ( r0r0 + r

    )κ.

    Kinetic system:

    ∂t σ̄(·, θ) + cθ · ∇σ̄(·, θ)︸ ︷︷ ︸Moving particles

    = σ(·, θ, τ = 0)︸ ︷︷ ︸Particles starting

    a new run

    −∫ t0β(x, τ)σ(·, θ, τ)dτ︸ ︷︷ ︸

    Particles enteringa tumble phase

    ∂t σ̄0(·, θ)︸ ︷︷ ︸Resting particles

    = T

    ∫ t0β(x, τ)σ(·, θ, τ)dτ︸ ︷︷ ︸Particles enteringthe tumble phase

    −σ0(·, θ, τ = 0)︸ ︷︷ ︸Particles starting

    a new run

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 10 / 26

  • Introduction

    Chemotaxis

    Superdiffusion

    Experimentalevidence

    Microscopicdescription

    Result I

    T cells

    Result II

    Hitting times

    From Rn tonetworks

    Metaplexdiffusion

    Numerics

    Real-worldexamples

    Conclusions

    T cells: Long runs + Long waiting times

    New ingredients: The running and waiting time probabilities,for α ∈ (1, 2) and κ ∈ (0, 1) are

    ψ(x, τ) =( τ0(x)τ0(x) + τ

    )α, and ψr (r) =

    ( r0r0 + r

    )κ.

    Kinetic system:

    ∂t σ̄(·, θ) + cθ · ∇σ̄(·, θ)︸ ︷︷ ︸Moving particles

    = σ(·, θ, τ = 0)︸ ︷︷ ︸Particles starting

    a new run

    −∫ t0β(x, τ)σ(·, θ, τ)dτ︸ ︷︷ ︸

    Particles enteringa tumble phase

    ∂t σ̄0(·, θ)︸ ︷︷ ︸Resting particles

    = T

    ∫ t0β(x, τ)σ(·, θ, τ)dτ︸ ︷︷ ︸Particles enteringthe tumble phase

    −σ0(·, θ, τ = 0)︸ ︷︷ ︸Particles starting

    a new run

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 10 / 26

  • Introduction

    Chemotaxis

    Superdiffusion

    Experimentalevidence

    Microscopicdescription

    Result I

    T cells

    Result II

    Hitting times

    From Rn tonetworks

    Metaplexdiffusion

    Numerics

    Real-worldexamples

    Conclusions

    Main result

    If the run time and pauses during re-orientations followapproximate Lévy distributions, then for utot = umoving + uresting,the movement of the individuals is described by2

    Ct D

    κutot = ∇ ·(Cα,κ∇α−1utot

    ).

    Remarks:I No chemotaxis (according to experiments).I Two populations: moving and resting individuals.I Fractional derivative in time is introduced by solving the

    resting density equation.

    2ER-Gimperlein-Painter-Štoček. “Space-time fractional diffusion in cellmovement models with delay”. In: M3AS (2019).

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 11 / 26

  • Introduction

    Chemotaxis

    Superdiffusion

    Experimentalevidence

    Microscopicdescription

    Result I

    T cells

    Result II

    Hitting times

    From Rn tonetworks

    Metaplexdiffusion

    Numerics

    Real-worldexamples

    Conclusions

    Fundamental solution

    Assuming Cα,κ independent of x, the fundamental solution of

    Ct D

    κ utot = Cα,κ∇ ·(∇α−1utot

    )= C̃α,κ(−∆)α/2utot,

    is given in terms of Fox H functions,

    G (x, t) =1

    πn/2|x|nH2,12,3

    (|x|α

    2αC̃α,κtκ

    ∣∣∣(1,1);(1,κ)(n/2,α/2);(1,1);(1,α/2)

    ).

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 12 / 26

  • Introduction

    Chemotaxis

    Superdiffusion

    Experimentalevidence

    Microscopicdescription

    Result I

    T cells

    Result II

    Hitting times

    From Rn tonetworks

    Metaplexdiffusion

    Numerics

    Real-worldexamples

    Conclusions

    Fundamental solution

    Assuming Cα,κ independent of x, the fundamental solution of

    Ct D

    κ utot = Cα,κ∇ ·(∇α−1utot

    )= C̃α,κ(−∆)α/2utot,

    is given in terms of Fox H functions,

    G (x, t) =1

    πn/2|x|nH2,12,3

    (|x|α

    2αC̃α,κtκ

    ∣∣∣(1,1);(1,κ)(n/2,α/2);(1,1);(1,α/2)

    ).

