macmillan lecture 4

136
Organocatalysis The rapid growth of organocatalysis over the last 10 years was fueled by the development of a small number of generic activation modes Enantioselective Organocatalysis: A Valuable Strategy for Chemical Synthesis

Upload: czidane

Post on 11-Nov-2015

113 views

Category:

Documents


0 download

DESCRIPTION

Org by McMillan ... sucks¡

TRANSCRIPT

  • ! Last 10 years, organocatalysis has delivered many new asymmetric transforms (~150-200)

    Im

    N

    N

    O Me

    Ph

    +

    Iminium catalysis

    Me

    Me

    Me

    R

    with Jorgensen, K. A.

    ~50 new reactions

    En

    NHO2C

    Enamine catalysis

    Hajos-Wiechert

    ~20 new reactions

    H+H-bond catalysis

    JacobsenAkiyama

    ~30 new reactions

    R

    Barbas-List

    X N N

    S

    H H

    Me

    Y

    Me

    R H

    O

    ! These 3 activation modes cover a large portion of the organocatalysis landscape

    Me

    Organocatalysis

    The rapid growth of organocatalysis over the

    last 10 years was fueled by the development

    of a small number of generic activation modes

    Enantioselective Organocatalysis: A Valuable Strategy for Chemical Synthesis

  • ! Last 10 years, organocatalysis has delivered many new asymmetric transforms (~150-200)

    Im

    N

    N

    O Me

    Ph

    +

    Iminium catalysis

    Me

    Me

    Me

    R

    with Jorgensen, K. A.

    ~50 new reactions

    En

    NHO2C

    Enamine catalysis

    Hajos-Wiechert

    ~20 new reactions

    H+H-bond catalysis

    JacobsenAkiyama

    ~30 new reactions

    R

    Barbas-List

    X N N

    S

    H H

    Me

    Y

    Me

    R H

    O

    ! These 3 activation modes cover a large portion of the organocatalysis landscape

    Me

    Organocatalysis

    The rapid growth of organocatalysis over the

    last 10 years was fueled by the development

    of a small number of generic activation modes

    Enantioselective Organocatalysis: A Valuable Strategy for Chemical Synthesis

  • ! Last 10 years, organocatalysis has delivered many new asymmetric transforms (~150-200)

    Im

    N

    N

    O Me

    Ph

    +

    Iminium catalysis

    Me

    Me

    Me

    R

    with Jorgensen, K. A.

    ~50 new reactions

    En

    NHO2C

    Enamine catalysis

    Hajos-Wiechert

    ~20 new reactions

    H+H-bond catalysis

    JacobsenAkiyama

    ~30 new reactions

    R

    Barbas-List

    X N N

    S

    H H

    Me

    Y

    Me

    R H

    O

    ! These 3 activation modes cover a large portion of the organocatalysis landscape

    Me

    Organocatalysis

    The rapid growth of organocatalysis over the

    last 10 years was fueled by the development

    of a small number of generic activation modes

    Enantioselective Organocatalysis: A Valuable Strategy for Chemical Synthesis

  • ! Last 10 years, organocatalysis has delivered many new asymmetric transforms (~150-200)

    Im

    N

    N

    O Me

    Ph

    +

    Iminium catalysis

    Me

    Me

    Me

    R

    with Jorgensen, K. A.

    ~50 new reactions

    En

    NHO2C

    Enamine catalysis

    Hajos-Wiechert

    ~20 new reactions

    H+H-bond catalysis

    JacobsenAkiyama

    ~30 new reactions

    R

    Barbas-List

    X N N

    S

    H H

    Me

    Y

    Me

    R H

    O

    ! These 3 activation modes cover a large portion of the organocatalysis landscape

    Me

    Organocatalysis

    The rapid growth of organocatalysis over the

    last 10 years was fueled by the development

    of a small number of generic activation modes

    Enantioselective Organocatalysis: A Valuable Strategy for Chemical Synthesis

  • ! Last 10 years, organocatalysis has delivered many new asymmetric transforms (~150-200)

    Im

    N

    N

    O Me

    Ph

    +

    Iminium catalysis

    Me

    Me

    Me

    R

    with Jorgensen, K. A.

    ~50 new reactions

    En

    NHO2C

    Enamine catalysis

    Hajos-Wiechert

    ~20 new reactions

    H+H-bond catalysis

    JacobsenAkiyama

    ~30 new reactions

    R

    Barbas-List

    X N N

    S

    H H

    Me

    Y

    Me

    R H

    O

    ! These 3 activation modes cover a large portion of the organocatalysis landscape

    Me

    Organocatalysis

    The rapid growth of organocatalysis over the

    last 10 years was fueled by the development

    of a small number of generic activation modes

    Enantioselective Organocatalysis: A Valuable Strategy for Chemical Synthesis

  • ! Last 10 years, organocatalysis has delivered many new asymmetric transforms (~150-200)

    Im

    N

    N

    O Me

    Ph

    +

    Iminium catalysis

    Me

    Me

    Me

    R

    with Jorgensen, K. A.

    ~50 new reactions

    En

    NHO2C

    Enamine catalysis

    Hajos-Wiechert

    ~20 new reactions

    H+H-bond catalysis

    JacobsenAkiyama

    ~30 new reactions

    R

    Barbas-List

    X N N

    S

    H H

    Me

    Y

    Me

    R H

    O

    ! These 3 activation modes cover a large portion of the organocatalysis landscape

    Me

    Organocatalysis

    The rapid growth of organocatalysis over the

    last 10 years was fueled by the development

    of a small number of generic activation modes

    Enantioselective Organocatalysis: A Valuable Strategy for Chemical Synthesis

  • Organometallic Catalysis: Few Activation Concepts Many Powerful Reactions

    !

    !-bond insertion

    ! Relatively few activation modes have resulted in literally thousands of new chemical reactions

    CC bond coupling

    !-bond insertion

    CN, S, O coupling"-bond insertion

    !"

    Lewis acid catalysis Olefin metathesis Atom transfer catalysis

    At

    Suzuki

    Negishi

    Stille

    Kumada

    Fu

    Buchwald

    Hartwig

    Yates

    Corey

    Evans

    Shibasaki

    Mukaiyama

    Grubbs

    Schrock

    Hoveyda

    Furstner

    Sharpless

    Jacobsen

    Shi

    Doyle

    RuLa

    Noyori

    Toste

    Heck

    Feringa

    Krische

  • Why don't we focus on the invention of new, useful catalytic activation modes?

    Relatively Few Catalysis Activation Concepts Many Powerful Reactions

    Instead of focusing completely on the invention of individual catalytic reactions

    using long-established activation modes

    Design of an entirely new catalyst activation mode is extremely challenging

    So

    OrganoSOMO

    ! Two new modes of catalyst activation using organocatalysts

    Photoredox

    +e

    organocatalysiscatalysis

  • Why don't we focus on the invention of new, useful catalytic activation modes?

    Relatively Few Catalysis Activation Concepts Many Powerful Reactions

    Instead of focusing completely on the invention of individual catalytic reactions

    using long-established activation modes

    Design of an entirely new catalyst activation mode is extremely challenging

    So

    OrganoSOMO

    ! Two new modes of catalyst activation using organocatalysts

    Photoredox

    +e

    organocatalysiscatalysis

  • Why don't we focus on the invention of new, useful catalytic activation modes?

    Relatively Few Catalysis Activation Concepts Many Powerful Reactions

    Instead of focusing completely on the invention of individual catalytic reactions

    using long-established activation modes

    Design of an entirely new catalyst activation mode is extremely challenging

    So

    OrganoSOMO

    ! Two new modes of catalyst activation using organocatalysts

    Photoredox

    +e

    organocatalysiscatalysis

  • Why don't we focus on the invention of new, useful catalytic activation modes?

    Relatively Few Catalysis Activation Concepts Many Powerful Reactions

    Instead of focusing completely on the invention of individual catalytic reactions

    using long-established activation modes

    Design of an entirely new catalyst activation mode is extremely challenging

    So

    OrganoSOMO

    ! Two new modes of catalyst activation using organocatalysts

    Photoredox

    +e

    organocatalysiscatalysis

  • So

    OrganoSOMO

    ! A new mode of organocatalytic activation

    catalysis

    Relatively Few Catalysis Activation Concepts Many Powerful Reactions

    ! A new mode of organocatalytic activation

    Photoredox

    +e

    organocatalysis

  • Holy Grails in Asymmetric Catalysis: Asymmetric !-Carbonyl Alyklation

    Me

    O catalyst

    alkylBr

    Me

    O

    alkyl

  • Holy Grails in Asymmetric Catalysis: Enolate Alyklation

    ! Chiral Auxiliary Controlled 1982, Evans, Meyers

    NO

    O

    Me

    Me

    O

    NO

    O

    Me

    Me

    O

    Bn

    93% yield

    120:1 dr

    ! Catalytic Ketone Variant: Abby Doyle, Eric Jacobsen

    LDA;

    BnBr

    Ph Ph

    OSnBu3

    Me

    Br

    5 mol% cat

    OMe

    N N

    O

    t-Bu

    t-Bu t-BuO

    t-Bu

    Cr

    Cl

    salen catalyst84% yield

    94% ee

    ! Fu has also introduced an elegant enantioselective alkyl-halide alkylation reaction

    ! O'Donnell, Corey and Maruoka: glycine imine alkylation via PTC (seminal contributions )

  • Holy Grails in Asymmetric Catalysis: Enolate Alyklation

    ! Chiral Auxiliary Controlled 1982, Evans, Meyers

    NO

    O

    Me

    Me

    O

    NO

    O

    Me

    Me

    O

    Bn

    93% yield

    120:1 dr

    ! Catalytic Ketone Variant: Abby Doyle, Eric Jacobsen

    LDA;

    BnBr

    Ph Ph

    OSnBu3

    Me

    Br

    5 mol% cat

    OMe

    N N

    O

    t-Bu

    t-Bu t-BuO

    t-Bu

    Cr

    Cl

    salen catalyst84% yield

    94% ee

    ! Fu has also introduced an elegant enantioselective alkyl-halide alkylation reaction

    ! O'Donnell, Corey and Maruoka: glycine imine alkylation via PTC (seminal contributions )

  • Holy Grails in Asymmetric Catalysis: Enolate Alyklation

    ! Chiral Auxiliary Controlled 1982, Evans, Meyers

    NO

    O

    Me

    Me

    O

    NO

    O

    Me

    Me

    O

    Bn

    93% yield

    120:1 dr

    ! Catalytic Ketone Variant: Abby Doyle, Eric Jacobsen

    LDA;

    BnBr

    Ph Ph

    OSnBu3

    Me

    Br

    5 mol% cat

    OMe

    N N

    O

    t-Bu

    t-Bu t-BuO

    t-Bu

    Cr

    Cl

    salen catalyst84% yield

    94% ee

    ! Fu has also introduced an elegant enantioselective alkyl-halide alkylation reaction

    ! O'Donnell, Corey and Maruoka: glycine imine alkylation via PTC (seminal contributions )

  • Can we use Enamine Catalysis to Solve Asymmetric Catalytic Carbonyl Alkylation

    H

    O I

    MeI BnBr

    or

    or

    NH

    Initial idea: to perform asymmetric alkylation on aldehydes!

    aldehyde enamine

    catalyst

    H

    O

    no alkylation product

    Me

    Teresa Beeson: 3rd Year Graduate Student!

