machine-level programming v: advanced topics september 28, 2004

38
Machine-Level Programming V: Advanced Topics September 28, 2004 Topics Topics Linux Memory Layout Understanding Pointers Buffer Overflow Floating Point Code class09.ppt 15-213 “The course that gives CMU its Zip!”

Upload: irene-leblanc

Post on 03-Jan-2016

29 views

Category:

Documents


0 download

DESCRIPTION

Machine-Level Programming V: Advanced Topics September 28, 2004. 15-213 “The course that gives CMU its Zip!”. Topics Linux Memory Layout Understanding Pointers Buffer Overflow Floating Point Code. class09.ppt. FF. Linux Memory Layout. Red Hat v. 6.2 ~1920MB memory limit. Stack - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Machine-Level Programming V: Advanced Topics September 28, 2004

Machine-Level Programming V:Advanced Topics

September 28, 2004

Machine-Level Programming V:Advanced Topics

September 28, 2004

TopicsTopics Linux Memory Layout Understanding Pointers Buffer Overflow Floating Point Code

class09.ppt

15-213“The course that gives CMU its Zip!”

Page 2: Machine-Level Programming V: Advanced Topics September 28, 2004

– 2 – 15-213, F’04

Linux Memory LayoutLinux Memory LayoutStackStack

Runtime stack (8MB limit)

HeapHeap Dynamically allocated storage When call malloc(), calloc(), new()

Shared LibrariesShared Libraries Dynamically Linked Libraries Library routines (e.g., printf(), malloc()) Linked into object code when loaded

DataData Statically allocated data E.g., arrays & strings declared in code

TextText Executable machine instructions Read-only

Upper 2 hex digits of address

Red Hatv. 6.2~1920MBmemorylimit

FF

BF

3F

C0

40

00

Stack

SharedLibs

TextDataHeap

08

Page 3: Machine-Level Programming V: Advanced Topics September 28, 2004

– 3 – 15-213, F’04

Linux Memory AllocationLinux Memory Allocation

LinkedBF

7F

3F

80

40

00

Stack

DLLs

TextData

08

Some Heap

BF

7F

3F

80

40

00

Stack

DLLs

TextData

Heap

08

MoreHeap

BF

7F

3F

80

40

00

Stack

DLLs

TextData

Heap

Heap

08

InitiallyBF

7F

3F

80

40

00

Stack

TextData

08

Page 4: Machine-Level Programming V: Advanced Topics September 28, 2004

– 4 – 15-213, F’04

Text & Stack ExampleText & Stack Example

(gdb) break main(gdb) run Breakpoint 1, 0x804856f in main ()(gdb) print $esp $3 = (void *) 0xbffffc78

MainMain Address 0x804856f should be read 0x0804856f

StackStack Address 0xbffffc78

InitiallyBF

7F

3F

80

40

00

Stack

TextData

08

Page 5: Machine-Level Programming V: Advanced Topics September 28, 2004

– 5 – 15-213, F’04

Dynamic Linking ExampleDynamic Linking Example(gdb) print malloc $1 = {<text variable, no debug info>} 0x8048454 <malloc>(gdb) run Program exited normally.(gdb) print malloc $2 = {void *(unsigned int)} 0x40006240 <malloc>

InitiallyInitially Code in text segment that invokes dynamic linker Address 0x8048454 should be read 0x08048454

FinalFinal Code in shared library region

LinkedBF

7F

3F

80

40

00

Stack

Shared Libs

TextData

08

Page 6: Machine-Level Programming V: Advanced Topics September 28, 2004

– 6 – 15-213, F’04

Memory Allocation ExampleMemory Allocation Example

char big_array[1<<24]; /* 16 MB */char huge_array[1<<28]; /* 256 MB */

int beyond;char *p1, *p2, *p3, *p4;

int useless() { return 0; }

int main(){ p1 = malloc(1 <<28); /* 256 MB */ p2 = malloc(1 << 8); /* 256 B */ p3 = malloc(1 <<28); /* 256 MB */ p4 = malloc(1 << 8); /* 256 B */ /* Some print statements ... */}

Page 7: Machine-Level Programming V: Advanced Topics September 28, 2004

– 7 – 15-213, F’04

Example AddressesExample Addresses

$esp 0xbffffc78p3 0x500b5008p1 0x400b4008Final malloc 0x40006240p4 0x1904a640 p2 0x1904a538beyond 0x1904a524big_array 0x1804a520huge_array 0x0804a510main() 0x0804856fuseless() 0x08048560Initial malloc 0x08048454