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 12 / 26

  • Introduction

    Chemotaxis

    Superdiffusion

    Experimentalevidence

    Microscopicdescription

    Result I

    T cells

    Result II

    Hitting times

    From Rn tonetworks

    Metaplexdiffusion

    Numerics

    Real-worldexamples

    Conclusions

    Fundamental solution

    Assuming Cα,κ independent of x, the fundamental solution of

    Ct D

    κ utot = Cα,κ∇ ·(∇α−1utot

    )= C̃α,κ(−∆)α/2utot,

    is given in terms of Fox H functions,

    G (x, t) =1

    πn/2|x|nH2,12,3

    (|x|α

    2αC̃α,κtκ

    ∣∣∣(1,1);(1,κ)(n/2,α/2);(1,1);(1,α/2)

    ).

    In the limit |x|α

    C̃α,κtκ� 1 the asymptotic behaviour of H is known,

    G (x, t) ' 1|x|n

    (|x|α

    2αC̃α,κtκ

    )−1.

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 12 / 26

  • Introduction

    Chemotaxis

    Superdiffusion

    Experimentalevidence

    Microscopicdescription

    Result I

    T cells

    Result II

    Hitting times

    From Rn tonetworks

    Metaplexdiffusion

    Numerics

    Real-worldexamples

    Conclusions

    Hitting times

    We seek the first time at which the density of the solution inthe target position T , reaches a certain threshold δ, i.e., weseek t0 such that

    δ =

    ∫T

    ∫Rn

    G (x− y, t0)u0(y)dydx.

    1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.810

    0

    101

    102

    103

    104

    105

    106

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 13 / 26

  • Introduction

    Chemotaxis

    Superdiffusion

    Experimentalevidence

    Microscopicdescription

    Result I

    T cells

    Result II

    Hitting times

    From Rn tonetworks

    Metaplexdiffusion

    Numerics

    Real-worldexamples

    Conclusions

    From Rn to networks

    Diffusion in complex geometries such as the brain:

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 14 / 26

  • Introduction

    Chemotaxis

    Superdiffusion

    Experimentalevidence

    Microscopicdescription

    Result I

    T cells

    Result II

    Hitting times

    From Rn tonetworks

    Metaplexdiffusion

    Numerics

    Real-worldexamples

    Conclusions

    From Rn to networks

    Diffusion in complex geometries such as the brain:

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 14 / 26

  • Introduction

    Chemotaxis

    Superdiffusion

    Experimentalevidence

    Microscopicdescription

    Result I

    T cells

    Result II

    Hitting times

    From Rn tonetworks

    Metaplexdiffusion

    Numerics

    Real-worldexamples

    Conclusions

    From Rn to networks

    Diffusion in complex geometries such as the brain:

    Other examples:

    • Long range human movement[Brockmann et. al (2006)]

    • Metapopulations• Nonlocal foraging strategy ofanimal [Ramos-Fernandez et. al(2004)]

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 14 / 26

  • Introduction

    Chemotaxis

    Superdiffusion

    Experimentalevidence

    Microscopicdescription

    Result I

    T cells

    Result II

    Hitting times

    From Rn tonetworks

    Metaplexdiffusion

    Numerics

    Real-worldexamples

    Conclusions

    Metaplex

    Main questions: How do we study global diffusion in thesecomplex geometries? How does the internal structure of thenodes in the network affect the global phenomenon?

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 15 / 26

  • Introduction

    Chemotaxis

    Superdiffusion

    Experimentalevidence

    Microscopicdescription

    Result I

    T cells

    Result II

    Hitting times

    From Rn tonetworks

    Metaplexdiffusion

    Numerics

    Real-worldexamples

    Conclusions

    Metaplex

    Main questions: How do we study global diffusion in thesecomplex geometries? How does the internal structure of thenodes in the network affect the global phenomenon?

    Metaplexa: A metaplex is a 4-tuple Υ = (V ,E , I, ω), where:• (V ,E ) is a graph• ω = {Ωj}kj=1 = {�, ©, 4, ...} with Borel measure µj .• I : V → ω

    aEstrada-ER-Gimperlein. “Metaplex networks: influence of the exo-endostructure of complex systems on diffusion”. In: SIAM Review, ResearchSpotlight (2019).

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 15 / 26

  • Introduction

    Chemotaxis

    Superdiffusion

    Experimentalevidence

    Microscopicdescription

    Result I

    T cells

    Result II

    Hitting times

    From Rn tonetworks

    Metaplexdiffusion

    Numerics

    Real-worldexamples

    Conclusions

    Metaplex

    Main questions: How do we study global diffusion in thesecomplex geometries? How does the internal structure of thenodes in the network affect the global phenomenon?