    Only products of aldehyde self dimerization were observed!

  • Can we use Enamine Catalysis to Solve Asymmetric Catalytic Carbonyl Alkylation

    H

    O I

    MeI BnBr

    or

    or

    NH

    Initial idea: to perform asymmetric alkylation on aldehydes!

    aldehyde enamine

    catalyst

    H

    O

    no alkylation product

    Me

    Teresa Beeson: 3rd Year Graduate Student!

    Only products of aldehyde self dimerization were observed!

  • Inherent Problems for Enamine Catalysis and Asymmetric Catalytic Alkylation

    HR

    O

    NH

    Potential Issues for Enantioselective Alkylation using Enamine Catalysis!

    aldehyde enamine

    catalyst

    NR

    insufficient e- density

    to react with

    sp3-electrophile

    H I

    HHMeI

    NR

    sufficient e- density

    to react with

    sp2-aldehyde

    in comparison to sp2-aldehyde

    HO

    R

    H

    +

    H

    O

    aldehyde-aldehyde

    R

    R

    OH

    aldol dominates

    Intramolecular aldehyde alkylation can be accomplished (List and coworkers)!

  • Designing a New Organocatalytic Catalysis Concept: SOMO Catalysis

    Trying to force a reaction to work within the confines

    of a known catalysis concept or activation mode

    (square peg, round hole)

    N

    H

    O

    R

    HR

    N

    R

    H

    not

    +

    X

  • Designing a New Organocatalytic Catalysis Concept: SOMO Catalysis

    ! Can we utilize the one electron species that lies between iminium and enamine catalysis

    LUMOactivation

    N

    N

    O Me

    Ph

    +

    HOMOactivation

    N

    N

    O Me

    Ph

    iminium catalysis enamine catalysis

    SOMOactivation

    N

    N

    O Me

    Ph

    somo catalysis

    Reface

    activated

    Reface

    activated

    Me

    Me

    MeMe

    Me

    MeMe

    Me

    Me

    +2 e 1 e

    [oxid]

    R R R

  • Designing a New Organocatalytic Catalysis Concept: SOMO Catalysis

    ! Can we utilize the one electron species that lies between iminium and enamine catalysis

    LUMOactivation

    N

    N

    O Me

    Ph

    +

    HOMOactivation

    N

    N

    O Me

    Ph

    iminium catalysis enamine catalysis

    SOMOactivation

    N

    N

    O Me

    Ph

    somo catalysis

    Reface

    activated

    Reface

    activated

    Me

    Me

    MeMe

    Me

    MeMe

    Me

    Me

    +2 e 1 e

    [oxid]

    R R R

  • Designing a New Organocatalytic Catalysis Concept: SOMO Catalysis

    ! Can we utilize the one electron species that lies between iminium and enamine catalysis

    LUMOactivation

    N

    N

    O Me

    Ph

    +

    HOMOactivation

    N

    N

    O Me

    Ph

    iminium catalysis enamine catalysis

    SOMOactivation

    N

    N

    O Me

    Ph

    somo catalysis

    Reface

    activated

    Reface

    activated

    Me

    Me

    MeMe

    Me

    MeMe

    Me

    Me

    +2 e 1 e

    [oxid]

    R R R

  • Designing a New Organocatalytic Catalysis Concept: SOMO Catalysis

    ! Can we utilize the one electron species that lies between iminium and enamine catalysis

    LUMOactivation

    N

    N

    O Me

    Ph

    +

    HOMOactivation

    N

    N

    O Me

    Ph

    iminium catalysis enamine catalysis

    SOMOactivation

    N

    N

    O Me

    Ph

    somo catalysis

    Reface

    activated

    Reface

    activated

    Me

    Me

    MeMe

    Me

    MeMe

    Me

    Me

    +2 e 1 e

    [oxid]

    R R R

  • Designing a New Organocatalytic Catalysis Concept: SOMO Catalysis

    ! Can we utilize the one electron species that lies between iminium and enamine catalysis

    LUMOactivation

    N

    N

    O Me

    Ph

    +

    HOMOactivation

    N

    N

    O Me

    Ph

    iminium catalysis enamine catalysis

    SOMOactivation

    N

    N

    O Me

    Ph

    somo catalysis

    Reface

    activated

    Reface

    activated

    Me

    Me

    MeMe

    Me

    MeMe

    Me

    Me

    +2 e 1 e

    [oxid]

    R R R

  • SOMO Catalysis: Potential Utility of New Catalysis Platform

    H

    O

    H

    O

    N

    N

    O Me

    Ph Me

    Me

    Me

    oxidantCAN

    !-allyl aldehydes

    N

    NH

    O Me

    catalyst

    Me

    Me

    MePh

    substrate

    SiMe3

    with SOMOphile

    Br

    not electrophile

    SOMO species

  • SOMO Catalysis: Potential Utility of New Catalysis Platform

    H

    O

    H

    O

    N

    N

    O Me

    Ph Me

    Me

    Me

    oxidantCAN

    !-allyl aldehydes

    N

    NH

    O Me

    catalyst

    Me

    Me

    MePh

    substrate

    SiMe3

    with SOMOphile

    Br

    not electrophile

    SOMO species

  • SOMO Catalysis: Potential Utility of New Catalysis Platform

    H

    O

    H

    O

    N

    N

    O Me

    Ph Me

    Me

    Me

    oxidantCAN

    !-allyl aldehydes

    N

    NH

    O Me

    catalyst

    Me

    Me

    MePh

    substrate

    SiMe3

    with SOMOphile

    Br

    not electrophile

    SOMO species

  • SOMO Catalysis: Potential Utility of New Catalysis Platform

    H

    O

    H

    O

    N

    N

    O Me

    Ph Me

    Me

    Me

    oxidantCAN

    !-allyl aldehydes

    N

    NH

    O Me

    catalyst

    Me

    Me

    MePh

    substrate

    SiMe3

    with SOMOphile

    Br

    not electrophile

    SOMO species

  • SOMO Catalysis: Potential Utility of New Catalysis Platform

    H

    O

    H

    O

    N

    N

    O Me

    Ph Me

    Me

    Me

    oxidantCAN

    !-allyl aldehydes

    N

    NH

    O Me

    catalyst

    Me

    Me

    MePh

    substrate

    SiMe3

    with SOMOphile

    Br

    not electrophile

    SOMO species

  • SOMO Catalysis: Potential Utility of New Catalysis Platform

    H

    O

    H

    O

    enantiopure

    !-oxy aldehydes

    N

    N

    O Me

    Ph Me

    Me

    Me

    oxidant

    H

    O

    H

    O

    Ph

    O

    H

    O

    OR

    CAN!-aryl aldehydes

    1,4-keto-aldehydesenantiopure

    enantiopure

    !-allyl aldehydes

    N

    NH

    O Me

    catalyst

    Me

    Me

    MePh

    substrate

    enantiopure

    enantiopure

    !"vinylation

    H

    O

    O

    H

    ring formation

    SOMO species

  • SOMO catalysis concept

    O

    RNH

    R+ N

    R

    R

    HCl

    substrate catalyst SOMOactivationoxidant

    1 e

    Designing a New Organocatalytic Catalysis Concept: SOMO Catalysis

    Oxidant should selectively reract with transient enamine to generate radical iminium cation

    Why will there be selective oxidation: oxidation potentials

    NHH

    ON

    H

    butanal pyrrolidine 1-(but-1-enyl)pyrrolidine

    IP = 9.84 eV IP = 8.8 eV IP = 7.24 eV

  • SOMO catalysis concept

    O

    RNH

    R+ N

    R

    R

    HCl

    substrate catalyst SOMOactivationoxidant

    1 e

    Designing a New Organocatalytic Catalysis Concept: SOMO Catalysis

    Oxidant should selectively reract with transient enamine to generate radical iminium cation

    Why will there be selective oxidation: oxidation potentials

    NHH

    ON

    H

    butanal pyrrolidine 1-(but-1-enyl)pyrrolidine

    IP = 9.84 eV IP = 8.8 eV IP = 7.24 eV

  • Could this be a third general platform of induction for the imidazolidinone catalyst family

    Reface

    SOMO nucleophiles

    N

    NH

    O Me

    organocatalyst

    +

    Iminium geometry control

    !-carbon radical geometry control

    substrate

    Requirements for enantioselectivity:

    SOMO catalysis concept

    Me

    Me

    Me

    O

    RNH

    R+ N

    R

    R

    HCl

    substrate catalyst SOMOactivation

    O

    oxidant

    1 e

    Ph

    oxidant

    CAN+

    activated to

    Designing a New Organocatalytic Catalysis Concept: SOMO Catalysis

  • Studies to determine the utility of SOMO catalysis for aldehyde alkylation

    N

    NH

    Bn

    O Me

    tBu

    TMSH

    O

    aldehyde allyl silane 2 eq CAN

    10 mol%

    DME

    !

    H

    O

    aldehyde aldol (undesired)

    OH

  • Studies to determine the utility of SOMO catalysis for aldehyde alkylation

    N

    NH

    Bn

    O Me

    tBu

    TMSH

    O

    aldehyde allyl silane 2 eq CAN

    10 mol%

    DME

    !

  • Studies to determine the utility of SOMO catalysis for aldehyde alkylation

    N

    NH

    Bn

    O Me

    tBu

    TMSH

    O

    aldehyde allyl silane 2 eq CAN

    10 mol%

    DME

    !

    H

    O

    aldehyde aldol (undesired)

    OH

  • Studies to determine the utility of SOMO catalysis for aldehyde alkylation

    N

    NH

    Bn

    O Me

    tBu

    TMSH

    O

    aldehyde allyl silane 2 eq CAN

    10 mol%

    DME

    !