BF

7F

3F

80

40

00

Stack

DLLs

TextData

Heap

Heap

08

&p2? 0x1904a42c

Page 8: Machine-Level Programming V: Advanced Topics September 28, 2004

– 8 – 15-213, F’04

C operatorsC operatorsOperators Associativity() [] -> . left to right! ~ ++ -- + - * & (type) sizeof right to left* / % left to right+ - left to right<< >> left to right< <= > >= left to right== != left to right& left to right^ left to right| left to right&& left to right|| left to right?: right to left= += -= *= /= %= &= ^= != <<= >>= right to left, left to right

Note: Monadic +, -, and * have higher precedence than dyadic forms

Page 9: Machine-Level Programming V: Advanced Topics September 28, 2004

– 9 – 15-213, F’04

C pointer declarationsC pointer declarationsint *p p is a pointer to int

int *p[13] p is an array[13] of pointer to int

int *(p[13]) p is an array[13] of pointer to int

int **p p is a pointer to a pointer to an int

int (*p)[13] p is a pointer to an array[13] of int

int *f() f is a function returning a pointer to int

int (*f)() f is a pointer to a function returning int

int (*(*f())[13])() f is a function returning ptr to an array[13] of pointers to functions returning int

int (*(*x[3])())[5] x is an array[3] of pointers to functions returning pointers to array[5] of ints

Page 10: Machine-Level Programming V: Advanced Topics September 28, 2004

– 10 – 15-213, F’04

Avoiding Complex DeclarationsAvoiding Complex Declarations

Use Typedef to build up the declUse Typedef to build up the decl

Instead of Instead of int (*(*x[3])())[5]int (*(*x[3])())[5] : :

typedef int fiveints[5];typedef int fiveints[5];

typedef fiveints* p5i;typedef fiveints* p5i;

typedef p5i (*f_of_p5is)();typedef p5i (*f_of_p5is)();

f_of_p5is x[3];f_of_p5is x[3];

X is an array of 3 elements, each of which is a pointer to X is an array of 3 elements, each of which is a pointer to a function returning an array of 5 ints.a function returning an array of 5 ints.

Page 11: Machine-Level Programming V: Advanced Topics September 28, 2004

– 11 – 15-213, F’04

Internet Worm and IM WarInternet Worm and IM WarNovember, 1988November, 1988

Internet Worm attacks thousands of Internet hosts. How did it happen?

July, 1999July, 1999 Microsoft launches MSN Messenger (instant messaging system). Messenger clients can access popular AOL Instant Messaging Service (AIM)

servers

AIMserver

AIMclient

AIMclient

MSNclient

MSNserver

Page 12: Machine-Level Programming V: Advanced Topics September 28, 2004

– 12 – 15-213, F’04

Internet Worm and IM War (cont.)Internet Worm and IM War (cont.)August 1999August 1999

Mysteriously, Messenger clients can no longer access AIM servers.

Microsoft and AOL begin the IM war:AOL changes server to disallow Messenger clientsMicrosoft makes changes to clients to defeat AOL changes.At least 13 such skirmishes.

How did it happen?

The Internet Worm and AOL/Microsoft War were both The Internet Worm and AOL/Microsoft War were both based on based on stack buffer overflowstack buffer overflow exploits! exploits!

many Unix functions do not check argument sizes.allows target buffers to overflow.

Page 13: Machine-Level Programming V: Advanced Topics September 28, 2004

– 13 – 15-213, F’04

String Library CodeString Library Code Implementation of Unix function gets()

No way to specify limit on number of characters to read

Similar problems with other Unix functionsstrcpy: Copies string of arbitrary lengthscanf, fscanf, sscanf, when given %s conversion specification

/* Get string from stdin */char *gets(char *dest){ int c = getc(); char *p = dest; while (c != EOF && c != '\n') { *p++ = c; c = getc(); } *p = '\0'; return dest;}

Page 14: Machine-Level Programming V: Advanced Topics September 28, 2004

– 14 – 15-213, F’04

Vulnerable Buffer CodeVulnerable Buffer Code

int main(){ printf("Type a string:"); echo(); return 0;}

/* Echo Line */void echo(){ char buf[4]; /* Way too small! */ gets(buf); puts(buf);}