    In this talk:• ω = {B(0, r) ⊂ R2}• Lebesgue measure on the domain• I is constant.

    a

    aEstrada-ER-Gimperlein. “Metaplex networks: influence of the exo-endostructure of complex systems on diffusion”. In: SIAM Review, ResearchSpotlight (2019).

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 15 / 26

  • Introduction

    Chemotaxis

    Superdiffusion

    Experimentalevidence

    Microscopicdescription

    Result I

    T cells

    Result II

    Hitting times

    From Rn tonetworks

    Metaplexdiffusion

    Numerics

    Real-worldexamples

    Conclusions

    Preliminaries (external dynamics)3

    Diffusion process in the network: The diffusion among thenodes of the graph is controlled by

    du (t)dt

    = −

    (dmax∑d=1

    cd∆d

    )u (t) , u (0) = u0,

    where ∆d is the d-path Laplacian operator of the graph:

    3Estrada. “Path Laplacian matrices: introduction and application to theanalysis of consensus in networks”. In: LAA (2012).

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 16 / 26

  • Introduction

    Chemotaxis

    Superdiffusion

    Experimentalevidence

    Microscopicdescription

    Result I

    T cells

    Result II

    Hitting times

    From Rn tonetworks

    Metaplexdiffusion

    Numerics

    Real-worldexamples

    Conclusions

    Preliminaries (external dynamics)3

    Diffusion process in the network: The diffusion among thenodes of the graph is controlled by

    du (t)dt

    = −

    (dmax∑d=1

    cd∆d

    )u (t) , u (0) = u0,

    where ∆d is the d-path Laplacian operator of the graph:

    ∆d f (v) =∑

    w∈V ,dist(v ,w)=d

    (f (v)− f (w)) , v ∈ V .

    3Estrada. “Path Laplacian matrices: introduction and application to theanalysis of consensus in networks”. In: LAA (2012).

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 16 / 26

  • Introduction

    Chemotaxis

    Superdiffusion

    Experimentalevidence

    Microscopicdescription

    Result I

    T cells

    Result II

    Hitting times

    From Rn tonetworks

    Metaplexdiffusion

    Numerics

    Real-worldexamples

    Conclusions

    Preliminaries (external dynamics)3

    Diffusion process in the network: The diffusion among thenodes of the graph is controlled by

    du (t)dt

    = −

    (dmax∑d=1

    cd∆d

    )u (t) , u (0) = u0,

    where ∆d is the d-path Laplacian operator of the graph:cd tunes the hopping of the diffusive particle between

    ∆M f :=dmax∑d=1

    d−s∆d f︸ ︷︷ ︸long- ranged (Mellin transform)

    , ∆e f :=dmax∑d=1

    e−ds∆d f︸ ︷︷ ︸short-ranged (Laplace transform)

    .

    3Estrada. “Path Laplacian matrices: introduction and application to theanalysis of consensus in networks”. In: LAA (2012).

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 16 / 26

  • Introduction

    Chemotaxis

    Superdiffusion

    Experimentalevidence

    Microscopicdescription

    Result I

    T cells

    Result II

    Hitting times

    From Rn tonetworks

    Metaplexdiffusion

    Numerics

    Real-worldexamples

    Conclusions

    Preliminaries (external dynamics)3

    Diffusion process in the network: The diffusion among thenodes of the graph is controlled by

    du (t)dt

    = −

    (dmax∑d=1

    cd∆d

    )u (t) , u (0) = u0,

    where ∆d is the d-path Laplacian operator of the graph:cd tunes the hopping of the diffusive particle between

    ∆M f :=dmax∑d=1

    d−snet ∆d f︸ ︷︷ ︸long- ranged (Mellin transform), snet ∈ (1, 3)

    , ∆e f :=dmax∑d=1

    e−dsnet ∆d f︸ ︷︷ ︸short-ranged (Laplace transform)

    .

    3Estrada. “Path Laplacian matrices: introduction and application to theanalysis of consensus in networks”. In: LAA (2012).

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 16 / 26

  • Introduction

    Chemotaxis

    Superdiffusion

    Experimentalevidence

    Microscopicdescription

    Result I

    T cells

    Result II

    Hitting times

    From Rn tonetworks

    Metaplexdiffusion

    Numerics

    Real-worldexamples

    Conclusions

    Preliminaries (internal dynamics)

    Diffusion process in the continuous space: uj (x, t) in thenode vj ∈ V , for x ∈ Ω ⊂ Rn evolves according to

    ∂tuj (x, t) = (−∆)snod uj (x, t) .