  • Studies to determine the utility of SOMO catalysis for aldehyde alkylation

    N

    NH

    Bn

    O Me

    tBu

    TMSH

    O

    !-alkylated aldehyde

    H

    O

    aldehyde allyl silane 2 eq CAN

    10 mol%

    DME

    81% yield

    91% ee

    ! Varying the allylsilane and the aldehyde component

    H

    O

    H

    O

    Me

    H

    O

    CO2Et

    81% yield

    91% ee

    88% yield

    91% ee

    81% yield

    90% ee

    H

    O

    H

    O

    Ph

    Ph

    H

    O

    58% yield

    94% ee

    87% yield

    90% ee

    70% yield

    93% ee

    NBoc

    !

    with Beeson, Masstrachio, Hong, Ashton, Science, 2007, 316, 582

    Me

  • Studies to determine the utility of SOMO catalysis for aldehyde alkylation

    N

    NH

    Bn

    O Me

    tBu

    TMSH

    O

    !-alkylated aldehyde

    H

    O

    aldehyde allyl silane 2 eq CAN

    10 mol%

    DME

    81% yield

    91% ee

    ! Varying the allylsilane and the aldehyde component

    H

    O

    H

    O

    Me

    H

    O

    CO2Et

    81% yield

    91% ee

    88% yield

    91% ee

    81% yield

    90% ee

    H

    O

    H

    O

    Ph

    Ph

    H

    O

    58% yield

    94% ee

    87% yield

    90% ee

    70% yield

    93% ee

    NBoc

    !

    with Beeson, Masstrachio, Hong, Ashton, Science, 2007, 316, 582

    Me

  • ! OrganoSOMO Aldehyde Alkylation

    Enantioselective OrganoSOMO Catalysis: Possible Catalytic Cycle

    N

    NH

    But

    Ph

    MeO

    O

    R

    H

    1e

    cat A

    +

    radical-cation ?

    O

    H

    Ph

    SiMe3

    ! Mechanistic Evidence for radical cation

    10% catalyst A

    2 eq CAN

    O

    H

    PhO2NO

    68 %

    N

    H

    Ph

    N

    H

    Ph

    N

    H

    Ph

    1e

    O

    H

    Ph

    10% catalyst A

    O

    H

    Ph

    82 %

    2 eq NCS Cl

    O

    H

    Ph

    radical-clock substrate

    used to detect

    SOMO catalysis versus

    enamine catalysis

    ! Enamine catalysis

    N

    H

    Ph

    1e

    stable unstable

    O

    H

    Ph

    not

    observed

    ! SOMO catalysis

  • ! OrganoSOMO Aldehyde Alkylation

    Enantioselective OrganoSOMO Catalysis: Possible Catalytic Cycle

    N

    NH

    But

    Ph

    MeO

    O

    R

    H

    1e

    cat A

    +

    radical-cation ?

    O

    H

    Ph

    SiMe3

    ! Mechanistic Evidence for radical cation

    10% catalyst A

    2 eq CAN

    O

    H

    PhO2NO

    68 %

    N

    H

    Ph

    N

    H

    Ph

    N

    H

    Ph

    1e

    O

    H

    Ph

    10% catalyst A

    O

    H

    Ph

    82 %

    2 eq NCS Cl

    O

    H

    Ph

    radical-clock substrate

    used to detect

    SOMO catalysis versus

    enamine catalysis

    ! Enamine catalysis

    N

    H

    Ph

    1e

    stable unstable

    O

    H

    Ph

    not

    observed

    ! SOMO catalysis

  • ! OrganoSOMO Aldehyde Alkylation

    Enantioselective OrganoSOMO Catalysis: Possible Catalytic Cycle

    N

    NH

    But

    Ph

    MeO

    O

    R

    H

    1e

    cat A

    +

    radical-cation ?

    O

    H

    Ph

    SiMe3

    ! Mechanistic Evidence for radical cation

    10% catalyst A

    2 eq CAN

    O

    H

    PhO2NO

    68 %

    N

    H

    Ph

    N

    H

    Ph

    N

    H

    Ph

    1e

    O

    H

    Ph

    10% catalyst A

    O

    H

    Ph

    82 %

    2 eq NCS Cl

    O

    H

    Ph

    radical-clock substrate

    used to detect

    SOMO catalysis versus

    enamine catalysis

    ! Enamine catalysis

    N

    H

    Ph

    1e

    stable unstable

    O

    H

    Ph

    not

    observed

    ! SOMO catalysis

  • ! OrganoSOMO Aldehyde Alkylation

    Enantioselective OrganoSOMO Catalysis: Possible Catalytic Cycle

    N

    NH

    But

    Ph

    MeO

    O

    R

    H

    1e

    cat A

    +

    radical-cation ?

    O

    H

    Ph

    SiMe3

    ! Mechanistic Evidence for radical cation

    10% catalyst A

    2 eq CAN

    O

    H

    PhO2NO

    68 %

    N

    H

    Ph

    N

    H

    Ph

    N

    H

    Ph

    1e

    O

    H

    Ph

    10% catalyst A

    O

    H

    Ph

    82 %

    2 eq NCS Cl

    O

    H

    Ph

    radical-clock substrate

    used to detect

    SOMO catalysis versus

    enamine catalysis

    ! Enamine catalysis

    N

    H

    Ph

    1e

    stable unstable

    O

    H

    Ph

    not

    observed

    ! SOMO catalysis

  • ! OrganoSOMO Aldehyde Alkylation

    Enantioselective OrganoSOMO Catalysis: Possible Catalytic Cycle

    N

    NH

    But

    Ph

    MeO

    O

    R

    H

    1e

    cat A

    +

    radical-cation ?

    O

    H

    Ph

    SiMe3

    ! Mechanistic Evidence for radical cation

    10% catalyst A

    2 eq CAN

    O

    H

    PhO2NO

    68 %

    N

    H

    Ph

    N

    H

    Ph

    N

    H

    Ph

    1e

    O

    H

    Ph

    10% catalyst A

    O

    H

    Ph

    82 %

    2 eq NCS Cl

    O

    H

    Ph

    radical-clock substrate

    used to detect

    SOMO catalysis versus

    enamine catalysis

    ! Enamine catalysis

    N

    H

    Ph

    1e

    stable unstable

    O

    H

    Ph

    not

    observed

    ! SOMO catalysis

  • ! OrganoSOMO Aldehyde Alkylation

    Enantioselective OrganoSOMO Catalysis: Possible Catalytic Cycle

    SiMe3

    N

    NH

    But

    Ph

    MeO

    X-

    N

    N BntBu

    Me O

    R

    SiMe3

    O

    R

    H

    1e

    cat A

    +

    +

    SOMOphile addition?

  • ! OrganoSOMO Aldehyde Alkylation

    Enantioselective OrganoSOMO Catalysis: Possible Catalytic Cycle

    SiMe3

    N

    NH

    But

    Ph

    MeO

    X-

    N

    N BntBu

    Me O

    R

    SiMe3

    O

    R

    H

    1e

    cat A

    +

    +

    SOMOphile addition?

  • ! OrganoSOMO Aldehyde Alkylation

    Enantioselective OrganoSOMO Catalysis: Possible Catalytic Cycle

    SiMe3

    N

    NH

    But

    Ph

    MeO

    X-

    N

    N BntBu

    Me O

    R

    SiMe3

    O

    R

    H

    1e

    cat A

    +

    +

    ! Newcombe radical vs cation discrimination

    N

    H

    Newcombe: to detect

    2e !-addition pathway

    versus

    1e SOMOphile additionMeO Ph

    ! Test for SOMOphile

    N

    H

    OMe

    Ph

    MeO Ph

    N

    H

    OMe

    Ph

    N

    H

    OMe

    PhX

    O

    HPh

    O

    O

    H

    10% catalyst A

    2 eq CAN 57%

    olefin B

    B

    O

    Bu

    H

    OMe

    PhO2NO

    O

    HB

    + +

    + +

  • ! OrganoSOMO Aldehyde Alkylation

    Enantioselective OrganoSOMO Catalysis: Possible Catalytic Cycle

    SiMe3

    N

    NH

    But

    Ph

    MeO

    X-

    N

    N BntBu

    Me O

    R

    SiMe3

    O

    R

    H

    1e

    cat A

    +

    +

    ! Newcombe radical vs cation discrimination

    N

    H

    Newcombe: to detect

    2e !-addition pathway

    versus

    1e SOMOphile additionMeO Ph

    ! Test for SOMOphile

    N

    H

    OMe

    Ph

    MeO Ph

    N

    H

    OMe

    Ph

    N

    H

    OMe

    PhX

    O

    HPh

    O

    O

    H

    10% catalyst A

    2 eq CAN 57%

    olefin B

    B

    O

    Bu

    H

    OMe

    PhO2NO

    O

    HB

    + +

    + +

  • ! OrganoSOMO Aldehyde Alkylation

    Enantioselective OrganoSOMO Catalysis: Possible Catalytic Cycle

    SiMe3

    N

    NH

    But

    Ph

    MeO

    X-

    N

    N BntBu

    Me O

    R

    SiMe3

    O

    R

    H

    1e

    cat A

    +

    +

    ! Newcombe radical vs cation discrimination

    N

    H

    Newcombe: to detect

    2e !-addition pathway

    versus

    1e SOMOphile additionMeO Ph

    ! Test for SOMOphile

    N

    H

    OMe

    Ph

    MeO Ph

    N

    H

    OMe

    Ph

    N

    H

    OMe

    PhX

    O

    HPh

    O

    O

    H

    10% catalyst A

    2 eq CAN 57%

    olefin B

    B

    O

    Bu

    H

    OMe

    PhO2NO

    O

    HB

    + +

    + +

  • ! OrganoSOMO Aldehyde Alkylation

    Enantioselective OrganoSOMO Catalysis: Possible Catalytic Cycle

    SiMe3

    N

    NH

    But

    Ph

    MeO

    X-

    N

    N BntBu

    Me O

    R

    SiMe3

    O

    R

    H

    1e

    cat A

    +

    +

    ! Newcombe radical vs cation discrimination

    N

    H

    Newcombe: to detect

    2e !-addition pathway

    versus

    1e SOMOphile additionMeO Ph

    ! Test for SOMOphile

    N

    H

    OMe

    Ph

    MeO Ph

    N

    H

    OMe

    Ph

    N

    H

    OMe

    PhX

    O

    HPh

    O

    O

    H

    10% catalyst A

    2 eq CAN 57%

    olefin B

    B

    O

    Bu

    H

    OMe

    PhO2NO

    O

    HB

    + +

    + +

  • ! OrganoSOMO Aldehyde Alkylation

    Enantioselective OrganoSOMO Catalysis: Possible Catalytic Cycle

    SiMe3

    N

    NH

    But

    Ph

    MeO

    X-

    N

    N BntBu

    Me O

    R

    SiMe3

    O

    R

    H

    1e

    1e

    X-

    N

    N BntBu

    Me O

    R

    SiMe3

    cat A

    +

    +

    +

    ! This catalytic cycle would require 2 oxidation events

    ! Second oxidation is

    important ?