Page 15: Machine-Level Programming V: Advanced Topics September 28, 2004

– 15 – 15-213, F’04

Buffer Overflow ExecutionsBuffer Overflow Executions

unix>./bufdemoType a string:123123

unix>./bufdemoType a string:12345Segmentation Fault

unix>./bufdemoType a string:12345678Segmentation Fault

Page 16: Machine-Level Programming V: Advanced Topics September 28, 2004

– 16 – 15-213, F’04

Buffer Overflow StackBuffer Overflow Stack

echo:pushl %ebp # Save %ebp on stackmovl %esp,%ebpsubl $20,%esp # Allocate stack spacepushl %ebx # Save %ebxaddl $-12,%esp # Allocate stack spaceleal -4(%ebp),%ebx # Compute buf as %ebp-4pushl %ebx # Push buf on stackcall gets # Call gets. . .

/* Echo Line */void echo(){ char buf[4]; /* Way too small! */ gets(buf); puts(buf);}

Return AddressSaved %ebp

[3][2][1][0] buf%ebp

StackFrame

for main

StackFrame

for echo

Page 17: Machine-Level Programming V: Advanced Topics September 28, 2004

– 17 – 15-213, F’04

Buffer Overflow Stack Example

Buffer Overflow Stack Example

Before call to gets

unix> gdb bufdemo(gdb) break echoBreakpoint 1 at 0x8048583(gdb) runBreakpoint 1, 0x8048583 in echo ()(gdb) print /x *(unsigned *)$ebp$1 = 0xbffff8f8(gdb) print /x *((unsigned *)$ebp + 1)$3 = 0x804864d

8048648: call 804857c <echo> 804864d: mov 0xffffffe8(%ebp),%ebx # Return Point

Return AddressSaved %ebp

[3][2][1][0] buf%ebp

StackFrame

for main

StackFrame

for echo

0xbffff8f8Return Address

Saved %ebp[3][2][1][0] buf

StackFrame

for main

StackFrame

for echo

bf ff f8 f808 04 86 4d

xx xx xx xx

Page 18: Machine-Level Programming V: Advanced Topics September 28, 2004

– 18 – 15-213, F’04

Buffer Overflow Example #1Buffer Overflow Example #1

Before Call to gets Input = “123”

No Problem

0xbffff8d8Return Address

Saved %ebp[3][2][1][0] buf

StackFrame

for main

StackFrame

for echo

bf ff f8 f808 04 86 4d

00 33 32 31

Return AddressSaved %ebp

[3][2][1][0] buf%ebp

StackFrame

for main

StackFrame

for echo

Page 19: Machine-Level Programming V: Advanced Topics September 28, 2004

– 19 – 15-213, F’04

Buffer Overflow Stack Example #2Buffer Overflow Stack Example #2

Input = “12345”

8048592: push %ebx 8048593: call 80483e4 <_init+0x50> # gets 8048598: mov 0xffffffe8(%ebp),%ebx 804859b: mov %ebp,%esp 804859d: pop %ebp # %ebp gets set to invalid value 804859e: ret

echo code:

0xbffff8d8Return Address

Saved %ebp[3][2][1][0] buf

StackFrame

for main

StackFrame

for echo

bf ff 00 3508 04 86 4d

34 33 32 31

Return AddressSaved %ebp

[3][2][1][0] buf%ebp

StackFrame

for main

StackFrame

for echo

Saved value of %ebp set to 0xbfff0035

Bad news when later attempt to restore %ebp

Page 20: Machine-Level Programming V: Advanced Topics September 28, 2004

– 20 – 15-213, F’04

Buffer Overflow Stack Example #3Buffer Overflow Stack Example #3

Input = “12345678”

Return AddressSaved %ebp

[3] [2] [1] [0] buf%ebp

StackFrame

for main()

StackFrame

for echo()

8048648: call 804857c <echo> 804864d: mov 0xffffffe8(%ebp),%ebx # Return Point

0xbffff8d8Return Address

Saved %ebp[3] [2] [1] [0] buf

StackFrame

for main()

StackFrame

for echo()