    For snod ∈ (0, 1] and x ∈ Rn, (−∆)snod is defined as

    (−∆)snoduj(x) = cn,s P.V .∫

    Rn

    uj(x)− uj(y)|x− y|n+2snod

    dy .

    We consider this operator in a bounded domain withNeumann boundary conditions.4

    4ER-Gimperlein-Painter-Štoček. “Space-time fractional diffusion in cellmovement models with delay”. In: M3AS (2019).

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 17 / 26

  • Introduction

    Chemotaxis

    Superdiffusion

    Experimentalevidence

    Microscopicdescription

    Result I

    T cells

    Result II

    Hitting times

    From Rn tonetworks

    Metaplexdiffusion

    Numerics

    Real-worldexamples

    Conclusions

    Preliminaries (internal dynamics)

    Diffusion process in the continuous space: uj (x, t) in thenode vj ∈ V , for x ∈ Ω ⊂ Rn evolves according to

    ∂tuj (x, t) = (−∆)snod uj (x, t) .

    For snod ∈ (0, 1] and x ∈ Rn, (−∆)snod is defined as

    (−∆)snoduj(x) = cn,s P.V .∫

    Rn

    uj(x)− uj(y)|x− y|n+2snod

    dy .

    We consider this operator in a bounded domain withNeumann boundary conditions.4

    4ER-Gimperlein-Painter-Štoček. “Space-time fractional diffusion in cellmovement models with delay”. In: M3AS (2019).

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 17 / 26

  • Introduction

    Chemotaxis

    Superdiffusion

    Experimentalevidence

    Microscopicdescription

    Result I

    T cells

    Result II

    Hitting times

    From Rn tonetworks

    Metaplexdiffusion

    Numerics

    Real-worldexamples

    Conclusions

    Diffusion in a Metaplex: Mathematical Description

    For u = (u1, u2, ..., uN)T , where uj(x, t) is a density in thenode vj ∈ V and for (x, t) ∈ Ωj × (0,∞), we have

    ∂tu = Du

    where D = H + T is an N × N block operator matrix ofunbounded operators with N the number of nodes.

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 18 / 26

  • Introduction

    Chemotaxis

    Superdiffusion

    Experimentalevidence

    Microscopicdescription

    Result I

    T cells

    Result II

    Hitting times

    From Rn tonetworks

    Metaplexdiffusion

    Numerics

    Real-worldexamples

    Conclusions

    Diffusion in a Metaplex: Mathematical Description

    For u = (u1, u2, ..., uN)T , where uj(x, t) is a density in thenode vj ∈ V and for (x, t) ∈ Ωj × (0,∞), we have

    ∂tu = Du

    where D = H + T is an N × N block operator matrix ofunbounded operators with N the number of nodes.

    H =

    divJ1 · · · 0... . . . ...0 · · · divJN

    .I Jj is the flux of particles.I divJj is the generator of the diffusion process in Ωj .

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 18 / 26

  • Introduction

    Chemotaxis

    Superdiffusion

    Experimentalevidence

    Microscopicdescription

    Result I

    T cells

    Result II

    Hitting times

    From Rn tonetworks

    Metaplexdiffusion

    Numerics

    Real-worldexamples

    Conclusions

    Diffusion in a Metaplex: Mathematical Description

    For u = (u1, u2, ..., uN)T , where uj(x, t) is a density in thenode vj ∈ V and for (x, t) ∈ Ωj × (0,∞), we have

    ∂tu = Du

    where D = H + T is an N × N block operator matrix ofunbounded operators with N the number of nodes.

    T =

    −∑

    j αj1Tj1 · · · α1NT1N...

    . . ....

    αN1TN1 · · · −∑

    j αjNTjN

    I Tij transition operators between Ωi , Ωj .I αij are the transition probabilities.

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 18 / 26

  • Introduction

    Chemotaxis

    Superdiffusion

    Experimentalevidence

    Microscopicdescription

    Result I

    T cells

    Result II

    Hitting times

    From Rn tonetworks

    Metaplexdiffusion

    Numerics

    Real-worldexamples

    Conclusions

    Numerical Set Up

    Metaplex of 51 circular domains Ω = Ωj ⊂ R2 in the form of apath graph. We start from a uniform distribution in node 1and we study the effect of:

    I snet (diffusion in network) and snod (diffusion in nodes).

    I Size of the nodes Ωs = B(0, 1) and Ωb = B(0, 100).

    I Coupling points: central and disjoint sinks and sources.