    ! Test for second oxidation

    O

    Bu

    H

    SiMe3

    10% catalyst A

    X eq CAN

    O

    Bu

    H

    X eq CAN % Yield

    1.0

    1.5

    2.0

    3.0

    37%

    61%

    88%

    87%

    SiMe3SiMe3

    ! !-silyl radical readily oxidized

    1e

  • ! OrganoSOMO Aldehyde Alkylation

    Enantioselective OrganoSOMO Catalysis: Possible Catalytic Cycle

    SiMe3

    N

    NH

    But

    Ph

    MeO

    X-

    N

    N BntBu

    Me O

    R

    SiMe3

    O

    R

    H

    1e

    1e

    X-

    N

    N BntBu

    Me O

    R

    SiMe3

    cat A

    +

    +

    +

    ! This catalytic cycle would require 2 oxidation events

    ! Second oxidation is

    important ?

    ! Test for second oxidation

    O

    Bu

    H

    SiMe3

    10% catalyst A

    X eq CAN

    O

    Bu

    H

    X eq CAN % Yield

    1.0

    1.5

    2.0

    3.0

    37%

    61%

    88%

    87%

    SiMe3SiMe3

    ! !-silyl radical readily oxidized

    1e

  • ! OrganoSOMO Aldehyde Alkylation

    Enantioselective OrganoSOMO Catalysis: Possible Catalytic Cycle

    SiMe3

    N

    NH

    But

    Ph

    MeO

    X-

    N

    N BntBu

    Me O

    R

    SiMe3

    O

    R

    H

    1e

    1e

    X-

    N

    N BntBu

    Me O

    R

    SiMe3

    cat A

    +

    +

    +

    ! This catalytic cycle would require 2 oxidation events

    ! Second oxidation is

    important ?

    ! Test for second oxidation

    O

    Bu

    H

    SiMe3

    10% catalyst A

    X eq CAN

    O

    Bu

    H

    X eq CAN % Yield

    1.0

    1.5

    2.0

    3.0

    37%

    61%

    88%

    87%

    SiMe3SiMe3

    ! !-silyl radical readily oxidized

    1e

    O

    Bu

    H

    SiMe3

    10% catalyst A

    X eq CAN

    O

    Bu

    H

    X eq CAN % Yield

    1.0

    1.5

    2.0

    3.0

    37%

    61%

    88%

    87%

  • ! OrganoSOMO Aldehyde Alkylation

    Enantioselective OrganoSOMO Catalysis: Possible Catalytic Cycle

    SiMe3

    N

    NH

    But

    Ph

    MeO

    X-

    N

    N BntBu

    Me O

    R

    SiMe3

    O

    R

    H

    1e

    1e

    X-

    N

    N BntBu

    Me O

    R

    SiMe3

    cat A

    +

    +

    +

    ! This catalytic cycle would require 2 oxidation events

    ! Second oxidation is

    important ?

    ! Test for second oxidation

    O

    Bu

    H

    SiMe3

    10% catalyst A

    X eq CAN

    O

    Bu

    H

    X eq CAN % Yield

    1.0

    1.5

    2.0

    3.0

    37%

    61%

    88%

    87%

    SiMe3SiMe3

    ! !-silyl radical readily oxidized

    1e

    O

    Bu

    H

    SiMe3

    10% catalyst A

    X eq CAN

    O

    Bu

    H

    X eq CAN % Yield

    1.0

    1.5

    2.0

    3.0

    37%

    61%

    88%

    87%

  • ! OrganoSOMO Aldehyde Alkylation

    Enantioselective OrganoSOMO Catalysis: Possible Catalytic Cycle

    SOMO

    SiMe3

    N

    NH

    But

    Ph

    MeO

    X-

    N

    N BntBu

    Me O

    R

    SiMe3

    O

    R

    H

    R

    O

    H

    !-allyl aldehyde

    1e

    1e

    cycle

    + H2O

    X-

    N

    N BntBu

    Me O

    R

    SiMe3

    oxidant = 1ecat A

    SiMe3+

    ! Loss of TMS-cation

    ! Second oxidation is

    important

    +

    +

    +

  • Aldehyde !-allylation Aldehyde !-enolation

    Aldehyde !-vinylation

    "-Nitro-!-alkyl aldehyde

    91% ee

    96% ee

    90% ee

    94% ee

    91% ee

    SOMO activation strategy is useful for a variety of organocatalytic reactions

    Olefin carbo-oxidation !-Chlorination/epoxidation

    Science 2007, 316, 582 JACS 2007,129, 7004

    JACS 2008, 130, 398

    94% ee

    H

    O

    hex

    HPh

    O

    hex O

    HPh

    O

    hex

    HPh

    O

    hex ONO2

    HMe

    O

    hex

    NO2

    Cascade Cycloaddition

    90% ee

    JACS 2009, 131, 11332

    JACS 2008, 130, 16494

    JACS 2010, 132, asap

    ACIE 2009, 48, 5121

    PhO

    ACIE 2010, asap (Flowers)

    Intramolecular !-arylation

    98% ee

    OH

    JACS 2009, 131, 11640

    OMe

    JACS 2009, 131, 2086 (Nicolaou)

    JACS 2010, 132, 6001 (Houk)

    O

    Me Me

    CN

    H

    H

    H

    Polyene cyclization

    JACS 2010, 132, 5027

    92% eeS

    N

    NO

    H

    Bn

  • Multiple Radical Bond Formations

    Rendler, S.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 5027.

    O

    R

    R

    RR

    R

    N

    N

    OMe

    Ar

    R

    R R

    R

    RR

    R

    O

    R

    RR

    R

    N

    N

    OMe

    Ar

    N

    NH

    Me O

    Ar

    2 x 1e oxidant

    amine catalyst

    H2O, 1e

    Direct and enantioselective access to steroid-type scaffolds

    1e, H+

    amine catalyst

    What oxidant favorsa long-lived radicalfor polycyclization?

    What substituentpattern will favorpolycyclization?

  • Multiple Radical Bond Formations

    Rendler, S.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 5027.

    O

    R

    R

    RR

    R

    N

    N

    OMe

    Ar

    R

    R R

    R

    RR

    R

    O

    R

    RR

    R

    N

    N

    OMe

    Ar

    N

    NH

    Me O

    Ar

    2 x 1e oxidant

    amine catalyst

    H2O, 1e

    Direct and enantioselective access to steroid-type scaffolds

    1e, H+

    amine catalyst

    What oxidant favors

    What substituents

    polycyclization?

    favor polycyclization?

  • Multiple Radical Bond Formations

    Rendler, S.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 5027.

    O

    R

    R

    RR

    R

    N

    N

    OMe

    Ar

    R

    R R

    R

    RR

    R

    O

    R

    RR

    R

    N

    N

    OMe

    Ar

    N

    NH

    Me O

    Ar

    2 x 1e oxidant

    amine catalyst

    H2O, 1e

    Direct and enantioselective access to steroid-type scaffolds

    1e, H+

    amine catalyst

    What oxidant favors

    What substituents

    polycyclization?

    favor polycyclization?

  • Radical vs. Cation Propagating Species in Polycyclization

    Rendler, S.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 5027.

    Me

    HO

    Me

    MeMe

    TFA

    Me

    Me

    MeMe

    Me

    Me

    MeMe

    Johnson, W. S.; Semmelhack, M. F.; Sultanbawa, M. U. S.; Dolak, L. A. J. Am. Chem. Soc. 1968, 90, 2994.

    Propagating species is carbocation: electron rich double bonds favor cyclization

    N

    N

    OMe

    ArMe CN

    Me

    Electrophillic

    Electron

    N

    N

    OMe

    ArMe CN

    Me

    Nucleophillic

    Electron

    N

    N

    OMe

    ArMeCN

    Me

    Propagating species is radical: alternating polarity favors cyclization

    radical

    donating

    radical

    withdrawing

  • Radical vs. Cation Propagating Species in Polycyclization

    Rendler, S.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 5027.

    Me

    HO

    Me

    MeMe

    TFA

    Me

    Me

    MeMe

    Me

    Me

    MeMe

    Johnson, W. S.; Semmelhack, M. F.; Sultanbawa, M. U. S.; Dolak, L. A. J. Am. Chem. Soc. 1968, 90, 2994.

    Propagating species is carbocation: electron rich double bonds favor cyclization

    N

    N

    OMe

    ArMe CN

    Me

    Electrophillic

    Electron

    N

    N

    OMe

    ArMe CN

    Me

    Nucleophillic

    Electron

    N

    N

    OMe

    ArMeCN

    Me

    Propagating species is radical: alternating polarity favors cyclization

    radical

    donating

    radical

    withdrawing

  • Radical vs. Cation Propagating Species in Polycyclization

    Rendler, S.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 5027.

    Me

    HO

    Me

    MeMe

    TFA

    Me

    Me

    MeMe

    Me

    Me

    MeMe

    Johnson, W. S.; Semmelhack, M. F.; Sultanbawa, M. U. S.; Dolak, L. A. J. Am. Chem. Soc. 1968, 90, 2994.

    Propagating species is carbocation: electron rich double bonds favor cyclization

    N

    N

    OMe

    ArMe CN

    Me

    Electrophillic

    Electron

    N

    N

    OMe

    ArMe CN

    Me

    Nucleophillic

    Electron

    N

    N

    OMe

    ArMeCN

    Me

    Propagating species is radical: alternating polarity favors cyclization

    radical

    donating

    radical

    withdrawing

  • Radical vs. Cation Propagating Species in Polycyclization

    Rendler, S.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 5027.

    Me

    HO

    Me

    MeMe

    TFA

    Me

    Me

    MeMe

    Me

    Me

    MeMe

    Johnson, W. S.; Semmelhack, M. F.; Sultanbawa, M. U. S.; Dolak, L. A. J. Am. Chem. Soc. 1968, 90, 2994.

    Propagating species is carbocation: electron rich double bonds favor cyclization

    N

    N

    OMe

    ArMe CN

    Me

    Electrophillic

    Electron

    N

    N

    OMe

    ArMe CN

    Me

    Nucleophillic

    Electron

    N

    N

    OMe

    ArMeCN

    Me

    Propagating species is radical: alternating polarity favors cyclization

    radical

    donating

    radical

    withdrawing

  • Radical vs. Cation Propagating Species in Polycyclization

    Rendler, S.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 5027.

    Me

    HO

    Me

    MeMe

    TFA

    Me

    Me

    MeMe

    Me

    Me

    MeMe

    Johnson, W. S.; Semmelhack, M. F.; Sultanbawa, M. U. S.; Dolak, L. A. J. Am. Chem. Soc. 1968, 90, 2994.

    Propagating species is carbocation: electron rich double bonds favor cyclization

    N

    N

    OMe

    ArMe CN

    Me

    Electrophillic

    Electron

    N

    N

    OMe

    ArMe CN

    Me

    Nucleophillic

    Electron

    N

    N

    OMe

    ArMeCN

    Me

    Propagating species is radical: alternating polarity favors cyclization

    radical

    donating

    radical

    withdrawing

  • Radical vs. Cation Propagating Species in Polycyclization

    Rendler, S.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 5027.