38 37 36 3508 04 86 00

34 33 32 31

Invalid address

No longer pointing to desired return point

%ebp and return address corrupted

Page 21: Machine-Level Programming V: Advanced Topics September 28, 2004

– 21 – 15-213, F’04

Malicious Use of Buffer OverflowMalicious Use of Buffer Overflow

Input string contains byte representation of executable code Overwrite return address with address of buffer When bar() executes ret, will jump to exploit code

void bar() { char buf[64]; gets(buf); ... }

void foo(){ bar(); ...}

Stack after call to gets()

B

returnaddress

A

foo stack frame

bar stack frame

B

exploitcode

pad

data written

bygets()

Page 22: Machine-Level Programming V: Advanced Topics September 28, 2004

– 22 – 15-213, F’04

Exploits Based on Buffer OverflowsExploits Based on Buffer OverflowsBuffer overflow bugs allow remote machines to execute Buffer overflow bugs allow remote machines to execute arbitrary code on victim machines.arbitrary code on victim machines.

Internet wormInternet worm Early versions of the finger server (fingerd) used gets() to

read the argument sent by the client:finger [email protected]

Worm attacked fingerd server by sending phony argument:finger “exploit-code padding new-return-address”exploit code: executed a root shell on the victim machine with a

direct TCP connection to the attacker.

Page 23: Machine-Level Programming V: Advanced Topics September 28, 2004

– 23 – 15-213, F’04

The Internet WormThe Internet Worm

11/211/2 18:2418:24 first west coast computer infectedfirst west coast computer infected

19:0419:04 ucb gateway infecteducb gateway infected

20:0020:00 mit attackedmit attacked

20:4920:49 cs.utah.edu infectedcs.utah.edu infected

21:2121:21 load avg reaches 5 on cs.utah.eduload avg reaches 5 on cs.utah.edu

21:4121:41 load avg reaches 7load avg reaches 7

22:0122:01 load avg reaches 16load avg reaches 16

22:2022:20 worm killed on cs.utah.eduworm killed on cs.utah.edu

22:4122:41 cs.utah.edu reinfected, load avg 27cs.utah.edu reinfected, load avg 27

22:4922:49 cs.utah.edu shut downcs.utah.edu shut down

23:3123:31 reinfected, load reaches 37reinfected, load reaches 37

Page 24: Machine-Level Programming V: Advanced Topics September 28, 2004

– 24 – 15-213, F’04

Exploits Based on Buffer OverflowsExploits Based on Buffer OverflowsBuffer overflow bugs allow remote machines to execute Buffer overflow bugs allow remote machines to execute arbitrary code on victim machines.arbitrary code on victim machines.

IM WarIM War AOL exploited existing buffer overflow bug in AIM clients exploit code: returned 4-byte signature (the bytes at some

location in the AIM client) to server. When Microsoft changed code to match signature, AOL

changed signature location.

Page 25: Machine-Level Programming V: Advanced Topics September 28, 2004

– 25 – 15-213, F’04

Date: Wed, 11 Aug 1999 11:30:57 -0700 (PDT) Date: Wed, 11 Aug 1999 11:30:57 -0700 (PDT) From: Phil Bucking <[email protected]> From: Phil Bucking <[email protected]> Subject: AOL exploiting buffer overrun bug in their own software! Subject: AOL exploiting buffer overrun bug in their own software! To: [email protected] To: [email protected]

Mr. Smith,Mr. Smith,

I am writing you because I have discovered something that I think you I am writing you because I have discovered something that I think you might find interesting because you are an Internet security expert with might find interesting because you are an Internet security expert with experience in this area. I have also tried to contact AOL but received experience in this area. I have also tried to contact AOL but received no response.no response.

I am a developer who has been working on a revolutionary new instant I am a developer who has been working on a revolutionary new instant messaging client that should be released later this year.messaging client that should be released later this year.......It appears that the AIM client has a buffer overrun bug. By itself It appears that the AIM client has a buffer overrun bug. By itself this might not be the end of the world, as MS surely has had its share. this might not be the end of the world, as MS surely has had its share. But AOL is now *exploiting their own buffer overrun bug* to help in But AOL is now *exploiting their own buffer overrun bug* to help in its efforts to block MS Instant Messenger.its efforts to block MS Instant Messenger.........Since you have significant credibility with the press I hope that youSince you have significant credibility with the press I hope that youcan use this information to help inform people that behind AOL'scan use this information to help inform people that behind AOL'sfriendly exterior they are nefariously compromising peoples' security.friendly exterior they are nefariously compromising peoples' security.