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 19 / 26

  • Introduction

    Chemotaxis

    Superdiffusion

    Experimentalevidence

    Microscopicdescription

    Result I

    T cells

    Result II

    Hitting times

    From Rn tonetworks

    Metaplexdiffusion

    Numerics

    Real-worldexamples

    Conclusions

    Numerical Set Up

    Metaplex of 51 circular domains Ω = Ωj ⊂ R2 in the form of apath graph. We start from a uniform distribution in node 1and we study the effect of:

    I snet (diffusion in network) and snod (diffusion in nodes).

    I Size of the nodes Ωs = B(0, 1) and Ωb = B(0, 100).

    I Coupling points: central and disjoint sinks and sources.

    I Nature of the coupling:• Short-ranged: 2−snetdist(i ,j) (Laplace-transformed ∆d).• Long-ranged: dist(i , j)−snet (Mellin-transformed ∆d).

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 19 / 26

  • Introduction

    Chemotaxis

    Superdiffusion

    Experimentalevidence

    Microscopicdescription

    Result I

    T cells

    Result II

    Hitting times

    From Rn tonetworks

    Metaplexdiffusion

    Numerics

    Real-worldexamples

    Conclusions

    Influence of the node’s size

    I Disjoint sinks and sources and short range coupling2−snetdist(i ,j).

    I Equilibration: |∫

    Ω1u1(x, t)dx− 1N

    ∫Ω1

    u0(x)dx|

    0 2000 4000 6000 8000 1000

    Time

    10-3

    10-2

    10-1

    100

    101

    102

    Eq

    uili

    bra

    tio

    n o

    f th

    e d

    en

    sity

    snet=0.4, snod=0.2

    snet=0.6, snod=0.2

    snet=0.8, snod=0.2

    snet=0.4, snod=0.8

    snet=0.6, snod=0.8

    snet=0.8, snod=0.8

    0 200 400 600 800 1000

    Time

    40

    50

    60

    70

    80

    90

    Equili

    bra

    tion o

    f th

    e d

    ensity

    snet=0.4, snod=0.2

    snet=0.6, snod=0.2

    snet=0.8, snod=0.2

    snet=0.4, snod=0.8

    snet=0.6, snod=0.8

    snet=0.8, snod=0.8

    Figure 3: Density equilibration in node 1 for Ωs (left) and Ωb (right).

    I Supported by analytical results by looking at the spectralproperties of the operators.

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 20 / 26

  • Introduction

    Chemotaxis

    Superdiffusion

    Experimentalevidence

    Microscopicdescription

    Result I

    T cells

    Result II

    Hitting times

    From Rn tonetworks

    Metaplexdiffusion

    Numerics

    Real-worldexamples

    Conclusions

    Superdiffusion in a Metaplex (exo-dynamics)

    100

    101

    102

    Nodes

    10-10

    10-5

    100

    Density

    snode=0.8

    snode=0.2

    snode=0.8

    snode=0.2

    t=10

    100

    101

    102

    Nodes

    10-6

    10-4

    10-2

    100

    102

    Density

    snode=0.8

    snode=0.2

    snode=0.8

    snode=0.2

    t=100

    100

    101

    102

    Nodes

    100

    101

    102

    Density

    snode=0.8

    snode=0.2

    snode=0.8

    snode=0.2

    t=1000

    100

    101

    102

    Nodes

    10-4

    10-2

    100

    102

    Density

    t=10

    t=100

    t=1000

    t=10

    t=100

    t=1000

    snet=1.5

    100

    101

    102

    Nodes

    10-4

    10-2

    100

    102

    Density

    t=10

    t=100

    t=1000

    t=10

    t=100

    t=1000

    snet=2

    100

    101

    102

    Nodes

    10-6

    10-4

    10-2

    100

    102

    Density

    t=10

    t=100

    t=1000

    t=10

    t=100

    t=1000

    snet=2.5

    Figure 4: Top: short range coupling, snet = 0.8 (◦) resp. 0.4(×).Bottom: long range coupling, snod = 0.2 (◦) resp. 0.8(+).

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 21 / 26

  • Introduction

    Chemotaxis

    Superdiffusion

    Experimentalevidence

    Microscopicdescription

    Result I

    T cells

    Result II

    Hitting times

    From Rn tonetworks

    Metaplexdiffusion

    Numerics

    Real-worldexamples

    Conclusions

    Real-World Metaplexes

    Figure 5: Landscape (left)and macaque visual cortexmetaplex (right).

    Landscape (183 nodes): ≈ linear metaplexI Average shortest path distance is ∼ 11.88 and dmax = 32.I The average degree of the patches is ∼ 5.78.