    Me

    HO

    Me

    MeMe

    TFA

    Me

    Me

    MeMe

    Me

    Me

    MeMe

    Johnson, W. S.; Semmelhack, M. F.; Sultanbawa, M. U. S.; Dolak, L. A. J. Am. Chem. Soc. 1968, 90, 2994.

    Propagating species is carbocation: electron rich double bonds favor cyclization

    N

    N

    OMe

    ArMe CN

    Me

    Electrophillic

    Electron

    N

    N

    OMe

    ArMe CN

    Me

    Nucleophillic

    Electron

    N

    N

    OMe

    ArMeCN

    Me

    Propagating species is radical: alternating polarity favors cyclization

    radical

    donating

    radical

    withdrawing

  • Competition with Premature Radical Oxidation

    Rendler, S.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 5027.

    O

    MeN

    NH

    Me O

    Ar

    CANor

    Fe(phen)3(PF6)3

    O

    Further oxidation

    H

    N

    N

    OMe

    ArMe

    N

    N

    OMe

    ArMe

    N

    N

    OMe

    Ar

    Bicyclization

    outcompetes cyclization

    precursor

    Monocylization

    product

  • Competition with Premature Radical Oxidation

    Rendler, S.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 5027.

    O

    MeN

    NH

    Me O

    Ar

    CANor

    Fe(phen)3(PF6)3

    O

    Further oxidation

    H

    N

    N

    OMe

    ArMe

    N

    N

    OMe

    ArMe

    N

    N

    OMe

    Ar

    Bicyclization

    outcompetes cyclization

    precursor

    Monocylization

    product

  • Competition with Premature Radical Oxidation

    Rendler, S.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 5027.

    O

    MeN

    NH

    Me O

    Ar

    CANor

    Fe(phen)3(PF6)3

    O

    Further oxidation

    H

    N

    N

    OMe

    ArMe

    N

    N

    OMe

    ArMe

    N

    N

    OMe

    Ar

    Bicyclization

    outcompetes cyclization

    precursor

    Monocylization

    product

  • Competition with Premature Radical Oxidation

    Rendler, S.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 5027.

    O

    MeN

    NH

    Me O

    Ar

    CANor

    Fe(phen)3(PF6)3

    O

    Further oxidation

    H

    N

    N

    OMe

    ArMe

    N

    N

    OMe

    ArMe

    N

    N

    OMe

    Ar

    Bicyclization

    outcompetes cyclization

    precursor

    Monocylization

    product

  • Copper Oxidant Allows for Efficient Bicyclization

    Rendler, S.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 5027.

    O

    Me

    N

    NH

    Me O

    1-Np

    Cu(OTf)2

    i-PrCN/DME, 23 CO

    Me

    H

    70% yield

    87% ee

    O

    Me

    H

    O

    Me

    H

    O

    Me

    H

    O

    Me

    H

    F MeO

    CN CO2Me

    65% yield

    90% ee

    75% yield

    88% ee

    74% yield

    88% ee

    77% yield

    87% ee

  • Alternating Polarity of Olefins Allows for Multicyclization

    Rendler, S.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 5027.

    CN

    N

    N

    OMe

    ArMe CN

    Me

    Will alternating polarity

    OMe

    OMe

    CNMe

    H

    H

    O

    CN

    Me

    CNMe

    HH

    H

    O

    O

    Me CN

    Me CN

    OMe

    OMeH

    HH

    H

    O

    Me CN

    Me CN

    H

    HH

    H

    CN

    H

    Me

    61% yield

    91% ee

    56% yield

    92% ee

    63% yield

    93% ee

    62% yield

    Tricyclization Tetracyclization

    Pentacyclization Hexacyclization

    6 new CC bonds

    11 contiguous stereocenters

    5 all-carbon quaternarystereocenters

    92% yield per bond formation

    enable multicyclization?

  • Alternating Polarity of Olefins Allows for Multicyclization

    Rendler, S.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 5027.

    CN

    N

    N

    OMe

    ArMe CN

    Me

    Will alternating polarity

    OMe

    OMe

    CNMe

    H

    H

    O

    CN

    Me

    CNMe

    HH

    H

    O

    O

    Me CN

    Me CN

    OMe

    OMeH

    HH

    H

    O

    Me CN

    Me CN

    H

    HH

    H

    CN

    H

    Me

    61% yield

    91% ee

    56% yield

    92% ee

    63% yield

    93% ee

    62% yield

    Tricyclization Tetracyclization

    Pentacyclization Hexacyclization

    6 new CC bonds

    11 contiguous stereocenters

    5 all-carbon quaternarystereocenters

    92% yield per bond formation

    enable multicyclization?

  • Alternating Polarity of Olefins Allows for Multicyclization

    Rendler, S.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 5027.

    CN

    N

    N

    OMe

    ArMe CN

    Me

    Will alternating polarity

    OMe

    OMe

    CNMe

    H

    H

    O

    CN

    Me

    CNMe

    HH

    H

    O

    O

    Me CN

    Me CN

    OMe

    OMeH

    HH

    H

    O

    Me CN

    Me CN

    H

    HH

    H

    CN

    H

    Me

    61% yield

    91% ee

    56% yield

    92% ee

    63% yield

    93% ee

    62% yield

    Tricyclization Tetracyclization

    Pentacyclization Hexacyclization

    6 new CC bonds

    11 contiguous stereocenters

    5 all-carbon quaternarystereocenters

    92% yield per bond formation

    enable multicyclization?

  • Alternating Polarity of Olefins Allows for Multicyclization

    Rendler, S.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 5027.

    CN

    N

    N

    OMe

    ArMe CN

    Me

    Will alternating polarity

    OMe

    OMe

    CNMe

    H

    H

    O

    CN

    Me

    CNMe

    HH

    H

    O

    O

    Me CN

    Me CN

    OMe

    OMeH

    HH

    H

    O

    Me CN

    Me CN

    H

    HH

    H

    CN

    H

    Me

    61% yield

    91% ee

    56% yield

    92% ee

    63% yield

    93% ee

    62% yield

    Tricyclization Tetracyclization

    Pentacyclization Hexacyclization

    6 new CC bonds

    11 contiguous stereocenters

    5 all-carbon quaternarystereocenters

    92% yield per bond formation

    enable multicyclization?

  • Alternating Polarity of Olefins Allows for Multicyclization

    Rendler, S.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 5027.

    CN

    N

    N

    OMe

    ArMe CN

    Me

    Will alternating polarity

    OMe

    OMe

    CNMe

    H

    H

    O

    CN

    Me

    CNMe

    HH

    H

    O

    O

    Me CN

    Me CN

    OMe

    OMeH

    HH

    H

    O

    Me CN

    Me CN

    H

    HH

    H

    CN

    H

    Me

    61% yield

    91% ee

    56% yield

    92% ee

    63% yield

    93% ee

    62% yield

    Tricyclization Tetracyclization

    Pentacyclization Hexacyclization

    6 new CC bonds

    11 contiguous stereocenters

    5 all-carbon quaternarystereocenters

    92% yield per bond formation

    enable multicyclization?

  • So

    OrganoSOMO

    ! A new mode of organocatalytic activation

    catalysis

    Relatively Few Catalysis Activation Concepts Many Powerful Reactions

    ! A new mode of organocatalytic activation

    Photoredox

    +e

    organocatalysis

  • The Utility of Merging Different Catalysis Areas: New Catalytic Bond Constructions

    N

    NRu2+

    N

    Photoredox Catalysis

    Light

    H2 Production

    O2 Production

    CH4 Production

    Energy Storage

    Representative

    Utility

    NN

    N

  • The Utility of Merging Different Catalysis Areas: New Catalytic Bond Constructions

    N

    NRu2+

    N

    Photoredox CatalysisOrganocatalysis

    N

    NH

    MeO

    Light

    Aldol

    Friedel-Crafts

    Vinylation

    Allylation

    Enolation

    Enal Reduction

    Diels-Alder

    H2 Production

    O2 Production

    CH4 Production

    Energy Storage

    Representative

    Transformations

    Representative

    Utility

    NN

    N

    H2O

    amine

  • The Utility of Merging Different Catalysis Areas: New Catalytic Bond Constructions

    N

    NRu2+

    N

    Photoredox CatalysisOrganocatalysis

    N

    NH

    MeO

    Light

    Aldol

    Friedel-Crafts

    Vinylation

    Allylation

    Enolation

    Enal Reduction

    Diels-Alder

    H2 Production

    O2 Production

    CH4 Production

    Energy Storage

    Representative

    Transformations

    Representative

    Utility

    NN

    N

    H2O

    amine

  • The Utility of Merging Different Catalysis Areas: New Catalytic Bond Constructions

    N

    NRu2+

    N

    Photoredox CatalysisOrganocatalysis

    N

    NH

    MeO

    Light

    Aldol

    Friedel-Crafts

    Vinylation

    Allylation

    Enolation

    Enal Reduction

    Diels-Alder

    H2 Production

    O2 Production

    CH4 Production

    Energy Storage

    Representative

    Transformations

    Representative

    Utility

    NN

    N

    H2O

    amine

    New Organic Transformations with Enantioselective Induction

  • How can we use Photoredox Catalysis to Enable Aldehyde !-Alkylation

    Can we electronically reverse the role of the catalyst!

    O

    HSo

    SOMO catalysis, activated species reacts with electron rich "-systems!

    N

    N

    O Me

    Ph Me

    Me

    Me

    oxidant SOMO-phile

    So

    N

    N

    O Me

    Ph Me

    Me

    Me

    SOMO-philes =

    KF3B

    SiMe3

    Me

    OSiMe3

    Ph

    ON

    N

    O Me

    Ph Me

    Me

    Me

    enamine SOMO-activated

    (SOMO-phile) (!-acyl radical)

    h# O

    Brphotolytic

    bond homolysis

    SOMO-

    activated

    h# = photobox!

  • How can we use Photoredox Catalysis to Enable Aldehyde !-Alkylation

    Can we electronically reverse the role of the catalyst!

    O

    HSo

    SOMO catalysis, activated species reacts with electron rich "-systems!

    N

    N

    O Me

    Ph Me

    Me

    Me

    oxidant SOMO-phile

    So

    N

    N

    O Me

    Ph Me

    Me

    Me

    SOMO-philes =

    KF3B

    SiMe3

    Me

    OSiMe3

    Ph

    ON

    N

    O Me

    Ph Me

    Me

    Me

    enamine SOMO-activated

    (SOMO-phile) (!-acyl radical)

    h# O

    Brphotolytic

    bond homolysis

    SOMO-

    activated

    h# = photobox!