Sincerely,Sincerely,Phil Bucking Phil Bucking Founder, Bucking Consulting Founder, Bucking Consulting [email protected]@yahoo.com

It was later determined that this email originated from within Microsoft!

Page 26: Machine-Level Programming V: Advanced Topics September 28, 2004

– 26 – 15-213, F’04

Code Red WormCode Red Worm

HistoryHistory June 18, 2001. Microsoft announces buffer overflow

vulnerability in IIS Internet server July 19, 2001. over 250,000 machines infected by new virus in 9

hours White house must change its IP address. Pentagon shut down

public WWW servers for day

When We Set Up CS:APP Web SiteWhen We Set Up CS:APP Web Site Received strings of formGET /default.ida?NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN....NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN%u9090%u6858%ucbd3%u7801%u9090%u6858%ucbd3%u7801%u9090%u6858%ucbd3%u7801%u9090%u9090%u8190%u00c3%u0003%u8b00%u531b%u53ff%u0078%u0000%u00=a

HTTP/1.0" 400 325 "-" "-"

Page 27: Machine-Level Programming V: Advanced Topics September 28, 2004

– 27 – 15-213, F’04

Code Red Exploit CodeCode Red Exploit Code Starts 100 threads running Spread self

Generate random IP addresses & send attack stringBetween 1st & 19th of month

Attack www.whitehouse.govSend 98,304 packets; sleep for 4-1/2 hours; repeat

» Denial of service attackBetween 21st & 27th of month

Deface server’s home pageAfter waiting 2 hours

Page 28: Machine-Level Programming V: Advanced Topics September 28, 2004

– 28 – 15-213, F’04

Code Red EffectsCode Red Effects

Later Version Even More MaliciousLater Version Even More Malicious Code Red II As of April, 2002, over 18,000 machines infected Still spreading

Paved Way for NIMDAPaved Way for NIMDA Variety of propagation methods One was to exploit vulnerabilities left behind by Code Red II

ASIDE (security flaws start at home)ASIDE (security flaws start at home) .rhosts used by Internet Worm Attachments used by MyDoom (1 in 6 emails Monday

morning!)

Page 29: Machine-Level Programming V: Advanced Topics September 28, 2004

– 29 – 15-213, F’04

Avoiding Overflow VulnerabilityAvoiding Overflow Vulnerability

Use Library Routines that Limit String LengthsUse Library Routines that Limit String Lengthsfgets instead of gets strncpy instead of strcpy Don’t use scanf with %s conversion specification

Use fgets to read the stringOr use %ns where n is a suitable integer

/* Echo Line */void echo(){ char buf[4]; /* Way too small! */ fgets(buf, 4, stdin); puts(buf);}

Page 30: Machine-Level Programming V: Advanced Topics September 28, 2004

– 30 – 15-213, F’04

IA32 Floating Point

HistoryHistory 8086: first computer to implement IEEE FP

separate 8087 FPU (floating point unit)

486: merged FPU and Integer Unit onto one chip

SummarySummary Hardware to add, multiply, and divide Floating point data registers Various control & status registers

Floating Point FormatsFloating Point Formats single precision (C float): 32 bits double precision (C double): 64 bits extended precision (C long double): 80 bits

Instructiondecoder andsequencer

FPUInteger

Unit

Memory

Page 31: Machine-Level Programming V: Advanced Topics September 28, 2004

– 31 – 15-213, F’04

FPU Data Register StackFPU Data Register Stack

FPU register format (extended precision)FPU register format (extended precision)

s exp frac063647879

FPU registersFPU registers 8 registers Logically forms shallow

stack Top called %st(0) When push too many,

bottom values disappear

stack grows down

“Top” %st(0)

%st(1)

%st(2)

%st(3)

Page 32: Machine-Level Programming V: Advanced Topics September 28, 2004

– 32 – 15-213, F’04

Instruction Effect Description

fldz push 0.0 Load zero

flds Addr push M[Addr] Load single precision real

fmuls Addr %st(0) %st(0)*M[Addr] Multiply

faddp %st(1) %st(0)+%st(1);pop Add and pop

FPU instructionsFPU instructions

Large number of fp instructions and formatsLarge number of fp instructions and formats ~50 basic instruction types load, store, add, multiply sin, cos, tan, arctan, and log!