    Macaque visual cortex (30 nodes): small-world metaplexI Average shortest path distance is ∼ 1.54 and dmax = 3.I The average degree is ∼ 12.67.

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 22 / 26

  • Introduction

    Chemotaxis

    Superdiffusion

    Experimentalevidence

    Microscopicdescription

    Result I

    T cells

    Result II

    Hitting times

    From Rn tonetworks

    Metaplexdiffusion

    Numerics

    Real-worldexamples

    Conclusions

    Real-World Metaplexes

    Figure 5: Landscape (left)and macaque visual cortexmetaplex (right).

    Landscape (183 nodes): ≈ linear metaplexI Average shortest path distance is ∼ 11.88 and dmax = 32.I The average degree of the patches is ∼ 5.78.

    Macaque visual cortex (30 nodes): small-world metaplexI Average shortest path distance is ∼ 1.54 and dmax = 3.I The average degree is ∼ 12.67.

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 22 / 26

  • Introduction

    Chemotaxis

    Superdiffusion

    Experimentalevidence

    Microscopicdescription

    Result I

    T cells

    Result II

    Hitting times

    From Rn tonetworks

    Metaplexdiffusion

    Numerics

    Real-worldexamples

    Conclusions

    Landscape metaplex

    I There are no significant differences between low and highdegree nodes (only for the case snod = snet = 0.8).

    I A trade-off between the endo and exo structure (as for thelinear metaplex).

    Figure 6: Density as a function of distance for long range coupling(a) and short range coupling (b). snod = 0.8 (+), resp. 0.2 (◦).

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 23 / 26

  • Introduction

    Chemotaxis

    Superdiffusion

    Experimentalevidence

    Microscopicdescription

    Result I

    T cells

    Result II

    Hitting times

    From Rn tonetworks

    Metaplexdiffusion

    Numerics

    Real-worldexamples

    Conclusions

    Macaque metaplex

    I The internal dynamics dominate the global diffusion in themetaplex:

    10 1000 2000 3000 4000 5000

    Time

    10-4

    10-3

    10-2

    10-1

    100

    De

    nsity

    snet=0.4, snod=0.2

    snet=4, snod=0.2

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 24 / 26

  • Introduction

    Chemotaxis

    Superdiffusion

    Experimentalevidence

    Microscopicdescription

    Result I

    T cells

    Result II

    Hitting times

    From Rn tonetworks

    Metaplexdiffusion

    Numerics

    Real-worldexamples

    Conclusions

    Results

    I The geometry of the nodes and their coupling playcrucial roles for the global dynamics.

    I Superdiffusion in the nodes accelerates diffusion in themetaplex, but it cannot lead to superdiffusion.

    I For small-world metaplexes, the external dynamicsdoes not play any significant role.

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 25 / 26

  • Introduction

    Chemotaxis

    Superdiffusion

    Experimentalevidence

    Microscopicdescription

    Result I

    T cells

    Result II

    Hitting times

    From Rn tonetworks

    Metaplexdiffusion

    Numerics

    Real-worldexamples

    Conclusions

    Outlook

    I Include internal biochemical pathways into thechemotactic system.

    I Combine the models derived from biological systems andthe notion of metaplex to find efficient search strategiesfor robots swarm in complex environments.

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 26 / 26

  • References

    Thanks! Any questions?ljll.math.upmc.fr/estradarodriguez/

    Estrada. “Path Laplacian matrices: introduction and application to theanalysis of consensus in networks”. In: LAA (2012).

    Estrada-ER-Gimperlein. “Metaplex networks: influence of the exo-endostructure of complex systems on diffusion”. In: SIAM Review, ResearchSpotlight (2019).

    ER-Gimperlein-Painter. “Fractional PKS equations for chemotacticsuperdiffusion”. In: SIAP 78 (2018).

    ER-Gimperlein-Painter-Štoček. “Space-time fractional diffusion in cellmovement models with delay”. In: M3AS (2019).

    Tajie Harris et al. “Generalized Lévy walks and the role of chemokines inmigration of effector CD8+ T cells”. In: Nature 486 (2012).

    E Korobkova et al. “From molecular noise to behavioural variability in asingle bacterium”. In: Nature 428 (2004).

    L Li, S F Nørrelykke, and E C Cox. “Persistent cell motion in the absenceof external signals: a search strategy for eukaryotic cells”. In: PLoS one 3.5(2008), e2093.

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 27 / 26

  • References

    Figure 7: Distribution of tumble (gray) and run (black)intervals from the E. coli. From E. Korobkova et al.,Nature (2004).