  • How can we use Photoredox Catalysis to Enable Aldehyde !-Alkylation

    Can we electronically reverse the role of the catalyst!

    O

    HSo

    SOMO catalysis, activated species reacts with electron rich "-systems!

    N

    N

    O Me

    Ph Me

    Me

    Me

    oxidant SOMO-phile

    So

    N

    N

    O Me

    Ph Me

    Me

    Me

    SOMO-philes =

    KF3B

    SiMe3

    Me

    OSiMe3

    Ph

    ON

    N

    O Me

    Ph Me

    Me

    Me

    enamine SOMO-activated

    (SOMO-phile) (!-acyl radical)

    h# O

    Brphotolytic

    bond homolysis

    SOMO-

    activated

    h# = photobox!

  • How can we use Photoredox Catalysis to Enable Aldehyde !-Alkylation

    Can we electronically reverse the role of the catalyst!

    O

    HSo

    SOMO catalysis, activated species reacts with electron rich "-systems!

    N

    N

    O Me

    Ph Me

    Me

    Me

    oxidant SOMO-phile

    So

    N

    N

    O Me

    Ph Me

    Me

    Me

    SOMO-philes =

    KF3B

    SiMe3

    Me

    OSiMe3

    Ph

    ON

    N

    O Me

    Ph Me

    Me

    Me

    enamine SOMO-activated

    (SOMO-phile) (!-acyl radical)

    h# O

    Brphotolytic

    bond homolysis

    SOMO-

    activated

    h# = photobox!

  • How can we use Photoredox Catalysis to Enable Aldehyde !-Alkylation

    Can we electronically reverse the role of the catalyst!

    O

    HSo

    SOMO catalysis, activated species reacts with electron rich "-systems!

    N

    N

    O Me

    Ph Me

    Me

    Me

    oxidant SOMO-phile

    So

    N

    N

    O Me

    Ph Me

    Me

    Me

    SOMO-philes =

    KF3B

    SiMe3

    Me

    OSiMe3

    Ph

    ON

    N

    O Me

    Ph Me

    Me

    Me

    enamine SOMO-activated

    (SOMO-phile) (!-acyl radical)

    h# O

    Brphotolytic

    bond homolysis

    SOMO-

    activated

    h# = photobox!

  • Visible MLCT absorption at 452 nm (weak visible light)!

    Long-lived excited state (~ 620ns)!

    ! High quantum yield (~0.05 - H2O/298K)

    ! Effective excited state oxidant and reductant

    Inexpensive ($38/g - Strem 2008)!

    N

    NRu

    N

    NN

    N

    2+

    Used extensively as electron transfer catalyst!

    Coord. Chem. Rev. 1982, 46, 159.

    Ru(bpy)3X2

    Ru(bpy)3: A Versatile and Extensively Utilized Photredox Catalyst

  • NNRu

    N

    NN

    N

    2+

    Ru(bpy)3: Electronic Properties that Enable Photredox Catalysis

    Ru-centeredorbitals (t2g)

    Ligand-centered

    orbital (!*)

    Metal-Based Ground State

    Excitation

    Excited, Ligand-Based State

    Strong Oxidant

    Strong Reductant

    E = 0.84V

    E = 0.86V

    Balzani, A. J. V.; Barigelletti, F.; Campagna, S.; Belser, P.; von Zewelsky, A. Coord. Chem. Rev. 1988, 84, 85.

    Ru(bpy)32+

    Photon

    N

    NRu

    N

    NN

    N

    2+ *

    *Ru(bpy)3

    2+

    Ru(bpy)33+

    Ru(bpy)31+

    with weak

    visible light

  • How can we use Photoredox Catalysis to Enable Single Electron Pathways

    N

    NRu

    N

    NN

    N

    2+

    15W

    Ru(bpy)32+

    Fluorescent bulb

  • How can we use Photoredox Catalysis to Enable Single Electron Pathways

    Ru(bpy)32+

    N

    NRu

    N

    NN

    N

    2+

    N

    NRu

    N

    NN

    N

    2+*

    *

    (excited state)

    O

    O

    Brabsorbs

    photon

    15W

    Br

    SOMO-activated

    Ru(bpy)32+

    SETSET

    SETSET = single electron transfer

    Fluorescent bulb

  • How can we use Photoredox Catalysis to Enable Single Electron Pathways

    Ru(bpy)32+

    N

    NRu

    N

    NN

    N

    2+

    N

    NRu

    N

    NN

    N

    2+*

    N

    NRu

    N

    NN

    N

    1+

    *

    (excited state)*

    O

    O

    Brabsorbs

    photon

    15W

    Br

    SOMO-activated

    Ru(bpy)31+

    Ru(bpy)32+

    SETSET

    SETSET

    SETSET = single electron transfer

    O

    O

    Br

    Br

    SOMO-activated

    SETSET

    Fluorescent bulb

  • How can we use Photoredox Catalysis to Enable Single Electron Pathways

    Ru(bpy)32+

    N

    NRu

    N

    NN

    N

    2+

    N

    NRu

    N

    NN

    N

    2+*

    N

    NRu

    N

    NN

    N

    1+

    *

    (excited state)*

    O

    O

    Brabsorbs

    photon

    15W

    Br

    SOMO-activated

    Ru(bpy)31+

    Ru(bpy)32+

    SETSET

    SETSET

    SETSET = single electron transfer

    O

    O

    Br

    Br

    SOMO-activated

    SETSET

    Fluorescent bulb

    Using a household 15W light bulb with Ru(bpy)! highly reactive one-electron species