Sample instructions:Sample instructions:

Page 33: Machine-Level Programming V: Advanced Topics September 28, 2004

– 33 – 15-213, F’04

Testing & Comparing FP NumbersTesting & Comparing FP Numbers

Special FP-instructions to compare the two top stack Special FP-instructions to compare the two top stack locationslocations

Caution: Need to consider the FP representation Caution: Need to consider the FP representation properties!properties!

float x;int n = 0;

for (x = 0.0; x < 10.0; x += 0.1) { n++;}

n = ??

Page 34: Machine-Level Programming V: Advanced Topics September 28, 2004

– 34 – 15-213, F’04

FP Rounding ModesFP Rounding Modes

int fegetround(void);int fegetround(void);

int fesetround(int rounding_mode);int fesetround(int rounding_mode);

4 Rounding modes:4 Rounding modes: FE_TONEARESTFE_TONEAREST towards nearest FP number FE_DOWNWARDFE_DOWNWARD towards -infinity FE_UPWARDFE_UPWARD towards +inifinity FE_TOWARDZEROFE_TOWARDZERO towards 0.0

Useful forUseful for Implementing interval arithmetic Compute conservative bounds Estimate numerical errors

Page 35: Machine-Level Programming V: Advanced Topics September 28, 2004

– 35 – 15-213, F’04

Floating Point Code ExampleCompute Inner Product Compute Inner Product of Two Vectorsof Two VectorsSingle precision arithmeticCommon computation

float ipf (float x[], float y[], int n){ int i; float result = 0.0; for (i = 0; i < n; i++) { result += x[i]*y[i]; } return result;}

pushl %ebp # setup movl %esp,%ebp pushl %ebx movl 8(%ebp),%ebx # %ebx=&x movl 12(%ebp),%ecx # %ecx=&y movl 16(%ebp),%edx # %edx=n fldz # push +0.0 xorl %eax,%eax # i=0 cmpl %edx,%eax # if i>=n done jge .L3 .L5: flds (%ebx,%eax,4) # push x[i] fmuls (%ecx,%eax,4) # st(0)*=y[i] faddp # st(1)+=st(0); pop incl %eax # i++ cmpl %edx,%eax # if i<n repeat jl .L5 .L3: movl -4(%ebp),%ebx # finish movl %ebp, %esp popl %ebp ret # st(0) = result

Page 36: Machine-Level Programming V: Advanced Topics September 28, 2004

– 36 – 15-213, F’04

Inner Product Stack TraceInner Product Stack Trace

1. fldz

0.0 %st(0)

2. flds (%ebx,%eax,4)

0.0 %st(1)

x[0] %st(0)

3. fmuls (%ecx,%eax,4)

0.0 %st(1)

x[0]*y[0] %st(0)

4. faddp

0.0+x[0]*y[0] %st(0)

5. flds (%ebx,%eax,4)

x[0]*y[0] %st(1)

x[1] %st(0)

6. fmuls (%ecx,%eax,4)

x[0]*y[0] %st(1)

x[1]*y[1] %st(0)

7. faddp

%st(0)

x[0]*y[0]+x[1]*y[1]

Initialization

Iteration 0 Iteration 1

Page 37: Machine-Level Programming V: Advanced Topics September 28, 2004

– 37 – 15-213, F’04

Final ObservationsFinal ObservationsMemory LayoutMemory LayoutOS/machine dependent (including kernel version)Basic partitioning: stack/data/text/heap/shared-libs found in most

machines

Type Declarations in CType Declarations in CNotation obscure, but very systematic

Working with Strange CodeWorking with Strange Code Important to analyze nonstandard cases

E.g., what happens when stack corrupted due to buffer overflow

Helps to step through with GDB

IA32 Floating PointIA32 Floating PointStrange “shallow stack” architecture

Page 38: Machine-Level Programming V: Advanced Topics September 28, 2004

– 38 – 15-213, F’04

Final Observations (Cont.)Final Observations (Cont.)Assembly LanguageAssembly LanguageVery different than programming in CArchitecture specific (IA-32, X86-64, Sparc, PPC, MIPS, ARM, 370, …)No types, no data structures, no safety, just bits&bytesRarely used to programNeeded to access the full capabilities of a machine Important to understand for debugging and optimization