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 28 / 26

  • References

    From long jump RW to the fractional Laplacian

    Normal diffusion:

    u(x , t + dt) =12u(x − dx , t) + 1

    2u(x + dx , t)

    u(x , t + dt)−u(x , t)dt

    =dx2

    2dtu(x − dx , t)−2u(x , t) + u(x + dx , t)

    dx2

    For dx → 0 and dt → 0 and dx2/2dt = D, we obtain ut = D∆u.

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 29 / 26

  • References

    From long jump RW to the fractional Laplacian

    Normal diffusion:

    ut = D∆u

    Anomalous diffusion: [E. Valdinoci (2009)]

    p(jump of length d) = C(β)/dβ,

    u(x , t + dt)− u(x , t)dt

    =∑y

    1dt

    C (β)

    |y |β(u(x + y , t)− u(x , t)).

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 29 / 26

  • References

    From long jump RW to the fractional Laplacian

    Normal diffusion:

    ut = D∆u

    Anomalous diffusion: [E. Valdinoci (2009)]

    u(x , t + dt)− u(x , t)dt

    =∑y

    C̃ (dy)β

    (dy)α(u(x + y , t)− u(x , t))

    |y |β.

    Passing to the limit: ut = C̃ (−∆)α/2u for β = n + α inn-dimensions where

    (−∆)α/2 = c∫Rn

    u(x + y)− u(x)|y |n+α

    dy .

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 29 / 26

  • References

    Derivation of A

    I Integrate out τ

    ε∂t σ̄ + ε1−γc0θ · ∇σ̄ = −(1− T )

    ∫ t0β(·, θ, τ)σ(·, θ, τ)dτ ,∫ t

    0 β(·, θ, τ)σ(·, θ, τ)dτ =∫ t0 Bε(·, θ, t−s)σ̄(x−cθ(t−s), s, θ)ds.

    In Laplace space B̂ε =ϕ̂(·, θ, ελ+ ε1−γc0θ · ∇)ψ̂(·, θ, ελ+ ε1−γc0θ · ∇)

    .

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 30 / 26

  • References

    Data for T cells

    Figure 8: Nonlinear growth of them.s.d. in time.

    Figure 9: ζ(t), which is a rescaleddisplacement, increasesapproximately as a power law.

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 31 / 26

  • References

    New ingredients in the modelling

    I Running + waiting probabilities, for α ∈ (1, 2) andκ ∈ (0, 1)

    ψ(x, τ) =(

    τ0(x)τ0(x) + τ

    )α, ψr (r) =

    (r0

    r0 + r

    )κ.

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 32 / 26

  • References

    New ingredients in the modelling

    I Running + waiting probabilities, for α ∈ (1, 2) andκ ∈ (0, 1)

    ψ(x, τ) =(

    τ0(x)τ0(x) + τ

    )α, ψr (r) =

    (r0

    r0 + r

    )κ.

    I Density of moving + resting populations:

    ∂t σ̄(·, θ) + cθ · ∇σ̄(·, θ)︸ ︷︷ ︸Moving particles

    = σ(·, θ, τ = 0)︸ ︷︷ ︸Particles starting

    a new run

    −∫ t0β(x, τ)σ(·, θ, τ)dτ︸ ︷︷ ︸

    Particles enteringa tumble phase

    ∂t σ̄0(·, θ)︸ ︷︷ ︸Resting particles

    = T

    ∫ t0β(x, τ)σ(·, θ, τ)dτ︸ ︷︷ ︸Particles enteringthe tumble phase

    −σ0(·, θ, τ = 0)︸ ︷︷ ︸Particles starting

    a new run

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 32 / 26

  • References

    System for resting and moving particles

    I Density of moving + resting populations:

    ∂t σ̄ + cθ · ∇σ̄ = σ(·, θ, 0)−∫ t0 β(x, τ)σ(·, θ, τ)dτ ,

    ∂t σ̄0 = T∫ t0 β(x, τ)σ(·, θ, τ)dτ − σ0(·, θ, 0) ,

    σ(·, θ, 0) = σ0(·, θ, 0) ,

    σ(·, θ, 0) =∫ t0drφ(r)

    ∫ t−r0

    ∫Sdηβ(x, τ)σ(x, t−r , η, τ)k(·, η; θ) .

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 33 / 26

  • References

    Solving resting particles’equation

    The particles at rest satisfy the following equation

    εν∂t σ̄0(·, θ) = T∫ t0B(x, t − s)σ̄(x− cθ(t − s), s, θ)ds

    − T∫ t0φε(t − s)

    (∫ s0B(x, t − s ′)σ̄(x− cθ(t − s ′), s ′, θ)ds ′

    )ds .