  • Merging Enantioselective Organocatalysis and Photoredox Catalysis

    Photoredox Catalytic

    Cycle

    Ru(bpy)32+

    photoredox catalyst 1

  • Merging Enantioselective Organocatalysis and Photoredox Catalysis

    15W Fluorescent bulb

    Photoredox Catalytic

    Cycle

    Ru(bpy)32+

    photoredox catalyst 1

  • Merging Enantioselective Organocatalysis and Photoredox Catalysis

    15W Fluorescent bulb

    Photoredox Catalytic

    Cycle

    oxidant

    !Ru(bpy)32+

    Ru(bpy)32+

    photoredox catalyst 1

    2

  • Merging Enantioselective Organocatalysis and Photoredox Catalysis

    15W Fluorescent bulb

    Photoredox Catalytic

    Cycle

    Ru(bpy)31+ 3

    reductant oxidant

    !Ru(bpy)32+

    Ru(bpy)32+

    photoredox catalyst 1

    2

  • Merging Enantioselective Organocatalysis and Photoredox Catalysis

    15W Fluorescent bulb

    Br

    Photoredox Catalytic

    Cycle

    alkyl halide

    Ru(bpy)31+ 3

    reductant oxidant

    !Ru(bpy)32+

    Ru(bpy)32+

    photoredox catalyst 1

    2

    Ph

    O

    substrate

    alkyl halide

    substrate

  • Merging Enantioselective Organocatalysis and Photoredox Catalysis

    15W Fluorescent bulb

    Br

    Br

    Photoredox Catalytic

    Cycle

    alkyl halide

    radical A

    Ru(bpy)31+ 3

    reductant oxidant

    !Ru(bpy)32+

    Ru(bpy)32+

    SET

    photoredox catalyst 1

    electron-deficient

    2

    Ph

    O

    Ph

    O

    substrate

    alkyl halide

    substrate

  • Merging Enantioselective Organocatalysis and Photoredox Catalysis

    15W Fluorescent bulb

    N

    NH

    O

    O

    R

    H

    Organocatalytic

    Cycle

    Br

    Br

    Me t-Bu

    Photoredox Catalytic

    Cycle

    catalyst

    aldehyde

    alkyl halide

    radical A

    Ru(bpy)31+ 3

    reductant oxidant

    !Ru(bpy)32+

    Ru(bpy)32+

    SET

    photoredox catalyst 1

    electron-deficient

    2

    Ph

    O

    Ph

    O

    substrate

    substrate

    alkyl halide

    substrate

  • Merging Enantioselective Organocatalysis and Photoredox Catalysis

    15W Fluorescent bulb

    N

    N

    MeO

    N

    NH

    MeO

    R

    O

    R

    H

    Organocatalytic

    Cycle

    Br

    Br

    Me t-Bu

    Me t-Bu

    Photoredox Catalytic

    Cycle

    catalyst

    aldehyde

    alkyl halide

    radical A

    Ru(bpy)31+ 3

    reductant oxidant

    !Ru(bpy)32+

    Ru(bpy)32+

    SET

    photoredox catalyst 1

    electron-deficient

    2

    Ph

    O

    Ph

    O

    substrate

    substrate

    alkyl halide

    substrate

  • Merging Enantioselective Organocatalysis and Photoredox Catalysis

    15W Fluorescent bulb

    N

    N

    MeO

    N

    NH

    MeO

    R

    O

    R

    H

    Organocatalytic

    Cycle

    Br

    Br

    Me t-Bu

    Me t-Bu

    Photoredox Catalytic

    Cycle

    catalyst

    aldehyde

    alkyl halide

    radical A

    Ru(bpy)31+ 3

    reductant oxidant

    !Ru(bpy)32+

    Ru(bpy)32+

    SET

    photoredox catalyst 1

    electron-deficient

    2

    Ph

    O

    Ph

    O

    substrate

    substrate

    alkyl halide

    substrate

  • Merging Enantioselective Organocatalysis and Photoredox Catalysis

    15W Fluorescent bulb

    N

    N

    MeO

    N

    NH

    MeO

    R

    O

    R

    H

    Organocatalytic

    Cycle

    Br

    Br

    Me t-Bu

    Me t-Bu

    Photoredox Catalytic

    Cycle

    catalyst

    aldehyde

    alkyl halide

    radical A

    Ru(bpy)31+ 3

    reductant oxidant

    !Ru(bpy)32+

    Ru(bpy)32+

    openSi-face

    SET

    radical A

    photoredox catalyst 1

    electron-deficient

    2

    O

    Ph

    Ph

    O

    Ph

    O

    substrate

    substrate

    alkyl halide

    substrate

  • Merging Enantioselective Organocatalysis and Photoredox Catalysis

    15W Fluorescent bulb

    N

    N

    MeO

    N

    NH

    MeO

    R

    O

    R

    H

    N

    N

    Me O

    R

    Organocatalytic

    Cycle

    Br

    Br

    Me t-Bu

    Me t-Bu

    Met-Bu

    Photoredox Catalytic

    Cycle

    catalyst

    aldehyde

    alkyl halide

    radical A

    Ru(bpy)31+ 3

    reductant oxidant

    !Ru(bpy)32+

    Ru(bpy)32+

    openSi-face

    SET

    radical A

    photoredox catalyst 1

    electron-deficient

    2

    O

    Ph

    O

    Ph

    Ph

    O

    Ph

    O

    substrate

    substrate

    alkyl halide

    substrate

  • Merging Enantioselective Organocatalysis and Photoredox Catalysis

    15W Fluorescent bulb

    N

    N

    MeO

    N

    NH

    MeO

    R

    N

    N

    O

    H

    O

    R

    H

    N

    N

    Me O

    R

    Organocatalytic

    Cycle

    Br

    Br

    Me t-Bu

    Me t-Bu

    Met-Bu Met-Bu

    R

    Photoredox Catalytic

    Cycle

    catalyst

    aldehyde

    alkyl halide

    radical A

    Ru(bpy)31+ 3

    reductant oxidant

    !Ru(bpy)32+

    Ru(bpy)32+

    +

    openSi-face

    SETSET

    SET

    radical A

    Me

    photoredox catalyst 1

    electron-deficient

    2

    O

    Ph

    O

    PhPh

    O

    Ph

    O

    Ph

    O

    substrate

    substrate

    alkyl halide

    substrate

  • Merging Enantioselective Organocatalysis and Photoredox Catalysis

    15W Fluorescent bulb

    N

    N

    MeO

    N

    NH

    MeO

    R

    N

    N

    O

    H

    O

    R

    O

    R

    H

    H

    N

    N

    Me O

    R

    Organocatalytic

    Cycle

    Br

    Br

    Me t-Bu

    Me t-Bu

    Met-Bu Met-Bu

    R

    Photoredox Catalytic

    Cycle

    !-alkylated aldehyde

    enantioenriched

    catalyst

    aldehyde

    alkyl halide

    radical A

    Ru(bpy)31+ 3

    reductant oxidant

    "Ru(bpy)32+

    Ru(bpy)32+

    +

    openSi-face

    SETSET

    SET

    radical A

    Me

    photoredox catalyst 1

    electron-deficient

    2

    O

    Ph

    O

    PhPh

    O

    Ph

    O

    Ph

    O

    O

    Ph

    substrate

    substrate

    alkyl halide

    substrate

  • Merging Photoredox and Enantioselective Organocatalysis: Initial Results!

    Ru(bpy)3Cl2 B (0.5 mol%)organocatalyst A (20 mol%)

    N

    NH

    Me

    Me

    Me

    Me

    Me

    HOTfN

    NRu

    N

    NN

    N

    Catalyst Combination Photon Source

    15 W fluorescent light bulb

    O

  • Merging Photoredox and Enantioselective Organocatalysis: Initial Results!

    Ru(bpy)3Cl2 B (0.5 mol%)organocatalyst A (20 mol%)

    N

    NH

    Me

    Me

    Me

    Me

    Me

    HOTfN

    NRu

    N

    NN

    N

    Catalyst Combination Photon Source

    15 W fluorescent light bulb

    O

    84% yield

    96% ee

    preliminary experiments revealed that the asymmetric tandem catalysis mechanism was possible

    O

    H

    O

    Hex

    H

    2,6-lutidine, DMF,

    fluorescent light

    octanal

    !-alkylated aldehyde

    organocatalyst A

    Ru(bpy)3Cl2 B

    23 C enantioenriched!-bromoketone

    Bu

    O

    Br O

  • Photoredox and Organocatalysis: Bromocarbonyl Scope!

    A variety of alkylation substrates can be used that are outside the realm of 2e pathways

    2,6-lutidine, DMF, 23 C

    15 W fluorescent light

    !-alkylated aldehyde

    N

    NH

    Me

    Me

    Me

    Me

    Me

    HOTf

    0.5 mol% Ru(bpy)3Cl2enantioenriched

    O

    20 mol% catalyst

    O

    Hex

    H

    octanal

    !-bromocarbonyl

    87% yield, 96% ee

    FG

    R

    Br

    O

    H

    Y

    FG

    R

    racemic

    O

    H

    Hex O

    O

    MeOBr

    OMe

    84% yield, 95% ee

    O

    H

    Hex O

    O

    O2NBr

    NO2

    80% yield, 92% ee

    O

    HOR

    Hex O

    RO

    O

    Br

    80% yield, 88% ee

    EtO2C CO2Et

    Br Me

    O

    H CO2Et

    Hex

    Me CO2Et

    !-bromocarbonyl alkylation product !-bromocarbonyl alkylation product

    catalyst combination

  • Merging Photoredox and Enantioselective Organocatalysis: Initial Results!

    Ru(bpy)3Cl2 B (0.5 mol%)organocatalyst A (20 mol%)

    N

    NH

    Me

    Me

    Me

    Me

    Me

    HOTfN

    NRu

    N

    NN

    N

    Catalyst Combination Photon Source

    15 W fluorescent light bulb

    O

    2,6-lutidine, DMF,

    fluorescent light

    octanal!-alkylated aldehyde

    organocatalyst A

    Ru(bpy)3Cl2 B

    23 C enantioenriched

    !-bromoketone

    O

    Hex

    H O

    Hex

    EtO2C

    O

    O

    CO2Et

    Br

    racemic

    70% yield,

    5:1 dr, 99% ee

    with David Nicewicz, Science, 2008, 3, 77 (published online Thurs, Sept 4th)

  • Photoredox Organocatalysis: Potential Utility of New Catalysis Platform

    H

    O

    N

    N

    O Me

    Ph Me

    Me

    Me

    N

    NH

    O Me

    catalyst

    Me

    Me

    MePh

    substrate

    N

    NRu

    N

    NN

    N

    catalystsubstrate

    FG

    FG

    Br

  • Photoredox Organocatalysis: Potential Utility of New Catalysis Platform

    H

    O

    N

    N

    O Me

    Ph Me

    Me

    Me

    H

    O

    !-malonyl aldehydes

    enantiopure

    enantiopure

    N

    NH

    O Me

    catalyst

    Me

    Me

    MePh

    substrateEtO2C CO2Et

    "-keto aldehydes

    N

    NRu

    N

    NN

    N

    catalystsubstrate

    FG

    FG

    Br

    Me

    H

    O

    R

    O

  • Photoredox Organocatalysis: Potential Utility of New Catalysis Platform

    H

    O

    H

    CF3

    O

    enantioselective

    !-alkylcyanation

    N

    N

    O Me

    Ph Me

    Me

    Me

    H

    O

    H

    O

    !-malonyl aldehydes

    !-benzyl aldehydesenantiopure

    enantiopure

    !-CF3-aldehydes

    N

    NH

    O Me

    catalyst

    Me

    Me

    MePh

    substrate

    enantiopure

    EtO2C CO2Et

    enantiopure

    !"amino aldehydes

    H

    O

    NR2

    #-keto aldehydes

    N

    NRu

    N

    NN

    N

    catalystsubstrate

    FG

    FG

    Br

    Me

    H

    O

    R

    O

    H

    O

    CN

  • Photoredox Organocatalysis: Potential Utility of New Catalysis Platform

    H

    O

    H

    CF3

    O

    enantioselective

    !-alkylcyanation

    N

    N

    O Me

    Ph Me

    Me

    Me

    H

    O

    H

    O

    !-malonyl aldehydes

    !-benzyl aldehydesenantiopure

    enantiopure

    !-CF3-aldehydes

    N

    NH

    O Me

    catalyst

    Me

    Me

    MePh

    substrate

    enantiopure

    EtO2C CO2Et

    enantiopure

    !"amino aldehydes

    H

    O

    NR2

    #-keto aldehydes

    N

    NRu

    N

    NN

    N

    catalystsubstrate

    FG

    FG

    Br

    Me

    H

    O

    R

    O

    H

    O

    CN

  • Merging Photoredox and Organocatalysis: !-Perfluoroalkylation!

    Enantioselective !-perfluoralkylation of formyl could provide new entry to pharmacaphores

    SMe

    O O

    HN

    CF3Me

    MeF

    O

    NH

    NC

    Odanacatib (Merck)

    NH

    N

    CO2Me

    N

    N

    H

    F

    F

    Me

    OMe

    Me

    H

    OH

    CO2MeOAc

    H

    Et

    Vinflunine

    (BMS)

    H

    O

    Versatile synthon for medicinal agent synthesis

    R

    CF3

    No known catalytic routes to !-formyl CF3

    Enhance potency, elevate lipophilicity

    and/or improve metabolic stability

  • Photoredox and Organocatalysis: Trifluoromethylation!

    2,6-lutidine, THF, 20 C

    15 W fluorescent light

    !-trifluoromethylation

    N

    NH

    Me

    Me

    Me

    Me

    Me

    HOTf

    0.5 mol% Ir(ppy)2bpyenantioenriched

    O

    20 mol% catalyst

    O

    H

    aldehyde

    79% yield, 99% ee

    O

    H

    CF3

    R

    trifluoromethyl iodide

    70% yield, 98% ee

    61% yield, 93% ee

    aldehyde trifluoromethylation product

    catalyst combination

    CF3 IR

    aldehyde trifluoromethylation product

    O

    H

    CF3

    O

    H

    O

    H5

    ( )

    CF3

    NBoc

    O

    H

    CF3

    O

    H

    NBoc

    73% yield, 90% ee

    O

    H

    O

    H

    CF3

    OMe

    O

    H

    OMe

    with Nagib, Scott, JACS, 2009, 131, 10875

  • Photoredox and Organocatalysis: Trifluoromethylation!

    2,6-lutidine, THF, 20 C

    15 W fluorescent light

    !-trifluoromethylation

    N

    NH

    Me

    Me

    Me

    Me

    Me

    HOTf

    0.5 mol% Ir(ppy)2bpyenantioenriched

    O

    20 mol% catalyst

    O

    H

    aldehyde

    79% yield, 99% ee

    O

    H

    CF3

    R

    trifluoromethyl iodide

    70% yield, 98% ee

    61% yield, 93% ee

    aldehyde trifluoromethylation product

    catalyst combination

    CF3 IR

    aldehyde trifluoromethylation product

    O

    H

    NBoc

    O

    H

    CF3

    O

    H

    O

    H5

    ( )

    CF3

    NBoc

    O

    H

    CF3

    O

    H

    73% yield, 90% ee

    O

    H

    O

    H

    CF3

    OMe

    with Nagib, Scott, JACS, 2009, 131, 10875

  • Photoredox and Organocatalysis: perfluoroalkylation!

    2,6-lutidine, THF, 20 C

    15 W fluorescent light

    !-perfluoroalkylation

    N

    NH

    Me

    Me

    Me

    Me

    Me

    HOTf

    0.5 mol% Ir(ppy)2bpyenantioenriched

    O

    20 mol% catalyst

    O

    H

    aldehyde

    73% yield, 96% ee

    O

    H

    n-hex

    R

    fluoroalkyl iodide

    72% yield, 98% ee

    89% yield, 99% ee

    RFnI fluoroalkylation product

    catalyst combination

    RF2 In-hex

    RFnI fluoroalkylation product

    O

    H

    n-hex

    CF3

    F3CF

    I CF3

    F3CF

    85% yield, 98% ee

    O

    H

    n-hex

    F FF F

    I

    H

    O

    CF2CF3

    n-hex

    H

    O

    CF2CO2Et

    n-hex

    I CF2CF2

    I CO2Et

    F F

    F F

    with Nagib, Scott, JACS, 2009, 131, 10875

  • Photoredox Organocatalysis: Potential Utility of New Catalysis Platform

    H

    O

    H

    CF3

    O

    enantioselective

    !-alkylcyanation

    N

    N

    O Me

    Ph Me

    Me

    Me

    H

    O

    H

    O

    !-malonyl aldehydes

    !-benzyl aldehydesenantiopure

    enantiopure

    !-CF3-aldehydes

    N

    NH

    O Me

    catalyst

    Me

    Me

    MePh

    substrate

    enantiopure

    EtO2C CO2Et

    enantiopure

    !"amino aldehydes

    H

    O

    NR2

    #-keto aldehydes

    N

    NRu

    N

    NN

    N

    catalystsubstrate

    FG

    FG

    Br

    Me

    H

    O

    R

    O

    H

    O

    CN

  • Photoredox Organocatalysis: Potential Utility of New Catalysis Platform

    H

    O

    H

    CF3

    O

    enantioselective

    !-alkylcyanation

    N

    N

    O Me

    Ph Me

    Me

    Me

    H

    O

    H

    O

    !-malonyl aldehydes

    !-benzyl aldehydesenantiopure

    enantiopure

    !-CF3-aldehydes

    N

    NH

    O Me

    catalyst

    Me

    Me

    MePh

    substrate

    enantiopure

    EtO2C CO2Et

    enantiopure

    !"amino aldehydes

    H

    O

    NR2

    #-keto aldehydes

    N

    NRu

    N

    NN

    N

    catalystsubstrate

    FG

    FG

    Br

    Me

    H

    O

    R

    O

    H

    O

    CN

  • Photoredox Organocatalysis: Potential Utility of New Catalysis Platform

    H

    O

    H

    CF3

    O

    enantioselective

    !-alkylcyanation

    N

    N

    O Me

    Ph Me

    Me

    Me

    H

    O

    H

    O

    !-malonyl aldehydes

    !-benzyl aldehydesenantiopure

    enantiopure

    !-CF3-aldehydes

    N

    NH

    O Me

    catalyst

    Me

    Me

    MePh

    substrate

    enantiopure

    EtO2C CO2Et

    enantiopure

    !"amino aldehydes

    H

    O

    NR2

    #-keto aldehydes

    N

    NRu

    N

    NN

    N

    catalystsubstrate

    FG

    FG

    Br

    Me

    H

    O

    R

    O

    H

    O

    CN

  • Photoredox Organocatalysis: Potential Utility of New Catalysis Platform

    H

    O

    H

    CF3

    O

    enantioselective

    !-alkylcyanation

    N

    N

    O Me

    Ph Me

    Me

    Me

    H

    O

    H

    O

    !-malonyl aldehydes

    !-benzyl aldehydesenantiopure

    enantiopure

    !-CF3-aldehydes

    N

    NH

    O Me

    catalyst

    Me

    Me

    MePh

    substrate

    enantiopure

    EtO2C CO2Et

    enantiopure

    !"amino aldehydes

    H

    O

    NR2

    #-keto aldehydes

    N

    NRu

    N

    NN

    N

    catalystsubstrate

    FG

    FG

    Br

    Me

    H

    O

    R

    O

    H

    O

    CN

  • Photoredox Organocatalysis: Potential Utility of New Catalysis Platform

    H

    O

    H

    CF3

    O

    enantioselective

    !-alkylcyanation

    N

    N

    O Me

    Ph Me

    Me

    Me

    H

    O

    H

    O

    !-malonyl aldehydes

    !-benzyl aldehydesenantiopure

    enantiopure

    !-CF3-aldehydes

    N

    NH

    O Me

    catalyst

    Me

    Me

    MePh

    substrate

    enantiopure

    EtO2C CO2Et

    enantiopure

    !"amino aldehydes

    H

    O

    NR2

    #-keto aldehydes

    N

    NRu

    N

    NN

    N

    catalystsubstrate

    FG

    FG

    Br

    Me

    H

    O

    R

    O

    H

    O

    CN

  • Merging Enantioselective Organocatalysis and Photoredox Catalysis

    15W Fluorescent bulb

    N

    N

    MeO

    N

    NH

    MeO

    R

    N

    N

    O

    H

    O

    R

    O

    R

    H

    H

    N

    N

    Me O

    R

    Organocatalytic

    Cycle

    Br

    Br

    Me t-Bu

    Me t-Bu

    Met-Bu Met-Bu

    R

    Photoredox Catalytic

    Cycle

    !-alkylated aldehyde

    enantioenriched

    catalyst

    aldehyde

    alkyl halide

    radical A

    Ru(bpy)31+ 3

    reductant oxidant

    "Ru(bpy)32+

    Ru(bpy)32+

    +

    openSi-face

    SETSET

    SET

    radical A

    Me

    photoredox catalyst 1

    electron-deficient

    2

    O

    Ph

    O

    PhPh

    O

    Ph

    O

    Ph

    O

    O

    Ph

    substrate

    substrate

    alkyl halide

    substrate

  • Photoredox Catalysis: New Directions for Organic Synthesis

    ! Visible Light Photocatalysis of [2+2] Enone Cycloadditions

    visible light

    O

    Ph

    O

    Ph

    O

    Ph Ph

    O

    H HMeCN

    5 mol% Ru(bpy)3Cl2

    i-Pr2NEt, LiBF4

    ! Photoredox Catalysis: Hydro-dehalogenation of alkanes

    89%

    >10:1 d.r.

    NN

    Br

    HBoc

    Bocvisible light

    DMF

    2.5 mol% Ru(bpy)3Cl2

    i-Pr2NEt, HCO2H

    NN

    H

    HBoc

    Boc

    Yoon, T. P. J. Am. Chem. Soc. 2008, 130, 12866-12887.

    J. Am. Chem. Soc. 2009, 131, 14604-14605.

    90%

    Stephenson, C. R. J. J. Am. Chem. Soc. 2008, 130, 12866-12887.

  • Photoredox Catalysis: New Directions for Organic Synthesis

    ! Visible Light Photocatalysis of [2+2] Enone Cycloadditions

    visible light

    O

    Ph

    O

    Ph

    O

    Ph Ph

    O

    H HMeCN

    5 mol% Ru(bpy)3Cl2

    i-Pr2NEt, LiBF4

    ! Photoredox Catalysis: Hydro-dehalogenation of alkanes

    89%

    >10:1 d.r.

    NN

    Br

    HBoc

    Bocvisible light

    DMF

    2.5 mol% Ru(bpy)3Cl2

    i-Pr2NEt, HCO2H

    NN

    H

    HBoc

    Boc

    Yoon, T. P. J. Am. Chem. Soc. 2008, 130, 12866-12887.

    J. Am. Chem. Soc. 2009, 131, 14604-14605.

    90%

    Stephenson, C. R. J. J. Am. Chem. Soc. 2008, 130, 12866-12887.

  • Putting Science, Catalysis and Organocatalysis in Context

    # of Hits for Google Keyword Search:

  • Overview of Chemistry Hot Topics Google Hits

    600,000

    537,000

    435,000

    417,000

    253,000

    159,000

    137,000

  • Overview of Chemistry Hot Topics Google Hits

    Organocatalytic

    Activation Modes

    600,000

    537,000

    435,000

    417,000

    253,000

    159,000

    137,000

  • Overview of Chemistry Hot Topics Google Hits

    Organocatalytic

    Activation Modes

    Emerging

    Important Areas

    600,000

    537,000

    435,000

    417,000

    253,000

    159,000

    137,000

  • The early years: Berkeley

    Vy Dong

    MacMillan Group (1st Year)

    Wendy Jen

    Tristan Lambert

    Tehshik Yoon

    Kateri Ahrendt

    Chris Borths Jake Wiener

    Naiomi Anchor (UG)

    Dr. Jeongbob Seo

  • Vy Dong

    MacMillan Group Caltech 2002

    Wendy Jen

    Tristan Lambert Tehshik Yoon

    Chris Borths Jake Wiener

    Joel Austin Ian Mangion

    Rebecca WilsonNick Paras

    Dr. Jeongbob Seo

    Sean Brown

    James Falsey

    Julie Park

    Alan Northrup

    Brian Kwan

    Craig Countryman Dr. Wenjing XiaoDr. Seongon Kim

    Nikki Goodwin Dr. Chris Sinz

    Dr. Claudia Roberson

    Catharine Larsen

  • MacMillan Group Present

    Dr. Muriel Amatore

    Dr. Kate Ashton

    Teresa Beeson

    Joe Carpenter

    Diane Carrera

    Dr. Jay Conrad

    Dr. Tom Graham

    Dr. Christoph Grondal

    Dr. Pilar Garcia Garcia

    Dr. J. B. Hong

    Jeff Van Humbeck

    Casey Jones

    Spencer Jones

    Nate Jui

    Dr. Mark Kerr

    Dr. Hahn Kim

    Rob Knowles

    Sandra Lee

    Dr. Jon Martel

    Tony Mastracchio

    David Nagib

    Dr. David Nicewicz

    Atsushi Ohigashi

    Phong Pham

    Dr. Trevor Rainey

    Dr.Maud Reiter

    Katie Saliba

    Bryon Simmons

    Grace Wang

    Dr. Abbas Walji

    Alex Warkentin

    Ben Zegarelli

  • MacMillan Group Present

    Anna Allen

    Anthony Casarez

    Joe Carpenter

    Diane Carrera

    Dr. Giuseppe Cecera

    Dr. Jay Conrad

    Jae Won Lee

    Dr. Andrew Dilger

    Dr. Rebecca Grange

    Benjamin Horning

    Jeff Van Humbeck

    Spencer Jones

    Nate Jui

    Dr. Hahn Kim

    Dr. Chris Kokotos

    Brian Laforteza

    Dr. Esther Lee

    Tony Mastracchio

    Dr. Andrew McNally

    David Nagib

    Phong Pham

    Dr. Mark Pickworth

    Dr. Seb Rendler

    Hui-Wen Shih

    Bryon Simmons

    Scott Simonovich

    Dr. Feili Tang

    Mark Vander Wal

    Jeff Van Humbeck

    Alex Warkentin

    SiYi Wang

    Dr. Alan Watson

  • Funding (pharmaceutical)

    Acknowledgments

    Funding (non-profit)

    Petroleum Research Foundation

    UC AIDSResearch Fund

    NSF

    NIH

    Cottrell Scholar

    Innovation Award

    Research Corporation

    Sloan Fellowship(NIGMS)