    (1)

    The Laplace transform of this expression is

    ενλˆ̄σ0(x, λ, θ)− εν σ̄00(x, θ) = rκ0 ε(ν+%)κλκT B̂ε(x, ε1−γc0θ · ∇)ˆ̄σ(x, λ, θ) ,(2)

    and if we assume that ν > 1− γ as before we get

    εν∂t σ̄0(·, θ) = rκ0 ε(ν+%)κT tDκBε(x, ε1−γc0θ · ∇)σ̄(·, θ) . (3)

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 34 / 26

  • References

    General strategy

    I For µ, γ > 0 and %� ν > 0, we use the scaling(x, t, c, τ, r) 7→ (x/ε, t/ε, c0/εγ , τ/εµ, r/ε%).

    I For σtot = 1|S |(ū + εϑnθ · w̄

    )+ 1|S | ū0 the conservation

    equation is

    ∂t(ū + ū0) + nc0∇ · w̄ = ∂tutot +∇ · (Cα∇α−1(utot − ū0))where

    ū0(x, t) =1|S |

    ∫Sσ̄0(·, θ)dθ .

    I w̄ is obtained from the equation of the moving particles.

    I Integrating the equation of the resting particles we obtainū0 and the fractional operator in time tD1−κ is introduced,hence

    ∂tutot = tD1−κ∇ ·

    (Cα,κ∇α−1utot

    ).

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 35 / 26

  • References

    Back up

    ⇒ ∂tutot = ∇ ·(Cα∇α−1ū

    )= ∇ · (Cα∇α−1(utot − ū0)) .

    Expanding the right hand side of (3) and choosing only theleading terms we obtain, in the Laplace space,

    λˆ̄σ0(x, λ, θ)−σ̄00(x, 0, θ) = rκ0 λκ(α− 1)τ0

    ˆ̄u+O(ε(ν+%)κ+µ(α−2)+(α−1)(1−γ)

    ).

    Substituting ū = utot− ū0 into the right hand side and groupingterms we obtain

    ˆ̄u0(x, λ)−1λū00(x, 0) =

    ûtot1 + τ0rκ0 (α−1)λ

    1−κ . (4)

    Since λ→ 0 then, applying a Taylor expansion and assuming allparticles are moving at t = 0, i.e. ū00 = 0, we have

    ˆ̄u0 =

    (1− τ0λ

    1−κ

    rκ0 (α− 1)+O

    (λ2(1−κ)

    ))ûtot . (5)

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 36 / 26

  • References

    Fundamental solution

    Assuming Cα,κ independent of x, the fundamental solution of

    Ct D

    κ utot = Cα,κ∇ ·(∇α−1utot

    )= C̃α,κ(−∆)α/2utot,

    is given in terms of Fox H functions.

    G (t, x) =1

    πn/2|x|nH2,12,3

    (|x|α

    2αC̃α,κtκ

    ∣∣∣(1,1);(1,κ)(n/2,α/2);(1,1);(1,α/2)

    ).

    In the limit |x|α

    C̃α,κtκ� 1 the asymptotic behaviour of H is known,

    G (t, x) ' 1|x|n

    (|x|α

    2αC̃α,κtκ

    )qfor q = −1 .

    Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 37 / 26

  • References

    Hitting time

    δ =

    ∫T

    ∫Rn

    G (x− y, t0)u0(y)dydx. (6)

    Assuming that the initial positions of the particles are given byxi , so that u0(x) =

    ∑i δxi (x), we obtain

    δ =∑i

    ∫TG (x− xi , t0)dx (7)

    If all initial positions are at distance � (C̃α,κτκ)1/α from thetarget T , we may use the asymptotic expansion of theH-function from the previous subsection to obtain

    δ ' 2αC̃α,κt

    κ0

    πn/2

    ∑i

    ∫T|x− xi |−α−ndx

    ' 2αC̃α,κt

    κ0

    πn/2vol(T )

    ∑i

    |x0 − xi |−α−n,(8)

    where x0 is a centre of the target T .Gissell Estrada-Rodríguez Nonlocal macroscopic PDEs from kinetic equations 20/01/2020 38 / 26

    IntroductionChemotaxisSuperdiffusionExperimental evidenceMicroscopic descriptionResult IT cellsResult IIHitting timesFrom Rn to networksMetaplex diffusionNumericsReal-world examplesConclusionsAppendixReferences

    fd@rm@0: