machine design final

140
NonContact Thickness Measurement Device Southern Polytechnic State University MET 4141 Machine Design Professor Mir Atiqullah & EXIDE Technologies By: Ryan Clark, David Guffey, Devon Antoine, and Kevin McCall Submitted: May 3, 2010

Upload: rclark430

Post on 07-May-2015

2.914 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Machine Design Final

 

 

Non‐Contact Thickness Measurement Device Southern Polytechnic State University 

MET 4141 Machine Design 

Professor Mir Atiqullah & EXIDE Technologies  

By: Ryan Clark, David Guffey, Devon Antoine, and Kevin McCall 

Submitted: May 3, 2010 

 

 

 

Page 2: Machine Design Final

TABLE OF CONTENTS 

Page  Title

1  Abstract  

2  Problem Definition  

3  Introduction 

4  Customer Requirements 

5  Engineering Design/Specs 

6  Gantt Chart 

7  Initial Design Concepts 

8  Design and Analysis 

12  Cost Analysis 

15  Safety 

17  Data Acquisition (LabVIEW) 

19  Data Analysis  (MATLAB) 

27  Project Status 

28  Conclusion 

29  Acknowledgements 

30  References  

  Appendix 

  Author Bio 

Page 3: Machine Design Final

MET 4141 – Machine Design – Group 5 Spring 2010 

Professor Mir Atiqullah Southern Polytechnic State University 

Page 1 of 30 

ABSTRACT 

                                                                                                          EXIDE, a worldwide manufacturer of lead‐acid batteries, partnered with Southern Polytechnic State University’s Mechanical Engineering Technology program to design a device for measuring the thickness of their lead plates.  Along with a strict set of customer requirements and measurement tolerances that needed to be met; there was no current method to benchmark a design off of. The engineering group had to start from complete scratch and come up with an innovative way to incorporate the device into EXIDE’S current manufacturing process. 

The group, composed of Ryan Clark, Devon Antoine, David Guffey, and Kevin McCall, took on the task of engineering the device. 

 

BRAIN STORMING 

Brainstorming for the project took almost 2 weeks as the group performed endless amounts of research to find a benchmark for beginning their design.  A lot of research was put into the measurement device to locate a suitable method for meeting the customer requirements.   

DESIGN 

Once the team had gathered enough research, concepting and design of the first models were produced.  There were 3 separate designs, each for a different location in the space allotted.  A design matrix was used to weigh out which design was the most suitable.  Once a final concept was chosen, the detailed assembly was modeled in SolidWorks and revised over time. 

ANALYSIS 

With a working model in SolidWorks, analysis was done on the table’s ability to withstand the weight of the lead strip and any other residual weight.  The results showed our design had substantial strength.  SolidWorks was also used to calculate the weight of the table to know exactly how much pressure to have the gas springs set at.   

 

Page 4: Machine Design Final

MET 4141 – Machine Design – Group 5 Spring 2010 

Professor Mir Atiqullah Southern Polytechnic State University 

Page 2 of 30 

PROBLEM DEFINITION 

  Our design objective was given to us by EXIDE Battery Company. In their plate manufacturing process, they did not have any way to measure thickness of their plates when going through the process. This gave us our problem definition, which is to design a system to provide plate thickness information as feedback for processes and quality controlling. 

The process that EXIDE has for creating these plates started with a large coil of solid lead. Then, the plates move through a grating machine which punches holes in the plates. Once all the holes are cut, the plates move to a pasting machine, which adds a lead paste to the top and bottom of the lead strips. Then the strips move to a cutting machine which cuts six inch section plates. Between the pasting and cutting machines there is about six feet of clearance where the lead strips sag due to the difference in speed of the machines. The plates are then sent to a drying machine which hardens the paste on the plates to a point where they can be handled. Finally, the plates move to a table and they are bundled into a set of ten where they are measured and weighed. 

The area that we were designated to create our device at was after the pasting machine and before the cutting machine. The issue was that we needed to find a way to measure the thickness without compromising the paste that had just been freshly applied to the strips. This meant that we could not come in contact with the paste, or if we had to, the contact had to be minimal. This was a problem because the “sag” of the strips between the two machines made a thickness measurement device unreliable if there was completely no contact.  

The figures below show the desired area for design: 

Pasting Machine Sag in the strips Cutting Machine

 

Page 5: Machine Design Final

MET 4141 – Machine Design – Group 5 Spring 2010 

Professor Mir Atiqullah Southern Polytechnic State University 

Page 3 of 30 

INTRODUCTION 

Exide Technologies is the world’s largest manufacturer of lead‐acid batteries, with operations in over 80 countries and 2009 net sales of over $3.3 billion.  Exide Technologies is a global business organized to serve customers’ complex stored energy systems needs. Key strengths of the Company are that its products and services span global markets and geographic borders, melding two significant bases of experience and technology expertise from its Transportation and Industrial battery divisions.  The Company shares expertise across business segments.  For example, Exide established a global network of battery testing centers and design improvement centers in North America, France, Spain, Australia and the U.K.  This global footprint enables better and faster means of introducing innovations in products and services, changing the way the world uses and stores electrical energy.  

‐www.EXIDE.com 

 

In the fall of 2009, Exide Technologies invited a group of Mechanical Engineering Technology students from Southern Polytechnic State University to tour their Columbus, Ga. facility and to learn the process of manufacturing lead‐acid batteries.  To show Exide their appreciation for the tour and to start a partnership between Exide and the university, Professor Mir Atiqullah offered to have his Machine Design class work on designing solutions to some of Exide’s engineering problems.   

In the spring of 2010, 3 groups were chosen to take on the projects assigned by Exide.  The scope of each project was laid out to the groups on February 16th at a project “kick off” held at Exide’s engineering facility in Alpharetta, Ga.  Our group, composed of Ryan Clark, David Guffey, Devon Antoine, and Kevin McCall, was assigned the task of designing a thickness measurement device for the lead plates manufactured in Exide’s Bristol, Tennessee plant. 

The lead plates in the Bristol, Tennessee plant are manufactured using a proprietary process of “stretching” the raw lead strip into a grid where it is run through a pasting machine and lead oxide (PbO2) is pasted into the grid cavities.  The pasted grid is then sent to a cutting machine where they are cut into individual plates and ran through a drying oven to further harden the paste.   

Two of the most crucial aspects of our design were: We could not affect the continuity of the paste.  Meaning, our device had to have a measurement method that was non‐contact and our apparatus could not be so invasive to the strip that it caused unnecessary stress to the grid.  The second aspect was that we were bound by the current floor layout which meant our device had to be designed to be fully integrated with the current process.  

The following report documents the design process our group went through from brainstorming, to scheduling, to design, and finally completed concept.  All photos and documents contained herein are property of Exide Technologies and the MET department of Southern Polytechnic State University. 

 

Page 6: Machine Design Final

MET 4141 – Machine Design – Group 5 Spring 2010 

Professor Mir Atiqullah Southern Polytechnic State University 

Page 4 of 30 

CUSTOMER REQUIREMENTS 

A list of several requirements was provided by Exide Technology’s representatives for the Thickness measurement device. Our design was purely based on the list of the requirements, and is included in the final design. A total of seven customer requirements were given for the group to complete. Also, a camera device is implemented by our group in addition to the requirements to improve the system. 

• Measurement has to be in line • Measurement resolution should be precise enough to qualify the product based on product 

specification • Data rate: minimum of 8 measurements per second • Data will be dynamically updated on screen • Data will be stored in accessible database for statistical analysis • There will be no “reject” function in this system 

Our device, a thickness measurement device must be aligning with the lead paste. Our first two requirements are that our device is in line with the paste and it does not affect the continuity of the paste.  This means that the device cannot interfere with the current pasting process by moving machines. Also the continuity of the paste cannot be disturbed. The wet lead paste is very delicate and therefore our device must be the least invasive as possible. This means that a “no‐touch” method of measuring the paste should be used. The best method for measuring in such a way would be to use lasers to measure the thickness of the paste.  As the paste moves between machines a 6ft gap lies between the pasting machine and the cutting machine before the paste dries. Due to the gravity, and speed change between the two machines, a sag in the paste exists.  

For the use of lasers to measure the thickness of the paste, eight measurements are to be made per second.   Also the measurement resolution should be precise enough to qualify the product based on product specification.  In order to make precise measurements of the lead paste, the lasers must be perpendicular to the paste. To get accurate measurements along the width of the paste, eight lasers are to be used. Four lasers above the paste and four below it.  

The use of lasers to measure would be beneficial to our device for the next criterion, the data to be dynamically updated on a screen and be stored in a database for statistical analysis.  Additional software must be used to adopt the last two customer requirements. Programming such software is not a requirement because some lasers come with its own software, but we created our own program that meets those requirements. No reject function would be used during this process but an alarm should dictate if the paste is out of tolerance. In addition, a ultrasonic camera using ultraviolet rays to detect flaws within the paste is not a requirement but will improve the device. 

Page 7: Machine Design Final

MET 4141 – Machine Design – Group 5 Spring 2010 

Professor Mir Atiqullah Southern Polytechnic State University 

Page 5 of 30 

DESIGN SPECIFICATIONS 

The following specifications were provided by Exide Technologies about the plates that are to be measured and the process of how they are made: 

• Plate Specifications  

• Thickness: range: 0.04 to 0.08 inches 

• Tolerance +/‐ 0.003 inches 

• Typical size: Individual plate 6 x 4.5 inches 

• Line speed: 90 to 140 Ft/Min 

• Other Measurements:  6ft between pasting and cutting machine. 

• Lead strip enters cutting machine at a height of 31” 

 

The plate size and the other measurements provided determined the overall size of our thickness measurement device.  The device had to fit into the desired location and also accommodate the different size plates. 

The thickness range of the plates and their tolerances determined the accuracy of the measuring device to be used.  Also, the line speed determined the number of measurements that need to be made each second. 

Page 8: Machine Design Final

MET 4141 – Machine Design – Group 5 Spring 2010 

Professor Mir Atiqullah Southern Polytechnic State University 

Page 6 of 30 

GANTT CHART 

 

 

Page 9: Machine Design Final

MET 4141 – Machine Design – Group 5 Spring 2010 

Professor Mir Atiqullah Southern Polytechnic State University 

Page 7 of 30 

INITIAL DESIGN CONCEPTS 

The initial design concepts were based upon the placement of the thickness measurement device. The design of the device changes depending on the location along the pasting line. There are three locations where the device could be placed along the lead strip, there are: after the pasting machine, in between the pasting machine and cutting machine, and in front of the cutting machine. These can be seen in the figure located below.  

           

 

The placement of the device was determined by the amount of contact the device would have with the paste at each location.  A different design concept was made for each location as shown in the figure below. The figures correspond to the placement located in the figures above. Immediately after the pasting line, and in the middle of the lead strip creates more pressure along the lead strip due to its stationary design. The design concept at the location before the cutting machine was the least invasive of the three due to its ability to lie along the natural “sag” of the lead strip.  

        

 

The first concept design for in front of the cutting machine introduced the ability to adjust itself depending on the speed of the paste. The device is made of an aluminum frame and table with PVC rollers where the paste would lie. Attached perpendicularly to the table is a brace for the lasers, above and below the table. As the velocity of the lead strip increases, the table would rotate but accurate measurements would still ensue.  Also, one idea is to have the table adjust in an up or down motion to compensate for speed adjustment. This design was the building block for the final design.  

 

Page 10: Machine Design Final

MET 4141 – Machine Design – Group 5 Spring 2010 

Professor Mir Atiqullah Southern Polytechnic State University 

Page 8 of 30 

DESIGN AND ANALYSIS 

  Our final design was created to cut down on cost while still performing the task that was designated. The design, shown in the figure, uses a set of aluminum bar stock which creates the frame to hold up our most crucial part, the table. This table is connected to our frame by a three evenly distributed hinges which act as a pivot point to compensate for the sag in the lead strips. Another crucial part of this design is the gas shocks that hold up the other end of the table. The shocks are designed to hold up just the weight of the table so that any extra weight applied to the table will cause the shocks to compensate for that weight. Another key part of our design was the laser measurement system rack. This rack holds the lasers at a perpendicular axis. This design is important because it will only make an accurate reading if the lasers are reading the thickness in a level position.     Final Design 

       

 

FRAME 

The frame of the design is made of 80/20 extruded aluminum shown in the figure labeled 80/20 aluminum. This metal was chosen because its material properties are strong enough to hold up the weight of the table. Also the price of the metal is low in cost, which was an important design consideration.  

 

      

                                                                                                                  80‐20 Aluminum 

      

 

 

      

Page 11: Machine Design Final

MET 4141 – Machine Design – Group 5 Spring 2010 

Professor Mir Atiqullah Southern Polytechnic State University 

Page 9 of 30 

   SHOCKS 

The gas shocks are designed to hold up the weight of the table. This will allow the table to move with the weight of the lead strip. So if there is any change in angle due to a increase in speed of the lead strips the shocks will compensate for that angle by adjusting its pressure to equal the pressure change due to the angle change. The benefit to using these gas shocks over spring loaded shocks is life expectancy. If the shock needs to be calibrated, it is as easy as adding the pressure needed. Whereas if a spring loaded shock were used, the replacement costs would be more expensive and would be more difficult to replace. 

       TABLE 

The table that we designed has 2 main parts; the 10‐hole joining plates and the polyurethane idler rollers. The 10‐hole joining plate is used to hold the rollers and the bracket for the lasers. The costs of these parts were relatively low and they were made of a strong material. The rollers are used to help the lead strips move freely while still providing a surface to get an accurate reading by the lasers.  They are made of polyurethane because they have less friction and they are lighter. This means that the paste that is coming across the rollers will be less likely to stick. Also, if the designed table is lighter, it is less weight for the gas shocks to hold up. This will increase the life expectancy in these shocks because they have to do less work when running in cycles. 

         FINITE ELEMENT ANALYSIS 

Being that the table is the most crucial part of the design, it was necessary to do a stress analysis on it. The figures below show the maximum stress, maximum strain, and the maximum displacement of the table in the absolute worst condition.  

For the analysis, the table is isolated and forces are placed in necessary areas. The table is fixed at the back to represent the hinges. This helps give us an ultimate condition to see if the table would yield. On the other end of the table, there are two (15 pound/each) forces pushing the table parallel to its edge in the upward direction. This represents the forces from the gas shocks pushing in the direction of the table. Finally, there is a 100 lb. force being applied to the top of the table to represent the force that the lead strips add to the table.  This force is about 20 times higher than the actual force that would be applied by these strips.  

The results of these applied stresses on the table are as follows: 

NOTE: the area where there is a color change other than blue is where the there is a change in the stress, strain, or displacement. 

Page 12: Machine Design Final

MET 4141 – Machine Design – Group 5 Spring 2010 

Professor Mir Atiqullah Southern Polytechnic State University 

Page 10 of 30 

Maximum Stress 

  

The Maximum Stress= 33MPa; the yield stress of the material is 55 MPa so there is no danger of the table yielding. 

Maximum Strain 

 

The Maximum Strain= 3.5396 x 10‐4  

Maximum Displacement 

 

The Maximum Displacement= 0.336 mm 

Page 13: Machine Design Final

MET 4141 – Machine Design – Group 5 Spring 2010 

Professor Mir Atiqullah Southern Polytechnic State University 

Page 11 of 30 

LASER MEASUREMENT SYSTEM 

 

Acuity Lasers (AR‐700) 

  One major part of the design is the laser measurement system. The system needed to be able to read 8 measurements per second, have a high resolution for accurate measurements, and be cost effective. This laser meets all of those requirements and surpasses them.  

The laser measurement system in the figure above, called the AR‐700, is made by the company, Acuity Laser. There were a lot of comparable laser systems that could have worked as well, but researching these showed this was the best choice. This laser is able to read up to 9400 measurements/second which is substantially more then what was required, The resolution of the laser is extremely high, and the cost of the laser is $3495/each which is lower than the cost of most laser measurement systems. 

 

Page 14: Machine Design Final

MET 4141 – Machine Design Spring 2010 

Professor Mir Atiqullah Southern Polytechnic State University 

Page 12 of 30 

COST ANALYSIS 

Estimated Design Cost 

Using an average base salary of $55,000 a year, which is about $27 an hour, with an estimated 680 hours of work, the design cost for the thickness measurement device was $18,360. 

 

 

Detailed Prototype Cost 

 

 

The above table is a detailed list of all the parts required for our final design.  The main cost of this design is the lasers.  We obtained two quotes for laser thickness measurement systems, which include the lasers, the software to collect and analyze the data, and a computer to display the information.  The Aquity laser in the table above was the lowest price for everything needed to take and analyze the thickness of the lead plates. 

   

Page 15: Machine Design Final

MET 4141 – Machine Design Spring 2010 

Professor Mir Atiqullah Southern Polytechnic State University 

Page 13 of 30 

T-Slotted Aluminum ($164.40)

Welded Steel ($224.38)

What T-Slotted Framing Takes: What Steel Framing Takes:

• Design Time • Bill of Materials • Purchase Materials • Assemble Frame Per Design

• Design Time• Purchase materials • De-burred • Weld • Clean weld spatter • Machine for mounting • Mask non-paint areas

• Bill of Materials• Cut to length • Set up fixture • Grind Wheels • Degrease • Primer Coat • Paint

T-Slotted Framing Benefits: Welded Steel Expenses:

• No welding - no fighting heat stress or warpage • No priming or painting • Lightweight, easy to machine • Uses standard fractional or metric fasteners • Less engineering time required • Easy to fabricate; only simple hand tools required • T-slot technology is industry accepted • Great aesthetic value • No expansive fabricationg equipment required • Easily reconfigured for design changes

• Band Saw & Clamps • Grinder & Sanding Disc • Welder & Fuel • Protective Equipment • Paint Booth • Skilled Labor

T-Slotted Bill of Material: Welded Bill of Material:

Qty Description Cost

4 1515-Lt x 18" 32.40

4 1515-Lt x 21" 37.80

8 #7010 Saw Cut 15.60

8 #4301 Inside Corner Bracket 34.40

32 #3320 5/16-18 x 5/8" FBHSCS & Nut 19.20

30 Min. Assembly Labor Time 25.00

Total Project Cost $164.40

Qty Description Cost

4 1.5" x 1.5" x 1/8" wall x 18" steel tube 34.56

4 1.5" x 1.5" x 1/8" wall x 21" steel tube 40.32

N/A Sandpaper, cleaning supplies, tape, paint, ect. 24.50

5 hrs.

Assembly Labor Time @ 25.00/hr. 125.00

Total Project Cost $224.38

Page 16: Machine Design Final

MET 4141 – Machine Design Spring 2010 

Professor Mir Atiqullah Southern Polytechnic State University 

Page 14 of 30 

 

On the previous page there is a cost comparison between 80/20 T‐Slotted Aluminum and steel tubing for building a small table.  This was taken from www.8020.net which is the official web site for 80/20.  Due to the fact that using 80/20 aluminum was cheaper and easier to assemble, we decided to use this material to build the frame of our design. 

Since we were not able to build a prototype there was no assembly labor costs involved in this project.  Also, this is a custom design project with no plans of future mass production, so there was no production cost analysis done.   

Including the design costs and the costs of all the parts the total estimated cost of this project is $52,000. 

 

Description  Cost 

Design Cost  $19,000 

Prototype Cost  $33,000 

Total $52,000 

 

Page 17: Machine Design Final

MET 4141 – Machine Design Spring 2010 

Professor Mir Atiqullah Southern Polytechnic State University 

Page 15 of 30 

SAFETY 

The following safety information was taken from the Acuity website regarding laser safety and conforms to OSHA standards. 

Acuity’s laser sensors put out about the same power levels as the laser pointers that have become quite common, but they are still subject to safety regulations. These devices are potentially hazardous only when the beam enters the eye directly or through optics such as mirrors or focusing lenses. Scattered light or light striking the skin is not classified as hazardous.  

Laser Classes U.S. regulations presently divide laser devices into “classes” based on the power of the laser, whether it is a visible or IR laser, and the potential exposure duration. Class I devices are eye‐safe under any circumstances. The maximum permissible output varies with the laser light frequency and other factors. Class II devices are visible lasers with output of less than 1 milliwatt. Classifications apply to both pulsed and continuous wave lasers, with various formulae for determining class. 

For cw lasers, Class IIIa lasers are visible lasers with output power of more than 1 mW but less than 5 mW, as measured through a 7 millimeter aperture. Class IIIb lasers are those with output above 5 mW, or any laser outside the visible frequency band that is not unconditionally eye safe. Class IIIb extends up to 500 mW output power. 

Regulations for light‐emitting devices are governed by the U.S. Food and Drug Administration (FDA) under 21 CFR 1040.10, PERFORMANCE STANDARDS FOR LIGHT‐EMITTING PRODUCTS .  

Classifications of the AR4000 Versions The AR4000‐RET is a Class I device, meaning that it will not cause damage to skin or eyes. If the target can have retroreflective tape applied to it, the 4000‐RET is usually the sensor to use. 

The AR4000‐LV is a Class IIIa laser device, with a maximum power of less than 5 mW. The aperture cover supplied with the 4000 LV is required for end user sales in the U.S. OEMs and developers may integrate a separate aperture cover, so long as it meets Federal requirements. 

The AR4000‐LIR and high power LIR are a Class IIIb laser devices. The aperture cover supplied with these sensors is required for end user sales in the U.S. In addition, complete systems (with power supply) must also include a keyswitch and power interlock jack. The key must be removable only when the laser is off. The power jack disconnects power to the laser when it is removed. The AR4000‐LIR power supply includes the keyswitch and interlock jack. End users providing their own power supplies must include a conforming keyswitch and interlock. A separate keyswitch/interlock box is available for the 4000‐LIR. 

Laser classification becomes even more complex when considering scanned beams. Depending on the speed of the scan and whether a scan repeats along one line moves in 2 axes, Acuity’s sensors can be made eye safe while scanning. Regulations require end user scanning systems that are classified as eye safe to include interlocks that turn the laser off if the beam scanning speed or pattern changes in any way that could cause exposure to hazardous light levels. Scanning systems may also be classified as Class II, IIIa, or IIIb, but precautions must be taken to assure that they are used in a safe manner. 

The ANSI document Z136.1‐1993, “American National Standard for Safe Use of Lasers” describes the classifications of lasers and the precautions to be taken for each class. This document may be ordered from ANSI, which has offices in Hackensack, NJ, and New York, NY. (Phone: 212‐642‐4900)

Page 18: Machine Design Final

MET 4141 – Machine Design Spring 2010 

Professor Mir Atiqullah Southern Polytechnic State University 

Page 16 of 30 

EYE PROTECTION 

Frame Style: Sperian Milan Color: Light Magenta VLT: 45 % Filter #: 104  Filter Type: Diode 1  Sperian Part Nbr:   31‐60104  

Wavelength 190 – 380 755 – 855 780 ‐ 840 

Optical Density  7 ‐ 7.1  4 ‐ 4.1 7 ‐ 7.1 

 

 

A Class 3B laser is hazardous if the eye is exposed directly, but diffuse reflections such as from paper or other matte surfaces are not harmful. Continuous lasers in the wavelength range from 315 nm to far infrared are limited to 0.5 W. For pulsed lasers between 400 and 700 nm, the limit is 30 mJ. Other limits apply to other wavelengths and to ultrashort pulsed lasers. Protective eyewear is typically required where direct viewing of a class 3B laser beam may occur. Class‐3B lasers must be equipped with a key switch and a safety interlock. 

 

KEY SWITCH INTERLOCK 

Most international laser safety standards require that laser devices that emit Class 3B (or higher) radiation must be connected to a safety interlock. While most users of AR700 sensors intend to integrate them into a larger system with its own safety interlocks, some sensors will be stand alone. For these stand‐alone applications, Acuity provides a special connectivity kit with its own keyswitch interlock. 

 

SAFETY WARNING SIGNS 

   

Page 19: Machine Design Final

MET 4141 – Machine Design – Group 5 Spring 2010 

Professor Mir Atiqullah Southern Polytechnic State University 

Page 17 of 30 

DATA ACQUISITION 

Software name: LabVIEW 2009 

BACKGROUND: 

As part of our list of customer requirements, a method for data to be updated dynamically and displayed on screen for analysis was desired by the engineers at Exide.  Though we had minimal experience with creating such a program, we decided to tackle the task anyway.  Unfortunately, our group was unable to acquire a laser system to hook up to a DAQ device, so we were forced to create a “simulation” for proof of concept.  This simulation uses a Gaussian White Noise VI to generate a random number given a standard deviation.  These random numbers simulated raw data from the lasers and controls nested in the front panel allow us to control the numbers to simulate various scenarios (ex, too thick, too thin).  Below is a screen shot of the front panel and block diagram. 

WHITE NOISE VI 

 

 

 

Page 20: Machine Design Final

MET 4141 – Machine Design – Group 5 Spring 2010 

Professor Mir Atiqullah Southern Polytechnic State University 

Page 17 of 30 

 FRONT PANNEL: 

 

 

BLOCK DIAGRAM:

 

LARGER IMAGE LOCATED IN APPENDIX 

LED Indicator for warning  Chart with upper and lower limit bars. 

User Inputs

Page 21: Machine Design Final

MET 4141 – Machine Design – Group 5 Spring 2010 

Professor Mir Atiqullah Southern Polytechnic State University 

Page 19 of 30 

THICKNESS MEASUREMENT STATISTICAL ANALYSIS USING MATLAB 

Introduction:  This program loads an excel file and plots and X‐Y Plot of time vs. thickness measurement, along with upper and lower tolerance limits.  It also plots a Histogram to show the central tendencies of the data.  Also the minimum value, maximum value, mean value, and the standard deviation of the collected data is calculated. Program

  The MatLab program was written as a Graphical User Interface (GUI) so that the user could easily interact with the data and more easily see the information displayed instead of using a regular MatLab function.  First of all this program selects an already existing Excel file, reads the information contained in the Excel file, loads the data, creates two plots, and finally calculates the maximum and minimum values, the mean value, and the standard deviation of the data collected. 

 

 

 

Page 22: Machine Design Final

MET 4141 – Machine Design – Group 5 Spring 2010 

Professor Mir Atiqullah Southern Polytechnic State University 

Page 20 of 30 

Graphs 

The first graph plots the time vs thickness measurements (Figure 4) of the data loaded, along with the upper and lower tolerance limits for the plates. 

 

Figure 4.  Time vs Thickness Measurement Graph. 

 

 

 

 

 

 

 

Page 23: Machine Design Final

MET 4141 – Machine Design – Group 5 Spring 2010 

Professor Mir Atiqullah Southern Polytechnic State University 

Page 21 of 30 

The second graph plots a histogram (Figure 5)  of the data loaded along with the upper and lower tolerance limits of the battery plates.  The histogram shows the central tendencies of the data. 

 Figure 5.  Histogram Plot 

  Calculations  

This program calculates the minimum and maximum values, the mean value, and the standard deviation of the data loaded.  Mean Value: 

  Standard Deviation:  

   

Page 24: Machine Design Final

MET 4141 – Machine Design – Group 5 Spring 2010 

Professor Mir Atiqullah Southern Polytechnic State University 

Page 22 of 30 

Program Code 

function varargout = ThicknessMeasurement(varargin) %Written by David Guffey %This program loads an excel file and plots and X-Y Plot of time vs. %thickness measurement, along with upper and lower tolerance limits. %It also plots a Histogram to show the central tendencies of the data. %Also the minimum value, maximum value, mean value, and the %standard deviation of the collected data is calculated. % THICKNESSMEASUREMENT M-file for ThicknessMeasurement.fig % THICKNESSMEASUREMENT, by itself, creates a new THICKNESSMEASUREMENT or raises the existing % singleton*. % % H = THICKNESSMEASUREMENT returns the handle to a new THICKNESSMEASUREMENT or the handle to % the existing singleton*. % % THICKNESSMEASUREMENT('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in THICKNESSMEASUREMENT.M with the given input arguments. % % THICKNESSMEASUREMENT('Property','Value',...) creates a new THICKNESSMEASUREMENT or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before ThicknessMeasurement_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to ThicknessMeasurement_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help ThicknessMeasurement % Last Modified by GUIDE v2.5 26-Apr-2010 06:12:36 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @ThicknessMeasurement_OpeningFcn, ... 'gui_OutputFcn', @ThicknessMeasurement_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end

Page 25: Machine Design Final

MET 4141 – Machine Design – Group 5 Spring 2010 

Professor Mir Atiqullah Southern Polytechnic State University 

Page 23 of 30 

if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before ThicknessMeasurement is made visible. function ThicknessMeasurement_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to ThicknessMeasurement (see VARARGIN) % Choose default command line output for ThicknessMeasurement handles.output = hObject; set(hObject,'toolbar','figure'); %Inserts Exide Logo axes(handles.axes1_ExideLogo); ExideLogo=importdata('Exide Technologies.jpg'); image(ExideLogo); axis off % Update handles structure guidata(hObject, handles); % UIWAIT makes ThicknessMeasurement wait for user response (see UIRESUME) % uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = ThicknessMeasurement_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % --- Executes on button press in pushbutton_Reset. function pushbutton_Reset_Callback(hObject, eventdata, handles) % hObject handle to pushbutton_Reset (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)

Page 26: Machine Design Final

MET 4141 – Machine Design – Group 5 Spring 2010 

Professor Mir Atiqullah Southern Polytechnic State University 

Page 24 of 30 

%these two lines of code clears both axes cla(handles.axes2_XYPlot,'reset') cla(handles.axes3_HistogramPlot,'reset') cla(handles.text_MinVal,'reset') cla(handles.text_MaxVal,'reset') cla(handles.text_MeanVal,'reset') cla(handles.text_StdVal,'reset') guidata(hObject, handles); %updates the handles % --- Executes on button press in pushbutton_Browse. function pushbutton_Browse_Callback(hObject, eventdata, handles) % hObject handle to pushbutton_Browse (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) [fileName] = uigetfile({'*.xls';'*.xlsx'},'File Selector'); set(handles.edit_fileName,'String',fileName); guidata(hObject, handles); % --- Executes during object creation, after setting all properties. function edit_FileName_CreateFcn(hObject, eventdata, handles) % hObject handle to edit_FileName (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in pushbutton_LoadData. function pushbutton_LoadData_Callback(hObject, eventdata, handles) % hObject handle to pushbutton_LoadData (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) %selects axes1 as the current axes, so that %Matlab knows where to plot the data axes(handles.axes2_XYPlot) a=xlsread('random_number.xls'); x =a(:,1); y =a(:,2); %upper and lower limits

Page 27: Machine Design Final

MET 4141 – Machine Design – Group 5 Spring 2010 

Professor Mir Atiqullah Southern Polytechnic State University 

Page 25 of 30 

y1=0.043; y2=0.037; %plots the x and y data plot(x,y); hold on %adds a title, x-axis description, and y-axis description title('X-Y Scatter Plot'); xlabel('Time'); ylabel('Thickness Measurement'); %plots upper and lower limits plot(x,y1,'r'); plot(x,y2,'r'); hold off axes(handles.axes3_HistogramPlot) x2=0.035:0.0001:0.045; hist(y,x2) y3=0:.1:45; x3=0.037; x4=0.043; hold on %plots upper and lower limits plot(x3,y3,'r') plot(x4,y3,'r') title('Histogram Plot') xlabel('Thickness Measurement in Inches') ylabel('Number of Measurements') hold off %calculates the min, max, mean, and standard deviation for y values %and stores them in the appropriate locations on the user interface MinVal=num2str(min(y),3); set(handles.text_MinVal,'String',MinVal); MaxVal=num2str(max(y),3); set(handles.text_MaxVal,'String',MaxVal); MeanVal=num2str(mean(y),3); set(handles.text_MeanVal,'String',MeanVal); Std=num2str(std(y),2); set(handles.text_StdVal,'String',Std); guidata(hObject, handles); %updates the handles

Page 28: Machine Design Final

MET 4141 – Machine Design – Group 5 Spring 2010 

Professor Mir Atiqullah Southern Polytechnic State University 

Page 26 of 30 

function edit_fileName_Callback(hObject, eventdata, handles) % hObject handle to edit_fileName (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit_fileName as text % str2double(get(hObject,'String')) returns contents of edit_fileName as a double % --- Executes during object creation, after setting all properties. function edit_fileName_CreateFcn(hObject, eventdata, handles) % hObject handle to edit_fileName (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end  

Page 29: Machine Design Final

MET 4141 – Machine Design – Group 5 Spring 2010 

Professor Mir Atiqullah Southern Polytechnic State University 

Page 27 of 30 

PROJECT STATUS 

Our initial plan was to build a working prototype to give to Exide Technologies at the end of our project.  Due to expenses of the lasers and long lead times on the lasers we were not able to build a prototype of our final design.  Due to this reason we focused on the real time information display and the data storage and analysis part of this project, instead of putting our efforts into building a partial prototype that could not be tested. 

We are satisfied with our final design and feel that we have come up with a feasible solution to the problem that we were given.  If Exide Technologies agrees, we would like to pass this project along to a machine design group for next semester.  Ideally the next group would continue the project and build a working prototype to hand over to Exide Technologies. 

Page 30: Machine Design Final

MET 4141 – Machine Design – Group 5 Spring 2010 

Professor Mir Atiqullah Southern Polytechnic State University 

Page 28 of 30 

CONCLUSION 

 

Each of the customer requirements provided by Exide Technology was completed within the time allotted by our Machine Design I course at Southern Polytechnic State University.  The final design for the thickness measurement device is capable of measuring the thickness of paste to the correct specifications outlined by the customer requirements. The device is designed to measure the thickness of the paste accurately with non‐contact lasers and table with minimum invasiveness.  

The device was not built due to the time frame of receiving actual Acuity lasers before the April 26th due date, and due to the cost of each laser. With more time and funding a prototype of the device could be built and tested for functionality. This is unfortunate, but next semesters Machine design 1 class may have the opportunity to build a working model of the thickness measurement device and have it placed at the Exide factory located in Chattanooga Tennessee.   

As a group we were able to put our engineering knowledge and skills together and come up with a quality design. It was a learning process to encounter design challenges and overcome them. This design project gives insight into our future as mechanical engineers solving problems in a team environment. It was a great opportunity for us students to work with the Exide battery company, for it adds value to us and Southern Polytechnic State University MET department that we as a student body are capable of completing such challenges.     

After presenting the design for the device Erika Olausen sent an email to us about our design, she wrote: 

“Hongbo and I wanted to thank you all for an outstanding effort on the plate thickness in‐line measurement project.  It was apparent that you all put a significant amount of time and consideration into your project.  I am a programming geek myself, so I was really excited to see your GUI for the operator interface and the Matlab analysis tool for the output data.  The amount of effort you all put into your project really showed clearly.  While other groups might have stopped at identifying a working laser kit, you all continued to work to integrate the process with a system that is easy to use for the operators as well as the data analyzers at the plant level.” 

 

Page 31: Machine Design Final

MET 4141 – Machine Design – Group 5 Spring 2010 

Professor Mir Atiqullah Southern Polytechnic State University 

 

FINAL CONCEPT PHOTOS 

 

 

Page 32: Machine Design Final

MET 4141 – Machine Design – Group 5 Spring 2010 

Professor Mir Atiqullah Southern Polytechnic State University 

 

 

 

Page 33: Machine Design Final

MET 4141 – Machine Design – Group 5 Spring 2010 

Professor Mir Atiqullah Southern Polytechnic State University 

Page 29 of 30 

ACKNOWLEDGEMENTS 

  The Thickness Measurement design team would like to thank: 

• Professor Atiqullah for the opportunity to work with EXIDE Battery Company on our project.  

• Hongbo Zhang and Erika Olausen from EXIDE for giving us our machine design project.   

• Also, a special thanks to Professor Kenton Fleming and Professor Gregory Conrey for their help on the Finite Element Analysis.   

•  Finally, we would also like to thank Professor Simin Nasseri for her help with our MATLAB program.  

 

Page 34: Machine Design Final

MET 4141 – Machine Design – Group 5 Spring 2010 

Professor Mir Atiqullah Southern Polytechnic State University 

Page 30 of 30 

REFERENCES 

1. Solid works, used for computer aided engineering.  Link: http://www.solidworks.com/  

2. Matlab, used for statistical analysis Link: http://www.mathworks.com/  

3. LabVIEW, used for thickness measurement Link: http://www.ni.com/labview/  

4. 80‐20, provided a material to base our design on Link: http://www.8020.net/  

5. Matweb, Material properties were found for our design Link: http://www.matweb.com/  

6. Measure It All, Quote for a thickness measurement system Link: http://www.measureitall.com/  

7. Acuity, The company used for the lasers on the design  Link: http://www.acuitylaser.com/AR700/sensor‐technical‐data.shtml  

8. Rockwell Laser Industries, Provided safety information on Lasers Link: http://www.rli.com/  

9. Occupational Safety & Health Administration, offers more safety information on Lasers  Link: http://www.osha.gov/SLTC/laserhazards/index.html  

10. Salary.com, Provides information on average paid salaries (used for cost analysis) http://www.salary.com/  

11. Microsoft Office Excel, Used to produce the gantt chart, program for storing thickness measurements, etc. Link: http://www.microsoft.com/en/us/default.aspx  

12. Textbook: “Fundamentals of Machine Elements, Second Edition.”   

 

Page 35: Machine Design Final

APPENDIX 

Page  Title

A1  Machine Drawings  

B1  Customer Correspondences  

C1  Acuity Laser Documents 

D1  Data Acquisition (Block Diagram and Front Panel) 

E1  Gantt Chart  

F1  Power Point (Final Presentation) 

   

   

   

   

   

   

   

   

   

   

   

   

Page 36: Machine Design Final

35.000

SCALE:DATE:

DR. BY: GROUP 5

5/2/20101

SHEET NO.

1:3

1530X35

OF 15

Page 37: Machine Design Final

20.000

SCALE:DATE:

DR. BY: GROUP 5

5/2/20102

SHEET NO.

1:2

1530X20

OF 15

Page 38: Machine Design Final

30.000

SCALE:DATE:

DR. BY: GROUP 5

5/2/20103

SHEET NO.

1:3

15030X30

OF 15

Page 39: Machine Design Final

6.00

6.00

1.50

3.00

.75

1.50

1.50

.75

.75

1.501.50.75

10X .38

.25

SCALE:DATE:

DR. BY: GROUP 5

5/2/20104

SHEET NO.

1:3

10-HOLE JOINING PLATE

OF 15

Page 40: Machine Design Final

1.500

.150

.750

.750

.835

1.000

2X .375

3.000

3.000

.150

R.200R.200

SCALE:DATE:

DR. BY: GROUP 5

5/2/20105

SHEET NO.

1:1

CORNER BRACKET

OF 15

Page 41: Machine Design Final

1.500

3XR.164

.250 1.500 .750

.750

3.000

R.125

.250

R.750

.500

SCALE:DATE:

DR. BY: GROUP 5

5/2/20106

SHEET NO.

1:1

PIVOT ARM

OF 15

Page 42: Machine Design Final

.125

1.125

2.125

16.0008X .350

1.500

1.000

2.200

8.000

SCALE:DATE:

DR. BY: GROUP 5

5/2/20107

SHEET NO.

1:2

ARCHITECTUAL ANGLE

OF 15

Page 43: Machine Design Final

.125

1.125

1.125

15.000

.789

2.080.211 2X .236

10.838

8.000

SCALE:DATE:

DR. BY: GROUP 5

5/2/20108

SHEET NO.

1:2

ARCHITECTUAL AL ANGLE

OF 15

Page 44: Machine Design Final

1.900.709

.315

16.250.098

.394

.098

.394

SCALE:DATE:

DR. BY: GROUP 5

5/2/20109

SHEET NO.

1:2

REXROTH ROLLER

OF 15

Page 45: Machine Design Final

6.000

1.000

1.000

21.000

.500

5.000

A

.064

.064

DETAIL A SCALE 2 : 3

SCALE:DATE:

DR. BY: GROUP 5

5/2/201010

SHEET NO.

1:2

LASER ARM

OF 15

Page 46: Machine Design Final

.500 15.000

SCALE:DATE:

DR. BY: GROUP 5

5/2/201011

SHEET NO.

1:2

ADJUSTMENT BAR

OF 15

Page 47: Machine Design Final

.236

R.171.314

.375

.341

12.000

.750

.125

SCALE:DATE:

DR. BY: GROUP 5

5/2/201012

SHEET NO.

1:2

SHOCK PISTON

OF 15

Page 48: Machine Design Final

.236.314

R.171

.708

R.100

12.624

.375.341

.125

SCALE:DATE:

DR. BY: GROUP 5

5/2/201013

SHEET NO.

1:2

SHOCK CYLINDER

OF 15

Page 49: Machine Design Final

16

14

21 17

15

18

19

20

117

313

5

84

1

2

6

15

ITEM NO. PART NUMBER DESCRIPTION QTY

1 4001 1530 X 35 22 4002 1515 X 20 33 4003 1515 X 30 44 4004 1515 X 10 15 4005 ELECTRICAL CABINET 16 4006 90 DEGREE JOINING PLATE 47 4007 4-HOLE CORNER BRACKET 108 4008 HINGE 311 4009 PIVOT ARM 212 4010 ARCHITECTURAL ANGLE 1X1 213 4011 SHOCK CYLINDER 214 4012 SHOCK PISTON 215 4013 ARCHITECTURAL ANGLE - R 1

16 4014 ARCHITECTURAL ANGLE - L 117 4015 ROLLER 618 4016 LASER ARM 219 4017 ADJUSTMENT BAR 120 4018 ADJUSTMENT NUT 421 4019 AR700 COMPACT LASER 8

SCALE:DATE:

DR. BY: GROUP 5

5/2/20101

SHEET NO.

1:3

THICKNESS DEVICE

OF 15

Page 50: Machine Design Final

8 9 18 21

17

20

19

15

12

7

11

14

3

132

6

5

4

16

1

10

ITEM NO. PART NUMBER DESCRIPTION without

belt/QTY.1 4001 1530 X 35 22 4002 1515 X 20 33 4003 1515 X 30 44 4004 1515 X 10 15 4005 ELECTRICAL CABINET 16 4006 90 DEGREE JOINING PLATE 47 4007 4-HOLE CORNER BRACKET 108 4008 HINGE 311 4009 PIVOT ARM 212 4010 ARCHITECTURAL ANGLE 1X1 213 4011 SHOCK CYLINDER 214 4012 SHOCK PISTON 215 4013 ARCHITECTURAL ANGLE-R 1

16 4014 ARCHITECTURAL ANGLE-L 117 4015 ROLLER 618 4016 LASER ARM 219 4017 ADJUSTMENT BAR 120 4018 ADJUSTMENT NUT 421 4019 AR700 COMPACT LASER 8

SCALE:DATE:

DR. BY: GROUP 5

5/2/201015

SHEET NO.

1:3

1530X35

OF 15

Page 51: Machine Design Final

1

Ryan Clark

From: David Guffey [[email protected]]Sent: Sunday, May 02, 2010 6:48 PMTo: Ryan ClarkSubject: Fwd: follow-up to down load of 80/20 informationAttachments: South linecard.pdf

 ‐‐‐‐‐ Forwarded Message ‐‐‐‐‐ From: "Mark Layburn" <[email protected]> To: [email protected] Sent: Tuesday, April 13, 2010 4:57:05 PM GMT ‐05:00 US/Canada Eastern Subject: follow‐up to down load of 80/20 information     Thank you for your interest in the 80/20 line of products.   SunSource is a local distributor of 80/20 and would be happy to answer any additional questions you might have.   I have also attached a SunSource line card.       CLICK HERE TO VIEW OUR LINE CARD     Mark Layburn   SunSource   Customer Service Representitive   ph# 800‐207‐7126   fax# 770‐414‐9827   www.sun‐source.com       

Page 52: Machine Design Final

1

Ryan Clark

From: David Guffey [[email protected]]Sent: Sunday, May 02, 2010 6:47 PMTo: Ryan ClarkSubject: Fwd: Initial contact

 ‐‐‐‐‐ Forwarded Message ‐‐‐‐‐ From: "Bill Burns" <[email protected]> To: [email protected] Sent: Monday, April 12, 2010 10:08:16 AM GMT ‐05:00 US/Canada Eastern Subject: Initial contact     Good morning David,   My name is Bill Burns and I am with a company called CFC. We are an 80/20 distributor here in GA.   80/20 contacted me with your contact information as I am the local territory manager.   Please give me a call/email at your convenience to arrange a time we can meet. At CFC we have two full time 80/20 designer specialists to assist with projects. We will provide a BOM, drawings and quote for your needs.   I am looking forward to hearing from you.     Bill Burns   CFC – GA   Territory Manager   678‐234‐7382 cell   [email protected]       The information contained in and transmitted with this e‐mail is confidential and may be privileged. It is intended only for the individual or entity so designated above. You are hereby notified that any dissemination, distribution, copying, or the use of or reliance upon the information contained in and transmitted with this e‐mail by or to anyone other than the recipient(s) designated above or the employee or agent responsible for delivering the transmittal to the intended recipient is unauthorized and strictly prohibited.  If you have received this e‐mail in error, please notify the sender by replying to this email and delete the email from your computer. 

Page 53: Machine Design Final

1

Ryan Clark

From: David Guffey [[email protected]]Sent: Sunday, May 02, 2010 6:46 PMTo: Ryan ClarkSubject: Fwd: Laser Measurement SystemAttachments: SPSU AS 200-025 Dual 7710.PDF

 ‐‐‐‐‐ Forwarded Message ‐‐‐‐‐ From: "Larry_F / MIA" <[email protected]> To: "David Guffey" <[email protected]> Sent: Thursday, March 18, 2010 3:52:41 PM GMT ‐05:00 US/Canada Eastern Subject: Re: Laser Measurement System   Hi David,   Attached is the quotation you requested. Please don't hesitate to contact me if you should have any questions.   Sincerely,   Larry Forszen www.measureitall.com Tel 704.895.2548 Fax 866.407.5325    *** Have you seen our new RS232 data capture software... check it out at http://www.prowedge.com    NOTICE: This facsimile transmission is intended only for the person(s) named above and may contain information that is privileged and confidential. If the reader of this message is not the intended recipient, you are hereby notified that any other distribution, copying or disclosure is strictly prohibited. If you receive this facsimile transmission in error, notify the sender immediately by return e‐mail and destroy the initial transmission without making a copy. Our standard terms and conditions apply to all sales. Warning: Although this message has been checked for viruses using antivirus software, it is the responsibility of the recipient to check that the document(s) and/or attachment(s) is/are virus‐free and the sender accepts no responsibility or liability for any loss, injury, damage, cost, or expense arising in any way from the receipt or use thereof by the recipient. All documents transmitted by sender, including this email, are not intended to be binding until a hard copy has been manually signed by all parties. EXPORT CONTROL NOTICE: This email may contain technical data whose export, transfer, and/or disclosure may be controlled by the US International Traffic and Arms Regulation (ITAR) 22 CFR part 120‐130 or the Export Administration Regulations Commerce.       On Wed, 17 Mar 2010 12:03:57 ‐0400 (EDT), David Guffey wrote:  > Can you send me a quote for two AcuSpec200‐025 lasers and all of the necessary connectors and the software.  >  > Thanks, > David Guffey 

Page 54: Machine Design Final

2

[email protected] > 770‐861‐5773 >  > ‐‐‐‐‐ Original Message ‐‐‐‐‐ > From: "Larry_F / MIA" <[email protected]> > To: "David Guffey" <[email protected]> > Sent: Wednesday, March 17, 2010 11:54:13 AM GMT ‐05:00 US/Canada  > Eastern > Subject: Re: Laser Measurement System >  >  > Hi David, >  > Yes, the software can take in 2 sensors and display the net thickness of the material.  >  > Warmest regards, >  > Larry Forszen > www.measureitall.com > Tel 704.895.2548 > Fax 866.407.5325 >  > *** Have you seen our new RS232 data capture software... check it out  > at http://www.prowedge.com >  > NOTICE: This facsimile transmission is intended only for the person(s) named above and may contain information that is privileged and confidential. If the reader of this message is not the intended recipient, you are hereby notified that anyother distribution, copying or disclosure is strictly prohibited. If you receive this facsimile transmission in error, notify the sender immediately by return e‐mail and destroy the initial transmission without making a copy. Our standard terms and conditions apply to all sales. Warning: Although this message has been checked for viruses using antivirus software, it is the responsibility of the recipient to check that the document(s) and/or attachment(s) is/are virus‐free and the sender accepts no responsibility or liability for any loss, injury, damage, cost, or expense arising in any way from the receipt or use thereof by the recipient. All documents transmitted by sender, including this email, are not intended to be binding until a hard copy has been manually signed by all parties. EXPORT CONTROL NOTICE: This email may contain technical data whose export, transfer, and/or disclosure may be controlled by the US International Traffic and Arms Regulation (ITAR) 22 CFR part 120‐130 or the Export Administration Regulations Commerce.  >  >  >  >  >  >  > On Wed, 17 Mar 2010 09:51:06 ‐0400 (EDT), David Guffey wrote:  >> Mr. Forszen, >>  >> Thank you for your response, We are working with a battery company and measuring the thickness of the lead plates used inside the battery, after the plates have been pasted with lead oxide. Where we are measuring, the line of plates is suspended so we are thinking we will need two lasers for one measurement, one on top and one on the bottom, and I was wondering if the software can use two lasers to make one measurement.  >>  >> Thanks, >>  

Page 55: Machine Design Final

3

>> David Guffey >> [email protected] >> 770‐861‐5773 >>  >>  >> ‐‐‐‐‐ Original Message ‐‐‐‐‐ >> From: "Larry_F / MIA" <[email protected]> >> To: "David Guffey" <[email protected]> >> Sent: Thursday, March 11, 2010 12:09:26 PM GMT ‐05:00 US/Canada  >> Eastern >> Subject: Re: Laser Measurement System >>  >>  >> Dear David, >>  >> Please advise what you are trying to measure and the surface finish. I have attached information on one of our lasers that can likely do what you want.  >>  >> The pricing is as follows...  >>  >> Single AcuSpec200‐025 $4,995 / price includes:  >>  >> (1) AcuSpec200‐025 Sensor >> (1) DB9 serial connector >> (1) Power supply >> (1) Sensor set‐up/configuration >> (1) Software (single site/single user license) >>  >>  >> Software: AcuSpec Laser PC Software (included) Features... >> Accepts one or two AcuSpec laser sensors Display and plot thickness  >> Calibrate single laser On‐screen alarms Auto Zero feature Inches or  >> mm display Record measurements to file if desired. >> Windows 2000, XP, XP Pro.  >> Single site/single user license >>  >> Please don't hesitate to contact me at 704.895.2548, or reply by email if there is anything else we can do for you. We are grateful for your interest in our equipment and look forward to being of service to you.  >>  >> Warmest regards, >>  >> Larry Forszen >> www.measureitall.com >> Tel 704.895.2548 >> Fax 866.407.5325 >>  >> *** Have you seen our new RS232 data capture software... check it out  >> at http://www.prowedge.com >>  >> NOTICE: This facsimile transmission is intended only for the person(s) named above and may contain information that is privileged and confidential. If the reader of this message is not the intended recipient, you are hereby notified that anyother distribution, copying or disclosure is strictly prohibited. If you receive this facsimile transmission in error, notify 

Page 56: Machine Design Final

4

the sender immediately by return e‐mail and destroy the initial transmission without making a copy. Our standard terms and conditions apply to all sales. Warning: Although this message has been checked for viruses using antivirus software, it is the responsibility of the recipient to check that the document(s) and/or attachment(s) is/are virus‐free and the sender accepts no responsibility or liability for any loss, injury, damage, cost, or expense arising in any way from the receipt or use thereof by the recipient. All documents transmitted by sender, including this email, are not intended to be binding until a hard copy has been manually signed by all parties. EXPORT CONTROL NOTICE: This email may contain technical data whose export, transfer, and/or disclosure may be controlled by the US International Traffic and Arms Regulation (ITAR) 22 CFR part 120‐130 or the Export Administration Regulations Commerce.  >>  >>  >> On Wed, 10 Mar 2010 14:48:37 ‐0500 (EST), David Guffey wrote:  >>> I am working on a laser measurement project.  >>>  >>> Project Specs.  >>> No‐contact measurement >>> Thickness range: 0.04 +/‐ 0.003 inches to 0.08 +/‐ 0.003 inches >>> 10 measurements per second >>>  >>> I am also interested in software to display dynamic data and also store data for statistical analysis.  >>>  >>> I would appreciate suggestions on what to use for this project and pricing information.  >>>  >>> Thank You, >>>  >>> David Guffey >>> [email protected] >>> 770‐861‐5773 

Page 57: Machine Design Final

1

Ryan Clark

From: David Guffey [[email protected]]Sent: Sunday, May 02, 2010 6:42 PMTo: Ryan ClarkSubject: Fwd: Exide Plant Floor Plan

 ‐‐‐‐‐ Forwarded Message ‐‐‐‐‐ From: "HONGBO ZHANG (Alpharetta)" <[email protected]> To: "David Guffey" <[email protected]> Cc: "Erika L OLAUSEN (ALPHARETTA)" <[email protected]>, "Ryan Clark" <[email protected]> Sent: Monday, March 1, 2010 11:46:11 AM GMT ‐05:00 US/Canada Eastern Subject: RE: Exide Plant Floor Plan  David,  Yes, you can support the line of plates with rollers to ensure that the plate is perpendicular to the laser measurement device.  Regards, Hongbo  ‐‐‐‐‐Original Message‐‐‐‐‐ From: David Guffey [mailto:[email protected]] Sent: Monday, March 01, 2010 11:01 AM To: ZHANG, HONGBO (Alpharetta) Cc: OLAUSEN, Erika L (ALPHARETTA); Ryan Clark Subject: Re: Exide Plant Floor Plan  Mr. Zhang,  Once again I would like to thank you for the opportunity to work with you on our machine design project.  We are still in the brainstorming phase of the project, trying to narrow down our ideas to the best design possible.  We understand that the measurement device has to be no contact, but we were wondering if it would be possible to support the line of plates with rollers to ensure that the plate is perpendicular to the laser measurement device?  A proposed budget will be provided once we are further along in the project.  Thank You,  David Guffey   ‐‐‐‐‐ Original Message ‐‐‐‐‐ From: "HONGBO ZHANG (Alpharetta)" <[email protected]> To: "HONGBO ZHANG (Alpharetta)" <[email protected]>, "Ryan Clark" <[email protected]> Cc: "David Guffey" <[email protected]>, "Erika L OLAUSEN (ALPHARETTA)" <[email protected]> Sent: Sunday, February 28, 2010 10:33:55 PM GMT ‐05:00 US/Canada Eastern Subject: RE: Exide Plant Floor Plan 

Page 58: Machine Design Final

2

    Ryan, David and team,    Would you please let me know the status of the project?     We are expecting a written budget for the prototype machine if you would like your expenses to be reimbursed.  There is no deadline for budgets, but we do require that you give us a week to approve the budgets prior to you being able to spend and be reimbursed for any expenses.    Regards,  Hongbo         From: ZHANG, HONGBO (Alpharetta) Sent: Friday, February 19, 2010 10:40 AM To: 'Ryan Clark' Cc: 'David Guffey' Subject: RE: Exide Plant Floor Plan    Ryan,    The distance b/w these two devices is 80 inches. Sorry for the late response. I am on business trip.    Regards,  Hongbo     

Page 59: Machine Design Final

3

  From: Ryan Clark [mailto:[email protected]] Sent: Thursday, February 18, 2010 3:08 PM To: ZHANG, HONGBO (Alpharetta) Cc: 'David Guffey' Subject: Exide Plant Floor Plan    Mr. Zhang,    My name is Ryan Clark and I am a member of the Machine Design group working on the continuous thickness measurement device.  If you can, please send us a floor plan of the area around the pasting machine and the cutting machine...or, more specifically, the distance between those two devices.    Thank you.    Sincerely,    Ryan Clark   This message (including any attachments) may contain protected information and is intended only for the individual(s) named. If you are not a named addressee you should not disseminate, distribute or copy this e‐mail. If you have received this e‐mail in error, please notify sender by e‐mail and delete this e‐mail.    This message (including any attachments) may contain protected information and is intended only for the individual(s) named. If you are not a named addressee you should not disseminate, distribute or copy this e‐mail. If you have received this e‐mail in error, please notify sender by e‐mail and delete this e‐mail.   

Page 60: Machine Design Final

1

Ryan Clark

From: OLAUSEN, Erika L (ALPHARETTA) [[email protected]]Sent: Tuesday, April 27, 2010 1:22 PMTo: David Guffey; Devon Antoine; Ryan Clark; Kevin McCallCc: matiqull; ZHANG, HONGBO (Alpharetta); OLAUSEN, Erika L (ALPHARETTA)Subject: Exide Machine Design Project - Thickness Measurement

Follow Up Flag: Follow upFlag Status: Flagged

Hi All,  Hongbo and I wanted to thank you all for an outstanding effort on the plate thickness in‐line measurement project.  It was apparent that you all put a significant amount of time and consideration into your project.  I am a programming geek myself, so I was really excited to see your GUI for the operator interface and the Matlab analysis tool for the output data.  The amount of effort you all put into your project really showed clearly.  While other groups might have stopped at identifying a working laser kit, you all continued to work to integrate the process with a system that is easy to use for the operators as well as the data analyzers at the plant level.  One reminder: if you had any prototyping costs, you can submit your receipts to the Office of Sponsored Programs.  They will directly reimburse you and bill Exide later so that you don't have to wait for your reimbursement.  Please send me a final copy of your report and presentation to share at Exide.  Thank you again for your efforts. Erika  Erika Olausen Product Development Engineer 678‐566‐9648    This message (including any attachments) may contain protected information and is intended only for the individual(s) named. If you are not a named addressee you should not disseminate, distribute or copy this e‐mail. If you have received this e‐mail in error, please notify sender by e‐mail and delete this e‐mail.  

Page 61: Machine Design Final

1

Ryan Clark

From: ZHANG, HONGBO (Alpharetta) [[email protected]]Sent: Thursday, March 18, 2010 9:06 AMTo: Ryan ClarkCc: JANKE, Laura (Milton)Subject: FW: Exide Plant Floor Plan

Ryan,  See below for the info. that Laura provided. If you have any questions, Please let me or Laura know.  Regards, Hongbo   ‐‐‐‐‐Original Message‐‐‐‐‐ From: JANKE, Laura (Milton) Sent: Thursday, March 18, 2010 8:35 AM To: ZHANG, HONGBO (Alpharetta); MATTE, John (Milton) Subject: RE: Exide Plant Floor Plan  Hongbo,  Here are the answers to their questions:  ‐ Coming out of the pasting machine and going into the cutting machine the strip is 31in. from the floor.  ‐ There is always sag in the line to compensate for speed variations between the paster and cutting machine, even during start/stop situations.  ‐ The sag during continuous operation is about 13in. from the floor.  It doesn't vary significantly during continuous operation (maybe +/‐ 1in.), but will rise during starts and stops to about 18in. from the floor.  ‐ Laura  ‐‐‐‐‐Original Message‐‐‐‐‐ From: ZHANG, HONGBO (Alpharetta) Sent: Monday, March 15, 2010 3:40 PM To: JANKE, Laura (Milton); MATTE, John (Milton) Subject: FW: Exide Plant Floor Plan  John and Laura,  Please help to get the answer for Ryan's below questions to his senior project at SPSU.  Regards, Hongbo  ‐‐‐‐‐Original Message‐‐‐‐‐ From: Ryan Clark [mailto:[email protected]] Sent: Monday, March 15, 2010 8:27 AM 

Page 62: Machine Design Final

2

To: ZHANG, HONGBO (Alpharetta) Subject: RE: Exide Plant Floor Plan  Mr. Zhang,  Can you please provide me with the height of the lead strip (from the floor) coming out of the pasting machine and also the height of the strip as it goes into the cutting machine?   If possible, we would also like to know more about the "sag" in the line. Is there always a sag in the line, or does it develop over time?  (ie.  When the workers change over the lead strip, is there a sag then or is the line tight?)  And also, about how much does the sag tend to vary?  You said in our meeting that it never touches the floor, but how close does it come? And does that distance change much?  As we are developing our ideas right now, more and more questions are coming to light that we did not think about previously.   We just want to make sure we get as much information on the process as possible.  Thank you, ‐Ryan    This message (including any attachments) may contain protected information and is intended only for the individual(s) named. If you are not a named addressee you should not disseminate, distribute or copy this e‐mail. If you have received this e‐mail in error, please notify sender by e‐mail and delete this e‐mail. 

Page 63: Machine Design Final

1

Ryan Clark

From: Ryan Clark [[email protected]]Sent: Wednesday, March 17, 2010 5:50 PMTo: ZHANG, HONGBO (Alpharetta)Cc: [email protected]: Re: Exide Plant Floor Plan

Mr. Zhang, We are currently working on both the design and economic study of the device. Right now we have come up with 3 separate design ideas. One idea is to place the measurement device just after the pasting machine, another is placing it in the middle of the line, and the last is placement just before the cutting machine. Once we find out the information we requested from your engineer about the sensitivity and variability of the lead strip "sag" we will choose the most suitable design. We are currently debating which of these designs would affect the lead paste the least. We don't really know how sensitive it is and we don't want our design to cause the paste to fall out of the grid. As far as our budget, we have been looking at a series of laser measurement systems and the prices range from $1500-$3500 per laser. For each measurement location we will need at least 2 lasers. Therefore, if we measure 2 locations on each side of the strip, we will need a total of 8 lasers costing $12,000-$28,000. That doesn't include the metal for the frame of the structure, rollers to support the lead strip, a computer or data acquisition system, and any other hardware or software needed. Those materials could add around $2000-$5000 to the total cost. Also, we have been looking into an intelligent scanning camera that would be able to recognize defects in the grid (ex. paste missing in areas) and would take snapshot images as well as alert the operator. An example of this system can be seen at www.accusentry.com. We are currently inquiring about pricing for this system. We should have an actual typed budget ready before March 24th. Once we have the final price quote we can discuss if and how we are going to be able to build a prototype and the time frame needed to do so. Regards, Ryan Clark

On Tue, Mar 16, 2010 at 5:17 PM, ZHANG, HONGBO (Alpharetta) <[email protected]> wrote:Ryan, One of my engineers is on the way to Bristol. Hopefully I will get you info. tomorrow. How is project? Any budget estimation yet? Regards, Hongbo

Page 64: Machine Design Final

2

-----Original Message----- From: Ryan Clark [mailto:[email protected]] Sent: Monday, March 15, 2010 8:27 AM To: ZHANG, HONGBO (Alpharetta) Subject: RE: Exide Plant Floor Plan

Mr. Zhang, Can you please provide me with the height of the lead strip (from the floor) coming out of the pasting machine and also the height of the strip as it goes into the cutting machine? If possible, we would also like to know more about the "sag" in the line. Is there always a sag in the line, or does it develop over time? (ie. When the workers change over the lead strip, is there a sag then or is the line tight?) And also, about how much does the sag tend to vary? You said in our meeting that it never touches the floor, but how close does it come? And does that distance change much? As we are developing our ideas right now, more and more questions are coming to light that we did not think about previously. We just want to make sure we get as much information on the process as possible. Thank you, -Ryan

This message (including any attachments) may contain protected information and is intended only for the individual(s) named. If you are not a named addressee you should not disseminate, distribute or copy this e-mail. If you have received this e-mail in error, please notify sender by e-mail and delete this e-mail.

Page 65: Machine Design Final

1

Ryan Clark

From: OLAUSEN, Erika L (ALPHARETTA) [[email protected]]Sent: Friday, February 12, 2010 10:17 AMTo: David Guffey; ZHANG, HONGBO (Alpharetta)Cc: Devon Antoine; Ryan Clark; Kevin McCall; OLAUSEN, Erika L (ALPHARETTA)Subject: RE: Exide Machine Design Project

We are excited to have you all in next week for our project kickoff.  Our address is:  13000 Deerfield Parkway #200 Milton, GA 30004  When you arrive, you can call me at x9648.  Thanks, Erika  Erika Olausen Product Development Engineer 678‐566‐9648     ‐‐‐‐‐Original Message‐‐‐‐‐ From: David Guffey [mailto:[email protected]] Sent: Wednesday, February 03, 2010 7:28 AM To: OLAUSEN, Erika L (ALPHARETTA); ZHANG, HONGBO (Alpharetta) Cc: Mir Atiqullah; Devon Antoine; Ryan Clark; Kevin McCall; OLAUSEN, Erika L (ALPHARETTA) Subject: Re: Exide Machine Design Project  Erika and Hongbo,  Thank you for your invitation for our visit to your headquarters in Milton.  Our group looks forward to meeting you in person on Tuesday, February 16th, at 8.30am, and learning more about our project specifications.  Once again, thank you for this oppourtunity.  On behalf of our Machine Design Group: Devon Antione, Ryan Clark, and Kevin McCall. David Guffey  ‐‐‐‐‐ Original Message ‐‐‐‐‐ From: "Erika L OLAUSEN (ALPHARETTA)" <[email protected]> To: "David Guffey" <[email protected]>, "HONGBO ZHANG (Alpharetta)" <[email protected]> Cc: "Mir Atiqullah" <[email protected]>, "Devon Antoine" <[email protected]>, "Ryan Clark" <[email protected]>, "Kevin McCall" <[email protected]>, "Erika L OLAUSEN (ALPHARETTA)" <[email protected]> Sent: Monday, February 1, 2010 10:33:22 AM GMT ‐05:00 US/Canada Eastern Subject: RE: Exide Machine Design Project  All,  

Page 66: Machine Design Final

2

We are inviting you to join us for a project kickoff at our Milton, GA headquarters from 8.30am to 11.00am on February 16th (Tuesday).  We will introduce you to our support team here and break into groups where you can learn about the project specifications from your group technical lead.  Your technical leader is Hongbo Zhang ([email protected])  Please let us know if that date and time work for you.  Thanks, Erika  Erika Olausen 678‐566‐9648  ‐‐‐‐‐Original Message‐‐‐‐‐ From: David Guffey [mailto:[email protected]] Sent: Wednesday, January 27, 2010 9:48 PM To: OLAUSEN, Erika L (ALPHARETTA); GREEN, Anthony L (Atlanta) Engineer Cc: Atiqullah, Mir; Antoine, Devon; Clark, Ryan; McCall, Kevin Subject: Exide Machine Design Project  My name is David Guffey and I am in Professor Atiqullah's Machine Design Class at SPSU.  Our group members are Devon Antione, Ryan Clark, Kevin McCall, and myself and we are under the advisement of Professor Atiqullah.  Our Machine Design group has decided to work with Exide on the proposed project of a plate weight and thickness measurement device at the end of the pasting line that does not interfere with throughput or possible robotic plate stacking operations.  The next step for our group is to gather as much information as possible to define the scope and specifications for the project.  I understand that other groups from our class have been in contact with you, and I am not sure if it would be better for you to come and meet with all three groups on the same day or if we should try to schedule a separate time for our group to come and visit you over in Alpharetta.  We really appreciate the opportunity to work with Exide and are excited about the experience that we will gain by working on this project.  Thank You,  David Guffey [email protected] 770‐861‐5773   This message (including any attachments) may contain protected information and is intended only for the individual(s) named. If you are not a named addressee you should not disseminate, distribute or copy this e‐mail. If you have received this e‐mail in error, please notify sender by e‐mail and delete this e‐mail.     This message (including any attachments) may contain protected information and is intended only for the individual(s) named. If you are not a named addressee you should not disseminate, distribute or copy this e‐mail. If you have received this e‐mail in error, please notify sender by e‐mail and delete this e‐mail. 

Page 67: Machine Design Final

3

 

Page 68: Machine Design Final

Acuity Laser Sensors

ProductBrochure

Page 69: Machine Design Final

measurementCMOS digital

AR200The AR200 laser measurement sensor is Acuity’s value distance-measuring sensor. Using laser triangulation measurement principles with high-speed CMOS detec-tor arrays, the AR200 sensor delivers high accuracy in a very compact model. This model includes both serial and analog outputs for simple integration.

Compact DesignSize-critical applications appreciate the AR200’s short di-mensions. Measuring approximately 54 X 20 X 70 mm, the AR200 sensor head fits anywhere. With integrated digital, analog and discrete output signals, this sensor requires no external controller or signal conditioner. Simply plug it direct-ing into your PC or PLC!

Sharp ResolutionIntelligently-designed optics and the latest in digital CMOS detector technology deliver high resolution across the mea-surement ranges. AR200 resolution specifications begin at 1.8 microns.

Versatile OutputsIntegrators of the Acuity laser measurement sensors ap-preciate the bundle of digital, analog and discrete outputs that come standard in each model. The AR200 sensors are equipped with RS232, 0-10V analog, 4-20mA current loop and NPN and PNP discrete outputs for alarm triggers.

COMPACT DESIGN

CMOS DETECTOR

VERSATILE OUTPUTS

COST-EFFECTIVE

AR200 Applications

Measures defects on sheets Positions silicon wafers Steel strip thickness

Page 70: Machine Design Final

AR600

Versatile modelsThere are twelve models of the AR600 laser displacement sensor, covering spans to 1.2 meters.

Sharp, focussed, visible laser spotA highly-focussed laser spot allows users to measure to specific areas on large targets, among fine surface features or onto small targets. The patented optics homogenize the reflected laser light to generate fine resolution on the most challenging of surfaces.

Standard serial connectionThe AR600 sensor is ready to be installed and can immedi-ately communicate via RS232 with its serial connection to a computer or PLC. An optional current loop output is avail-able.

The AR600 family of triangulating laser displacement sensors includes twelve models to satisfy your automation requirements with excellent accuracy and sensitivity. These sensors employ CMOS line cameras for precision measuring to wood, glowing steel and shiny targets.

PRECISION MEASURING

SERIAL CONNECTOR

VISIBLE LASER SPOT

DIFFICULT TARGETS

AR600 Applications

high-accuracyLASER serial

Board thickness Carton dimensioning Architectural part quality control

Page 71: Machine Design Final

triangulationCOMPACT gauge

AR700The AR700 laser distance gauge has the highest preci-sion of any Acuity model. The series includes a dozen models spanning from 3.175 mm to 1.27 m. All models boast rapid frequency responses and include multiple serial and analog interfaces.

Small FootprintThe AR700 series uses several case sizes to achieve the smallest footprint while maintaining performance specifica-tions. The shortest-range AR700 models are smaller than the palm of your hand!

Fast Sampling RatesAt 9400 Hz, the AR700 is one of the fastest digital triangula-tion sensors on the market. Because the sensor is designed to have great sensitivity to changes in return signal, it is not necessary to average multiple distance samples to get a reli-able distance reading.

Versatile OutputsIntegrators of the Acuity laser distance gauge can easily interface the model through RS232, RS422, 0-10V and 4-20 mA outputs. The instrument also has external hardware triggers to sample on command and alarm outputs for QC process feedback.

COMPACT FOOTPRINT

FASTEST SAMPLING

VERSATILE OUTPUTS

SHARP RESOLUTION

AR700 Applications

Road profiling Calendared rubber Tire profiling

Page 72: Machine Design Final

AR1000 / AR3000

Built for tough environmentsBoth models are specified with IP67 environmental enclosure ratings, permitting their use in dusty, dirty and wet environ-ments. The optical lens should always be kept clean for optimal performance.

Visible laser spotsThe AR1000 uses a low-power, Class 2 visible laser diode for accurate measuring and simple alignment. The AR3000 model is Class 1 eye-safe with an infrared laser diode for measuring and a selectable, visible laser spot for initial setup and alignment.

Standard serial connectionThe AR1000 and AR3000 sensors use a connection to a PC computer for its initial configuration. After this setup, mea-surements can be received through a serial connection or a current loop interface to most controllers, computers, displays and data acquisition systems.

The AR1000 and AR3000 laser distance sensors are ideal for long-range measurements to diffuse targets, up to 30 and 300 meters respectively. To special reflective targets, the measurement capabilities extends to 150 and 3000 meters respectively.

AR700 Applications

VERY LONG RANGE

RUGGED DESIGN

VISIBLE LASER SPOT

WATERPROOF

AR1000 & AR3000 Applications

high-accuracyLASER serial

Cranes and hoists Length measurement Silo fill heights

Page 73: Machine Design Final

time-of-flightwood digital

AR4000The AR4000 laser rangefinder is Acuity’s unique, mid-range distance measuring sensor. Using patented time-of-flight measurement principles, this device measures beyond sixteen meters with sharp resolution. This instrument is ideal for heavy industrial applications requiring measurement of long distances at fast speeds.

Long Range at High SpeedsThe AR4000 is one of the industry’s longest-distance rangefinders that can measure at extremely high refresh rates. This model can track targets up to 16.5 meters away, with 0.3 mm resolution and at a sampling rate up to 200 KHz when using an external interface card.

High AccuracyOur patented approach to time-of-flight measurement yields tremendous accuracy, even at long distances. Our minimal-ly-diverging laser beam spot can measure to small targets.

Enduring tough environmentsThe AR4000 series rangefinders are designed in NEMA-4 rated enclosures and can withstand tough industrial envi-ronments. Thorough electrical insulation makes this sensor reliable in high-noise environments.

RUGGED CASE

OUTDOOR USE

FASTEST SAMPLING

DARK TARGETS

AR4000 Applications Line Scanner Applications

Port crane positioning Log measuring and positioning Paper roll width and loop control

Page 74: Machine Design Final

LINESCANNER

Fast two-dimensional profilingThis laser line scanner combines a fast-sampling rangefinder with a spinning mirror to collect material and scenery profiles within a full 360° rotation.

Outdoor scanningThe Acuity laser line scanner can be configured with special sunlight filters to enable accurate measuring in outdoor envi-ronments. An optional environmental enclosure protects the delicate hardware from the elements.

PC-programmableEach laser line scanner communicates with computers through special interface cards for the most common PC buses. Data is easily captured and manipulated to deliver only the measurements of interest.

The AccuRange laser line scanner is a unique, non-contact measuring system for rapidly profiling objects and scenery. Coupled with our commercial interface cards, the scanner can sample at speeds up to 200 KHz. Line scanners are ideal for automatically profiling conveyed material and truck beds.

FAST 2D PROFILING

PC-PROGRAMMABLE

EYE-SAFE OPERATION

OUTDOOR SCANNING

Line Scanner Applications

scannerPROFILE SPEED

Tunnel profiling Truck bed and container scan- Ladle profiling

Page 75: Machine Design Final

Schmitt Measurement Systems, Inc.2765 NW Nicolai StreetPortland, Oregon 97210 USATel: 503-227-5178www.acuitylaser.com

rev 7/08 Copyright 2008 Schmitt Measurement Systems

Page 76: Machine Design Final

AR700 Laser Distance Gage

AR700 model - 0125 - 0250 - 0500 - 1 - 2 - 4 - 6 - 8 -12c - 12 - 16 - 24 - 32 - 50Span 0.125 0.250 0.500 1.0 2.0 4.0 6.0 8.0 12.0 12.0 16.0 24.0 32.0 50.0

Span (mm) 3.175 6.35 12.7 25.4 50.8 101.6 152.4 203.2 304.8 304.8 406.4 609.6 812.8 1270

Standoff 0.50 0.75 1.25 2.00 3.38 5.06 10.0 12.0 15.0 17.0 21.0 43.0 42.0 56.0

Standoff (mm) 12.7 19.1 31.8 50.8 85.7 129 254 305 381 432 533 1092 1067 1422

Linearity (+/-) 0.03% of Span, 500 Hz, to white target (85% diffuse reflectance) 0.03% *

0.05% * 0.1% *

Linearity x10-3 (+/-) 0.04 0.08 0.15 0.3 0.6 1.2 1.8 2.4 4.8 3.6 4.8 7.2 16.0 50.0

Linearity mm (+/-) 0.95 1.9 3.8 7.6 15 31 46 61 122 91 122 183 406 1270

Resolution 0.005% of Span

Resolution x10-3 0.006 0.013 0.025 0.05 0.1 0.2 0.3 0.4 0.6 0.6 0.8 1.2 1.6 2.5

Resolution mm 0.16 0.32 0.64 1.3 2.6 5.1 7.6 10.2 15.2 15.2 20.5 30.5 41.0 63.5

Laser spot size mm 30 35 40 60 65 70 95 120 130 135 150 200 250 300

Weight w/cable, (oz.) 13.1 oz. 15.0 oz. 43.2 oz. 75.7 oz.

Weight w/cable, (g) 370 g 425 g 1225 g 2146 g

Laser class 2 2 2 2 2 2 3R 3R 3R 3R 3R 3R 3R 3R

Complies with 21 CFR 1040 with Laser Notice #50 and IEC/EN 60825-1:2001

Laser type 650 nm, 1 mW visible RED 670 nm, 5 mW visible RED

OPTIONAL 660 nm, 20 mW visible RED (Class 3B)

Power 15 - 24 Volts DC, 120 – 200 mA draw with 350 mA surge at power-up, Voltage tolerance -5% to +10%

Sample rates 0.2 – 9400 Hz, or sample trigger (serial command or analog)

Operating Temp 0 – 50 °C (32 – 122 °F) 0 – 40 °C (32 – 104 °F)

Environmental NEMA – 4, IP67. Keep optical windows clean for best performance. Aluminum case.Compliant with the RoHS directive regarding the reduction of the use of lead and other hazardous substances.

Outputs serial RS232 full duplex, RS422 unterminated and terminated

analog 4-20 mA or 0–10 V; two limit switches (NPN, 100 mA sinking)

Cable length: 6 ft. (1.8 m), weight: 5.8 oz. (165 g), 12 conductor, Polyurethane sheathingRed – power 15-24 VDC Pink - Limit 1, NPN Yellow – RxD(RS232), TX- (RS422)

Black – Ground Grey – Limit 2, NPN Green – TxD (RS232), RX- (RS422)

White – laser disable Orange – current loop / voltage out Blue – RTS (RS232), TX+ (RS422)

Clear – Shield Brown – current loop / voltage return Violet – CTX (RS232), RX+ (RS422)

The AR700 laser distance gauges are Acuity’s fastest and most accurate series of triangulation sensors. Designed for indus-trial and scientific applications, these sensors measure distances to within fractions of a micron at speeds near ten kilohertz. All models include digital and analog outputs.

Principles of OperationThe AR700 is a triangulation sensor that measures distance by projecting a beam of laser light that creates a spot on a target surface. Reflected light from the surface is viewed from an angle by a CMOS detector array inside the AR700 sensor. The tar-get’s distance is calculated from the image pixel data using the sensor’s microprocessor. The distance is transmitted through serial communications or analog outputs. A variety of models are specified, each to allow a different measurement range.

AR700 Standard Model Specifications units in inches unless noted metric

DefinitionsSpan: Working distance between measurement endpoints over which the sensor will reliably measure displacement

Standoff: Offset distance from the face of the sensor to the middle of the span. Accuracy is greatest at the standoff distance and the laser spot size is smallest at this focal point. AR700 standoff location tolerance is +/-0.25mm.

Linearity: The largest deviation from a best-fit straight line over the measurement range, created by data from the sensor with reference taken from a true distance scale. Stated as +/-% of the Span.

Resolution: Smallest increment of change in distance that a sensor can detect. Stated as % of the Span.

Sample Rate: Speed that data samples are obtained from the sensor.

* with optional 660 nm, 20 mW visible red laser diode (Class 3B). Standard 5 mW diode results in higher linearities

Page 77: Machine Design Final

AR700 Laser Distance Gage

Mechanical Dimensions units in inches [mm]. Tolerances: .XXX = +/- 0.010 [0.3]; .XX = +/- 0.020 [0.5]

AR700 Sensor OptionsConnectivity kit: Includes terminal blocks, serial cable with molded DB9 connector, AC power supply with 110 VAC or 240 VAC

High power lasers: Diode upgrades to visible red 20 mW (660 nm, Class 3B) for high sample rates on dark surfaces or in high ambient light.

Bandpass Filter: Internally-installed. Suggested for outdoor applications and when measuring to bright or radiating targets.

Road profiling option: Package for AR700-6 or -8. Includes specialized optics, upgraded diode, bandpass filter and signal processing firmware optimized for use in high-speed longitudinal road surface profiling.

Touch Panel Display: Controller and display for Acuity laser sensors. Includes TFT touch display for simple configuration. Calculates material thicknesses using dual laser sensors. Eliminate the need for a PC and costly software development!

Cables: Optional 7m cable. Contact us for custom cabling needs.

Interface SelectionThe AR700 has many configurations that can be set directly using the sensor’s built-in Function button and cor-responding LED’s. External controllers are not required to change settings! Manipulation of the PARAMETER and SETTING functions allow users to configure sampling rates, output formats, zero and span points, baud rates, optional exposure limits and limit switches. See the User’s Manual for more information.

Laser Safety Labels

Contact AcuitySchmitt Industries, Inc.2765 NW Nicolai Street, Portland, Oregon, 97210, USATel: 503-227-5178 Fax: 503-227-5040www.acuitylaser.com

Rev 3/10© 2010 Schmitt Industries, Inc. Specifications subject to change without notice

AR700-0125, 0250, 0500, 1, 2, 4

AR700- 6, 8, 12C

AR700- 12, 16

AR700- 24, 32,

50

A 3.250[82.6]

5.200[132.1]

10.09[256.5]

19.09[485]

B 1.125[28.6]

1.125[28.6]

1.50[38.2]

1.50[38.2]

C 2.125[54.0]

2.125[54.0]

2.50[63.5]

2.50[63.5]

D1 3.020[76.7]

4.970[126.2]

D2 3.05[77.5]

5.55[141]

D3 4.00[101.6]

8.00[203.2]

E 0.625[15.9]

0.625[15.9]

0.67[17]

0.67[17]

F 0.500[12.7]

2.450[62.2]

7.56[192]

16.56[420.6]

Function

LASERON

7

7

4

4

10

10

1

1

P

S

B/2

BeamAttenuator

E

0.580[14.7]

2X φ 0.125[3.2]

Short cases D1 mounting

0.115[2.9]

4X φ 0.165[4.2]

Long cases D3 mounting

0.165[4.2]

EmissionIndicator

LaserPath

1.700[43.2]

2.290 [58.2]

F

D3

D2

C

A

B

1.895 [48.1]

D1

Page 78: Machine Design Final

AR700 User’s Manual Rev 1.4 12/08

AccuRange AR700™ Laser Distance Gauge

User’s Manual

Rev. 1.4 For use with AR700™ Rev. 0.10

December 12, 2008

Acuity A product line of Schmitt Industries, Inc.

2765 NW Nicolai St. Portland, OR 97210 www.acuitylaser.com

Page 79: Machine Design Final

AR700 User’s Manual Rev 1.4 12/08

Limited Use License Agreement

YOU SHOULD CAREFULLY READ THE FOLLOWING TERMS AND CONDITIONS BEFORE OPENING THE PACKAGE CONTAINING THE COMPUTER SOFTWARE AND HARDWARE LICENSED HEREUNDER. CONNECTING POWER TO THE MICROPROCESSOR CONTROL UNIT INDICATES YOUR ACCEPTANCE OF THESE TERMS AND CONDITIONS. IF YOU DO NOT AGREE WITH THEM, YOU SHOULD PROMPTLY RETURN THE UNIT WITH POWER SEAL INTACT TO THE PERSON FROM WHOM IT WAS PURCHASED WITHIN FIFTEEN DAYS FROM DATE OF PURCHASE AND YOUR MONEY WILL BE REFUNDED BY THAT PERSON. IF THE PERSON FROM WHOM YOU PURCHASED THIS PRODUCT FAILS TO REFUND YOUR MONEY, CONTACT SCHMITT INDUSTRIES INCORPORATED IMMEDIATELY AT THE ADDRESS SET OUT BELOW. Schmitt Industries Incorporated provides the hardware and computer software program contained in the microprocessor control unit, and licenses the use of the product to you. You assume responsibility for the selection of the product suited to achieve your intended results, and for the installation, use and results obtained. Upon initial usage of the product your purchase price shall be considered a nonrefundable license fee unless prior written waivers are obtained from Schmitt Industries incorporated.

LICENSE

a. You are granted a personal, nontransferable and non-exclusive license to use the hardware and software in this Agreement. Title and ownership of the hardware and software and documentation remain in Schmitt Industries, Incorporated;

b. the hardware and software may be used by you only on a single installation; c. you and your employees and agents are required to protect the confidentiality of the hardware and software. You may not distribute,

disclose, or otherwise make the hardware and software or documentation available to any third party; d. you may not copy or reproduce the hardware and software or documentation for any purpose; e. your may not assign or transfer the hardware and software or this license to any other person without the express prior written consent of

Schmitt Industries Incorporated; f. you acknowledge that you are receiving only a LIMITED LICENSE TO USE the hardware and software and related documentation and that

Schmitt Industries Incorporated retains title to the hardware and software and documentation. You acknowledge that Schmitt Industries Incorporated has a valuable proprietary interest in the hardware and software and documentation.

YOU MAY NOT USE, COPY, MODIFY, OR TRANSFER THE HARDWARE AND SOFTWARE, IN WHOLE OR IN ANY PART, WITHOUT THE PRIOR WRITTEN CONSENT OF SCHMITT INDUSTRIES, INCORPORATED. IF YOU TRANSFER POSSESSION OF ANY PORTION OF THE HARDWARE OR SOFTWARE TO ANOTHER PARTY, YOUR LICENSE IS AUTOMATICALLY TERMINATED.

TERM

The license is effective until terminated. You may terminate it at any other time by returning all hardware and software together with all copies of associated documentation. It will also terminate upon conditions set forth elsewhere in this Agreement or if you fail to comply with any term or condition of this Agreement. You agree upon such termination to return the hardware and software together with all copies of associated documentation. In the event of termination the obligation of confidentiality shall survive.

12 MONTH LIMITED WARRANTY

EXCEPT AS STATED BELOW IN THIS SECTION THIS PRODUCT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Schmitt Industries Incorporated does not warrant that the functions contained in the product will meet your requirements or that the operation of the product will be uninterrupted or error free. Schmitt Industries Incorporated does warrant as the only warranty provided to you, that the product which is furnished to you, will be free from defects in materials and workmanship under normal use for a period of twelve (12) months from the date of delivery to you as evidenced by a copy of your warrant receipt.

LIMITATIONS OF REMEDIES

Schmitt Industries Incorporated’s entire liability and your exclusive remedy shall be: 1. the replacement of any hardware and software not meeting Schmitt Industries’ “Limited Warranty” and which is returned to Schmitt

Industries Incorporated or an authorized Schmitt Industries dealer with a copy of your purchase receipt, or 2. if Schmitt Industries Incorporated or the dealer is unable within ninety (90) days to deliver a replacement product which is free of defects in

material or workmanship, you may terminate this Agreement by returning the product and your money will be refunded to you by the dealer from whom you purchased the product.

IN NO EVENT WILL SCHMITT INDUSTRIES INCORPORATED BE LIABLE TO YOU FOR ANY DAMAGES, INCLUDING ANY LOST PROFITS, LOST SAVINGS OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE SUCH PRODUCTS EVEN IF SCHMITT INDUSTRIES INCORPORATED OR AN AUTHORIZED DEALER HAD BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. SOME AREAS DO NOT ALLOW THE LIMITATIONS OR EXCLUSION OF LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY TO YOU.

GENERAL

You may not sublicense, assign or transfer the license or the hardware, software, and documentation except as expressly provided in this Agreement. Any attempt otherwise to sublicense, assign or transfer any of the rights, duties or obligations hereunder is void. This Agreement will be governed by the laws of the United States and the State of Oregon, United States of America. Should you have any questions concerning this Agreement, you may contact Schmitt Industries Incorporated by writing to:

Schmitt Industries Incorporated 2765 NW Nicolai St. Portland, Oregon 97210 USA

YOU ACKNOWLEDGE THAT YOU HAVE READ THIS AGREEMENT, UNDERSTAND IT AND AGREE TO BE BOUND BY ITS TERMS AND CONDITIONS. YOU FURTHER AGREE THAT IT IS THE COMPLETE AND EXCLUSIVE STATEMENT OF THE AGREEMENT BETWEEN YOU AND SCHMITT INDUSTRIES INCORPORATED AND ITS DEALER (“US”) WHICH SUPERSEDED ANY PROPOSAL OR PRIOR AGREEMENT, ORAL OR WRITTEN, AND ANY OTHER COMMUNICATIONS BETWEEN US RELATING TO THE SUBJECT MATTER OF THIS AGREEMENT.

Page 80: Machine Design Final

AR700 User’s Manual Rev 1.4 12/08 i

Procedures for Obtaining Warranty Service

1. Contact your Acuity distributor or call Schmitt Industries, Inc. to obtain a return merchandise authorization (RMA) number within the applicable warranty period. Schmitt Industries will not accept any returned product without an RMA number.

2. Ship the product to Schmitt Industries, postage prepaid, together with your bill of sale or other proof of purchase. your name, address, description of the problem(s). Print the RMA number you have obtained on the outside of the package.

This device has been tested for electromagnetic emissions and immunity and has been found to be in compliance with the following directives for class A equipment:

EN 61000-6-2:2001 EN 61326:1997 (Amended by A1:1998 and A2:2001 and A3:2003)

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions:

(1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this device in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

This manual copyright © 2008, Schmitt Industries, Inc.

Page 81: Machine Design Final

AR700 User’s Manual Rev 1.4 12/08 ii

User’s Manual for the

AR700™ Series Laser Distance Gauge Rev. 1.4

For use with AR700 Rev. 0.10

Table of Contents

1. INTRODUCTION............................................................................................................................................... 5

1.1. GENERAL OVERVIEW.................................................................................................................................. 5 1.2. OPERATING GUIDELINES – SAFETY ISSUES ................................................................................................. 6 1.3. DEFINITION OF TERMS ................................................................................................................................ 6 1.4. QUICK START INSTRUCTIONS ..................................................................................................................... 7

1.4.1. Mounting ............................................................................................................................................... 7 1.4.2. Power Signals ....................................................................................................................................... 7 1.4.3. Serial Data Wires.................................................................................................................................. 7 1.4.4. Analog Output Signals .......................................................................................................................... 7 1.4.5. Limit Signals ......................................................................................................................................... 7 1.4.6. Laser Disable Wire ............................................................................................................................... 8 1.4.7. Important Configuration Considerations.............................................................................................. 8 1.4.7.1. Sample Interval (S) ........................................................................................................................... 8 1.4.7.2. Background Light Elimination (L) ................................................................................................... 8 1.4.7.3. Sample Priority (P) .......................................................................................................................... 8 1.4.7.4. Serial Output Rate Considerations................................................................................................... 8

1.5. ROAD PROFILE OPERATION (ROAD PROFILER MODELS ONLY) .................................................................. 9

2. GENERAL DESCRIPTION ............................................................................................................................ 10

2.1. PRINCIPLES OF OPERATION....................................................................................................................... 10 2.2. MECHANICAL DIMENSIONS ...................................................................................................................... 11 2.3. ELECTRICAL INSTALLATION ..................................................................................................................... 12 2.4. MECHANICAL / OPTICAL INSTALLATION................................................................................................... 12 2.5. LASER SAFETY.......................................................................................................................................... 13 2.6. SENSOR MAINTENANCE............................................................................................................................ 13 2.7. SENSOR SERVICE ...................................................................................................................................... 14 2.8. ENVIRONMENTAL MATERIALS.................................................................................................................. 14 2.9. SENSOR SPECIFICATIONS .......................................................................................................................... 14

3. INSTALLATION AND CHECKOUT ............................................................................................................ 15

3.1. MOUNTING ............................................................................................................................................... 15 3.2. CABLING................................................................................................................................................... 15

3.2.1. Standalone Cabling............................................................................................................................. 15 3.2.2. Connection to a Host Computer.......................................................................................................... 15

3.3. POWER ON................................................................................................................................................ 15 3.4. VERIFYING OPERATION ............................................................................................................................ 16 3.5. TROUBLESHOOTING .................................................................................................................................. 16

3.5.1. Serial Communications Check ............................................................................................................ 17 3.5.2. Sensor Output Check........................................................................................................................... 17

Page 82: Machine Design Final

AR700 User’s Manual Rev 1.4 12/08 iii

4. SIGNAL AND POWER INTERFACE ........................................................................................................... 18

4.1. SENSOR CABLE WIRE COLORS AND FUNCTIONS....................................................................................... 18 4.1.1. Power Supply (Black, Red).................................................................................................................. 18 4.1.2. Shield (Clear) ...................................................................................................................................... 19 4.1.3. Serial Communications (Green, Yellow, Blue, Violet) ........................................................................ 19 4.1.4. Analog Output (Brown, Orange)......................................................................................................... 19 4.1.4.1. 4-20 mA Current Loop Output (Orange)........................................................................................ 20 4.1.4.2. 0 – 10 V Voltage Output (Orange) ................................................................................................. 20 4.1.5. Limit Outputs (Pink, Gray).................................................................................................................. 21 4.1.6. Laser Disable and Trigger (White) ..................................................................................................... 21

4.2. OTHER INTERFACES.................................................................................................................................. 22 4.2.1. Optional Interface Kit with Serial Cable and Power Supply .............................................................. 22 4.2.2. Interlock Box ....................................................................................................................................... 22 4.2.3. OEM Models (Class 3B without Interlock Box) .................................................................................. 22

5. SERIAL INTERFACE OPERATION ............................................................................................................ 23

5.1. SERIAL HARDWARE INTERFACE................................................................................................................ 23 5.1.1. Serial Communication Mode (RS232, RS422) .................................................................................... 23 5.1.1.1. RS232 (function button parameter 9, setting 1 [default]................................................................ 23 5.1.1.2. RS422 (function button parameter 9, setting 2).............................................................................. 23 5.1.1.3. RS422 Terminated (function button parameter 9, setting 3) .......................................................... 23 5.1.2. Baud Rate (B)...................................................................................................................................... 23 5.1.3. Serial Output Flow Control (T)........................................................................................................... 24 5.1.3.1. Output Flow Control OFF (T2[default])........................................................................................ 24 5.1.3.2. Hardware Output Flow Control (T1) ............................................................................................. 24 5.1.3.3. Soft Output Flow Control (T3) ....................................................................................................... 24 5.1.4. Input Flow Control.............................................................................................................................. 24

5.2. SERIAL DATA OUTPUT (A, N)................................................................................................................... 24 5.2.1. Serial Output Off (A3) ......................................................................................................................... 24 5.2.2. ASCII Native Format (A0, A4, A7)...................................................................................................... 24 5.2.3. ASCII Distance.................................................................................................................................... 25 5.2.3.1. Error Modes (Q1[default], Q2, Q3)............................................................................................... 25 5.2.3.2. ASCII English (A1[default], A5, A8) .............................................................................................. 25 5.2.3.3. ASCII Metric (A2, A6, A9).............................................................................................................. 26 5.2.3.4. English and Metric Output Formats............................................................................................... 26 5.2.4. 3-Byte Binary Data format (N0, N2) ................................................................................................... 26 5.2.5. 2-Byte Binary Data format (N1, N3) ................................................................................................... 26 5.2.6. Zero-Point (Z) – Span-Point (U) ......................................................................................................... 27 5.2.6.1. Unbiased Output Units (A7, A8, A9, N2, N3)................................................................................. 27 5.2.6.2. Zero-Based Output Units (A0, A1[default], A2, N0, N1) ............................................................... 28 5.2.6.3. Offset-Based Output Units (A4, A5, A6)......................................................................................... 28

6. ANALOG OUTPUT OPERATION (X).......................................................................................................... 29

6.1. ANALOG OUTPUT OFF (X5)...................................................................................................................... 29 6.2. CURRENT LOOP OUTPUT (X1[DEFAULT], X3) .......................................................................................... 29 6.3. VOLTAGE OUTPUT (X2, X4)..................................................................................................................... 29 6.4. ZERO-POINT (Z) – SPAN-POINT (U) .......................................................................................................... 29

6.4.1. Unbiased Analog Output (X3, X4) ...................................................................................................... 30 6.4.2. Zero-Span Biased Output (X1, X2)...................................................................................................... 30

7. LIMIT OUTPUT OPERATION (J, K) ........................................................................................................... 31

7.1. LIMIT SWITCHES BOTH OFF BETWEEN LIMITS, INCLUSIVE (J<K) ............................................................. 31 7.2. LIMIT SWITCHES BOTH ON BETWEEN LIMITS, INCLUSIVE (J>K) ............................................................... 31 7.3. LIMIT OUTPUT TOGGLE (J=K) FOR ANALOG OUTPUT TIMING.................................................................. 31

8. PERFORMANCE OPTIMIZATION ............................................................................................................. 32

Page 83: Machine Design Final

AR700 User’s Manual Rev 1.4 12/08 iv

8.1. SAMPLE DEFINITION ................................................................................................................................. 32 8.2. SAMPLE INTERVAL (S).............................................................................................................................. 32

8.2.1. Background Light Elimination (BLE) (L) ........................................................................................... 32 8.2.1.1. BLE ON (L1[default]) .................................................................................................................... 32 8.2.1.2. BLE OFF (L2) ................................................................................................................................ 32 8.2.1.3. ROAD PROFILING (L3 – Default in Road Profiler Models (section 1.5)) ................................... 33 8.2.2. Sample Exposure and Priority (P) ...................................................................................................... 33 8.2.2.1. Quality sets Priority (P1[default]) ................................................................................................. 33 8.2.2.2. Rate sets Priority (P2 – forced in Road Profiler Modes (section 1.5)) .......................................... 33 8.2.2.3. Exposure Limit (M – limited in Road Profiler Modes (section 1.5)) .............................................. 33

8.3. SAMPLING CONTROL (H, E)...................................................................................................................... 34 8.3.1. Sampling On – Laser On (H1) ............................................................................................................ 34 8.3.2. Sampling Off – Laser Off (H2) ............................................................................................................ 34 8.3.3. Sampling Off – Laser On (H3) ............................................................................................................ 34 8.3.4. Hardware Trigger Mode – Laser Off (H4) ......................................................................................... 34 8.3.5. Measure Single Sample (E) ................................................................................................................. 34 8.3.6. High Speed Sampling Tips .................................................................................................................. 35 8.3.7. High Speed Single Sample Tips........................................................................................................... 35

8.4. MEASUREMENT RESOLUTION ................................................................................................................... 35 8.5. SERIAL DATA RATE .................................................................................................................................. 36

9. NONVOLATILE MEMORY STORAGE ...................................................................................................... 37

9.1. CALIBRATION ........................................................................................................................................... 37 9.2. CONFIGURATION....................................................................................................................................... 37

9.2.1. Default Configuration ......................................................................................................................... 37 9.2.2. Write Configuration Data Command (W1234) ................................................................................... 37 9.2.3. Read Configuration Data Command (R)............................................................................................. 37 9.2.4. Initialize Configuration Data Command (I – Except Serial) .............................................................. 38 9.2.5. Initialize Configuration Data Command (Q8) .................................................................................... 38 9.2.6. Show Version, Configuration Command (V1234)............................................................................... 38 9.2.7. Show Version Command (V1235) ....................................................................................................... 38

10. AR700 COMMAND SET........................................................................................................................... 39

10.1. ‘CURRENT STATUS’ COMMANDS (Z, U, J, K, M) ...................................................................................... 39 10.2. SERIAL COMMAND OPERATION ................................................................................................................ 39

10.2.1. Serial Command Communications...................................................................................................... 39 10.2.2. Serial Command Format..................................................................................................................... 39 10.2.3. Serial Command Execution................................................................................................................. 40 10.2.4. Serial Command Response.................................................................................................................. 40

10.3. FUNCTION BUTTON COMMAND OPERATION ............................................................................................. 40 10.3.1. Function Display LEDs....................................................................................................................... 40 10.3.2. Function Display LED codes .............................................................................................................. 41 10.3.3. Function Button: Displaying a Parameter .......................................................................................... 41 10.3.4. Function Button: Changing a Setting.................................................................................................. 41 10.3.5. Function Display Error Codes............................................................................................................ 42

10.4. SAVING THE CONFIGURATION .................................................................................................................. 42

11. SERIAL COMMAND QUICK REFERENCE ........................................................................................ 43

12. FUNCTION BUTTON COMMAND QUICK REFERENCE ................................................................ 44

13. COMMAND INDEX .................................................................................................................................. 45

Page 84: Machine Design Final

AR700 User’s Manual Rev 1.4 12/08 5

1. Introduction This section is a guide to getting started with the AR700 and this manual. The AR700 has a number of configurable parameters, but many applications can use the sensor in its default configuration.

The recommended order for reading the manual is:

General Overview – Gives a brief understanding of the sensor operation.

Operating Guidelines – Provides a few important safety tips.

Definition of Terms – An aid for proper communication.

Quick Start Instructions – This should provide the information necessary to connect the sensor and verify its operation, either with a serial terminal program at 9600 baud, or by connecting the current loop or Limit Output interface.

General Description – Gives important laser, operation, mechanical, and mounting information.

Installation and Checkout – Tailor the application. Use the other chapters for reference: Signal and Power Interface – how to hook everything up Serial Interface Operation – modes, formats, bias Analog Output Operation – current loop, voltage, scaling Limit Output Operation – limit switch settings Performance Optimization – Sample Rate, Background Elimination, Exposure control AR700 Command Set – explains all commands for customizing the application

1.1. General Overview The AR700 is a triangulation sensor that measures distance using a laser beam, a camera, and a microprocessor. A variety of models are specified, each to allow a different measurement range. Models vary in range from 0.125 to 50 inches (3.175 to 1270 mm).

The accuracy is generally specified with a linearity of about +/- 0.03% of the range.

A variety of configuration settings can be selected via the serial port or by using the function button and the function display LEDs. The complete list of settings is found in the AR700 Command Set chapter and each setting is discussed in detail in a specific operation chapter.

The Sample Rate can be specified and the sensor has capability above 9400 samples per second. Background Light Elimination, Sample Priority, and Exposure Limit controls enhance the performance. Sampling may be turned on and off. It can even be triggered using an input signal wire or a serial command.

Measurement output can be in the form of serial data (RS232 or RS422), Analog Output (4-20mA current loop or 0-10V voltage), and Limit Outputs (two switches). Serial data, with optional flow control, is available in five formats: Metric, English, Native, and two binary output modes. Offsets, scaling, and a selection of 10 baud rates are provided.

After making changes to the configuration, it may be viewed, saved in non-volatile memory, and restored. At power-on the sensor uses the most recently saved configuration settings.

Page 85: Machine Design Final

AR700 User’s Manual Rev 1.4 12/08 6

1.2. Operating Guidelines – Safety issues Use protective eyewear whenever there is a risk of being exposed to the output beam of a class 3B AR700. Use eyewear specifically designed to block laser light of the wavelength used by the sensor. Use eyewear through which the green “LASER ON” LED is visible.

Do not point the sensor at any person, particularly a person’s eyes or face.

Do not attempt to disassemble the sensor. Improper disassembly will destroy the optical alignment of the sensor and necessitate factory repairs.

Do not operate the sensor in areas where the sensor is exposed to direct sunlight for extended periods or where the air temperature is more than 40 C (104 F) or less than 0°C (32°F).

Avoid excessive vibration and shocks. The sensor contains securely mounted but precisely aligned optical components.

Do not scratch the windows on the front face of the sensor. Keep the front windows clean with a damp cotton cloth. The windows are glass with an anti-reflection coating. Avoid the use of cleaning solvents other than alcohol.

Operate only with DC supply voltages between 15 and 24 volts. A 15 volt standard AC to DC power supply is optionally provided with the sensor.

1.3. Definition of Terms Sensor – The complete AR700 measurement device.

Target – The object of measurement. The relative distance from the sensor to the target is measured by the sensor.

Laser, Laser beam – This bright light is emitted from the sensor, reflected from the target, and collected by the camera lens.

Camera, Detector – An internal imaging device that views the laser spot on the target.

<Range> – The maximum relative distance measurable by the sensor.

Range – 1. <Range>, 2. The region over which the target can be measured. At the near end of the range the sensor measures zero. At the far end of the range the sensor measures its maximum value (its Range value).

Scan – A single exposure of the camera.

Scan Cycle – A complete camera operation, sufficient to produce a result. Two scans with BLE On, one scan with BLE Off.

Sample – A complete sensor measurement with calculated calibrated output. Often it is the average of many scan cycles.

Above, Too Far – A target location further from the sensor than the end of the range, but where the laser spot is still visible to the camera. In this condition the sensor can report the subjective location (too far), but not the distance (a number).

Below, Too Close – A target location closer to the sensor than the start of the range, but where the laser spot is still visible to the camera. In this condition the sensor can report the subjective location (too close), but not the distance (a number).

Page 86: Machine Design Final

AR700 User’s Manual Rev 1.4 12/08 7

1.4. Quick Start Instructions This will get the sensor running in its default configuration.

Only one output type (Serial, Analog, or Limit) is needed to indicate sensor operation.

1.4.1. Mounting

Caution for Class 3B sensors: be sure that the laser will not cause an eye hazard. Use eyewear specifically designed to block laser light of the wavelength used by the sensor. Use eyewear through which the green “LASER ON” LED is visible.

Quick suggestion: Lay the sensor on the floor or a table. It may need to be held in place with a clamp or a weight. Orient the laser so that the laser and return paths are not obstructed. Use a piece of paper such as a business card to insert into the beam to use as a measurement target.

Mount the sensor in such a way that the unit is not twisted or warped. Using three hard points along the front and back edges or a slightly compliant mounting system are the best methods. Do not clamp or squeeze the sensor excessively. If the sensor is distorted, its sensitivity and accuracy may be affected.

1.4.2. Power Signals

Connect the red (Supply +) and black (Supply Common) wires of the sensor cable to a 15 to 24 volt DC power supply (or use the power supply if the sensor came with one).

To be sure that the sensor is using default settings, press the function button while turning on the power, then after the function display LEDs start cycling, release the button.

1.4.3. Serial Data Wires

Quick suggestion: Connect the wires to a 9 pin D-SUB male connector that can be plugged into a COM port of a PC (RS232): Black (Ground) to pin 5, Green (Transmit) to pin 2, and Yellow (Receive) to pin 3. (If the sensor has an interface box, its connector is already wired for this.) Start a HyperTerminal program on the PC and set it for that COM port at 9600 baud, 8 bit, 1 start, 1 stop, no flow control.

The sensor will report its present measurements five times per second in inches. If a target surface is placed in the measurement range of the sensor, the screen should display distance information. The distance is measured from the start of the measurement range. If there is no target in the measurement range, the sensor will output an error code and the laser may flash ten times per second.

1.4.4. Analog Output Signals

Quick suggestion: connect a DVM (digital volt meter) to the wires: Brown to Common, Orange to mA input.

The default mode is 4-20mA current loop. The meter should read near 4 mA when a target is placed in the laser beam near the start of the measurement range and 20 mA near the end.

1.4.5. Limit Signals

Quick suggestion: connect a 1K resistor in series with an LED (cathode to the resistor, anode to the Power Supply) to each wire: Pink and Grey.

The default action is: Limit 1 will go active (LED lights) if a target is missing or placed in the laser beam slightly before the start of the measurement range. Limit 2 will go active (LED

Page 87: Machine Design Final

AR700 User’s Manual Rev 1.4 12/08 8

lights) if a target is missing or placed in the laser beam slightly after the end of the measurement range..

1.4.6. Laser Disable Wire

Quick suggestion: Leave the white wire disconnected to allow the laser to operate.

Connect the white wire to Ground (black wire) to disable the laser (sensor won’t operate).

1.4.7. Important Configuration Considerations

There are several configuration settings that significantly affect the sensor’s measurement characteristics. Using the configuration commands to customize these settings for each specific application will help optimize the sensors operation. See Performance Optimization (section 8) for more details on these and other settings.

1.4.7.1. Sample Interval (S)

Use the Sample Interval command to set the maximum average rate at which the sensor produces output. The command’s parameter has a range of 21 to 999999 in units of 5 µs. The Sample Rate is therefore 200000 divided by the parameter value. The default setting is 40000 which sets the rate at 5 samples per second (200000 / 40000 = 5). Type ‘S20000<Enter>’ in HyperTerminal to change it to 10 samples per second (200000 / 20000 = 10).

This command sets the maximum average rate. The rate may need to be slowed down if the sensor’s camera requires more time to acquire a sufficient image for measurements. Two other commands affect the operation that may cause the samples to be generated at a slower rate.

1.4.7.2. Background Light Elimination (L)

The default setting for Background Light Elimination (BLE) is ON (L1). In this mode the camera makes two measurements, one with the laser on and one with the laser off, and subtracts them to remove the effects of background lighting. When BLE is OFF (L2) the sensor captures a single image and uses it alone to generate the output. Therefore for any given exposure required by the camera, the sample rate with BLE ON is half of the sample rate available with BLE OFF. Type ‘L2’ in HyperTerminal to turn BLE OFF.

The measurement of brightly illuminated targets with shiny facets may be improved with BLE ON. If the environmental lighting is changing rapidly, the improvement may be reduced. (Note that most non-incandescent lighting is turning on and off 120 times per second.)

1.4.7.3. Sample Priority (P)

The default for the Sample Priority setting is RATE (P1). In this mode the Sample Rate takes priority over sample quality by limiting the camera exposure time. In order to guarantee that samples have sufficient exposure time, change the priority to QUALITY (P2) by typing ‘P2’ in HyperTerminal. The Sample Rate, if reduced by QUALITY mode, isn’t easily determined.

1.4.7.4. Serial Output Rate Considerations

It is common to request a Sample Interval shorter than the time it takes to transmit the serial data. If one sample is being transmitted and another is waiting to be transmitted, then any new sample will replace the waiting sample (the previous waiting sample is ‘lost’). For example, it normally takes about 9 milliseconds to send an ASCII sample value at 9600 baud which limits the average serial data rate to about 110 samples per second.

Page 88: Machine Design Final

AR700 User’s Manual Rev 1.4 12/08 9

Note that the Analog Output and Limit Outputs are updated for every sample, even for those for which the serial data is ‘lost’ due to insufficient serial data rates. Serial flow control also doesn’t stop the sensor from sampling.

See Serial Data Rate (section 8.5) for more information.

1.5. Road Profile Operation (Road Profiler Models Only) Road Profile (RP) operation is provided in Road Profiler models, AR700RP. Road Profile operation differs from standard operation in several ways. The RP operating mode is designed to measure the distance to a surface that is moving quickly in a direction perpendicular to the laser beam. Special algorithms are designed to measure as much of the surface as possible during the sample period. This has the effect of averaging over small cracks or pits in the surface being measured.

A few specific differences in the RP operations are noted:

Road Profile operation can only be selected in RP models. The operator selects the RP operating mode via the BLE command. L3 selects RP mode and is the default BLE mode in the RP model. L1 (BLE ON) and L2 (BLE OFF) commands will select normal AR700 operating modes in the RP models.

In the RP operating mode the BLE mode is turned OFF. This is because the laser is always turned on allowing the camera to expose as much of the surface as possible.

In the RP operating mode the Priority is changed to RATE. Attempts to change the priority will be ignored while in the RP mode (L3).

Generally, a more powerful laser is used for the RP model in order to get a high rate of exposures needed to characterize a surface at highway speeds.

The V1234 command will report “AR700RP-“ instead of “AR700-“, allowing the user to verify the Road Profiler firmware installation.

The Exposure Limit will have no effect for values greater than M52.

In the RP operating mode the maximum trigger speed is about 3500 Hz with M39 used to help achieve this rate.

Measurement exposures require a tighter tolerance than standard sensors. Each out-of-tolerance measurement will report an error rather than a computed value.

Page 89: Machine Design Final

AR700 User’s Manual Rev 1.4 12/08 10

2. General Description The AR700 is a laser diode based distance measurement sensor for ranges from 0.125 to 50 inches (3.175 to 1270 mm). The accuracy is generally specified with a linearity of +/- 0.03% of the range. There are many different models as specified in the data sheet. Each model has a different standoff distance, range, and linearity specification. For more detailed specifications see the data sheet. The standoff distance represents the distance from the face of the sensor to the center of the measurement range. The range <Range> is the distance from the start of the measurement range to the end of the range.

2.1. Principles of Operation The AR700 uses triangulation to measure distance. The laser beam is projected from the housing’s aperture and shines on a target surface, where it is focused to a small spot. From there the laser light is scattered in all directions. A collection lens is located in the sensor to the side of the laser aperture. It focuses an image of the spot on a linear array camera, which views the entire measurement range. The position of the laser spot imaged in the camera is then processed to determine the distance to the target. The sensor controls the exposure according to the amount light falling on it, so longer exposure times allow greater sensitivity to targets with weak reflections.

The exposure time and laser power level are controlled to optimize the accuracy of the measurements for the signal strength and environmental light level measured. Internal averaging is performed for all scan cycles that fit in the programmed sample interval. Measurement time and laser power are adjusted for the next scan cycle based on the results from the previous scan cycle, so rapidly changing conditions may result in momentary loss of signal or overexposure. If the sensor cannot acquire a usable scan cycle within the sample interval then an error code (no target) will be generated.

As described in Quick Start (section 1.4), there are several configuration settings that significantly affect the behavior of the sensor. The first of these is Sample Interval. Longer sample intervals allow more averaging of the scan cycles and lower noise levels. Shorter sample intervals give the best results when the reflected signal is relatively strong.

The Sample Priority setting is also used to control the exposure. With priority set to QUALITY, the sensor is allowed to use a longer measurement time than would normally fit in the programmed sample interval if it is needed for a good exposure. Under reduced reflection conditions this can causes the samples to be generated at a slower rate than expected. With priority set to RATE, the sensor limits the measurement time so that a sample can always be reported at the expected sample rate, even if the measurement is too short to acquire a good signal, resulting in an error code.

If high levels of ambient light are present, the use of the Background Light Elimination mode may improve measurement quality. With this mode ON, a camera exposure is taken with the laser off and subtracted from a subsequent exposure with the laser on. This will eliminate many ambient light effects, unless the ambient light levels in the target area are changing rapidly. In this case the light measured during the laser on exposure may be different from that during the laser off exposure, reducing the benefits of this mode. The total time required for obtaining a sample in this mode will be approximately twice what it is with background light elimination OFF.

If the sensor cannot detect a distinct peak in the camera data or the measurement is just beyond the end of the full scale range (but with the spot still on the camera near one end), the sensor will

Page 90: Machine Design Final

AR700 User’s Manual Rev 1.4 12/08 11

output zero distance. If there is no target in the measurement range and background light elimination is on, the sensor will generally put out zeros. However, if lighting conditions are changing rapidly or if background light elimination is off, a bright spot can be misinterpreted as the laser spot and generate a false distance reading when there is no target in range. Reducing the Exposure Limit can eliminate this problem in most cases.

2.2. Mechanical Dimensions The following diagram shows the mechanical dimensions for the small AR700. For this unit, the rectangular window on the front contains both the laser exit port and the return light collection optics. In larger units the exit port and collection optics have separate windows. The sensor has two #4 (M3) clearance holes for mounting the sensor. The rear face of the sensor has the cable, the function button, the green “LASER ON” LED, and the function display LEDs. The cable is for power and all communication (serial, analog, limits, and laser enable). The housing of the sensor is anodized aluminum. The front windows and the housing parts are sealed, creating a dustproof, splash proof enclosure.

The Beam Attenuator is supplied for Class 3B sensor models. Rotate the beam attenuator to block the laser aperture as required in your system. The sensor will not operate correctly with the beam blocked.

Typical Labels

Page 91: Machine Design Final

AR700 User’s Manual Rev 1.4 12/08 12

2.3. Electrical Installation The AR700 sensor’s electrical connections are all provided through an attached cable. Included are power, input, output, communications, and shielding. The sensor is ON whenever power is applied to the cable. See Signal and Power Interface (section 4). Note that class 3B operation requires interlocks and other safety features that can be satisfied with the Interlock Box option.

2.4. Mechanical / Optical Installation The AR700 sensor is typically installed by affixing the sensor to a machined bracket with bolts through the two mounting holes in the sensor. Their location is shown in the mechanical drawing above.

Laser light is emitted from the laser aperture, which is close to the “Laser Aperture” placard as shown. The laser beam then strikes the target at a position along its range. Some of the laser light reflected from the target is collected by the camera lens.

The Optical Base defines the distance from the laser aperture to the camera lens. The Optical Base and Optical Width define the area between the laser, target, and lens that must be kept clear throughout the full measurement range. This way the camera can always see the laser spot on the target, a requirement for the measurement process.

The “Range” is the sensor’s full measurement range. This is the range over which the sensor’s output distance measurement is calibrated.

The Target Standoff is the approximate distance from the sensor face to the midpoint of the measurement range. This is a non-calibrated distance that is used primarily for sensor selection and installation design.

Page 92: Machine Design Final

AR700 User’s Manual Rev 1.4 12/08 13

2.5. Laser Safety Caution: This laser device should not be aimed at the human eye. Installers of laser sensors should follow precautions set forth by ANSI Z136.1 Standard for the Safe Use of Lasers

or by

their local safety oversight organization. Be sure that the laser will not cause an eye hazard.

For Class 3B models:

Class 3B operation requires interlocks and other safety features that are not supplied with the AR700 sensor. It is the responsibility of the installer to ensure that the complete system meets all applicable safety standards for Class 3B laser products. This may include but not be limited to a beam attenuator, compliant power supply interlocks, external interlock switches, emission indicators, and user warning labels that may be required to be visible during use.

The AR700 Interlock Box option can be used to satisfy these requirements.

Use eyewear specifically designed to block laser light of the wavelength emitted by the sensor and through which the green “LASER ON” LED is visible.

Several lasers are used in the AR700 sensor models.

The laser safety classification reflects worst case situations. The laser is considered to be continuous, not pulsed. When the laser pulses in normal operation, the level of laser light does not increase.

The housing is sealed with tamper-resistant fasteners. Do not attempt to open the sensor. A higher level of laser light could be accessible inside.

2.6. Sensor Maintenance The AR700 sensor requires little maintenance from the user. The sensor window(s) should be kept clean of dust buildup as a part of regular preventative maintenance. Use compressed air to blow dirt off the window or use delicate tissue wipes and a light solvent such as isopropyl alcohol

Wavelength (nm) Power Limit (mW) Safety Classification Color 650 1 Class 2 Red 670 5 Class 3R Red 660 25 Class 3B Red

Page 93: Machine Design Final

AR700 User’s Manual Rev 1.4 12/08 14

or water. Avoid using pressurized water and do not use abrasive wipes on the optical glass. If your sensor does not function according to specifications, contact Schmitt Industries, Inc.

The housing is sealed with tamper-resistant fasteners. Do not attempt to open the sensor. It is not user serviceable. A higher level of laser light could be accessible inside. The accuracy of the unit will be degraded if the sensor is opened.

2.7. Sensor Service The AR700 sensor has no user-serviceable parts. Refer all service questions to Schmitt Industries, Inc.

The housing is sealed with tamper-resistant fasteners Do not attempt to open the sensor. A higher level of laser light could be accessible inside. The accuracy of the unit will be degraded if the sensor is opened.

2.8. Environmental Materials The AR700 is produced in compliance with the RoHS directive regarding reduction in the use of lead and other hazardous substances.

2.9. Sensor Specifications Go to http://www.acuitylaser.com/AR700/sensor-technical-data.shtml

Page 94: Machine Design Final

AR700 User’s Manual Rev 1.4 12/08 15

3. Installation and Checkout

3.1. Mounting Mount the sensor in such a way that the unit is not twisted or warped. Using three hard points along the front and back edges or a slightly compliant mounting system are the best methods. Do not clamp or squeeze the sensor excessively. If the sensor is distorted, the sensitivity and accuracy may be affected.

3.2. Cabling The AR700 has a multipurpose cable with solder tail wires. If the AR700 is ordered with a power supply, the sensor cable will be connected to the power supply. Connection and termination according to the instructions is essential for correct sensor operation. Read the wire descriptions for connection information.

3.2.1. Standalone Cabling

To use the AR700 without a serial connection to a host computer, the only connections necessary are the power and ground wires, the analog output wires, and optionally the limit output wires connecting to your data display, recording, or control equipment. See Signal and Power Interface (section 4) for wire connections. In its default configuration, the AR700 will begin measuring and transmitting measurement data on power-up.

In 4-20mA analog output mode, the best accuracy and linearity for the current loop is obtained with a 500-ohm load to current loop return at the measurement point, converting it to a voltage of 2-10V. The limit outputs can be used to indicate the analog output validity.

In 0-10V analog output mode, the best accuracy and linearity for the voltage output is obtained with a 10K-ohm load to the voltage output return at the measurement point. The limit outputs can be used to indicate the analog output validity.

In limits-only mode, one or both of the two limit output wires can be used to connect to control equipment. Using both wires allows the sensor measurement validity to be indicated.

3.2.2. Connection to a Host Computer

A 9-pin serial D-sub serial connector can be attached to the serial output wires to connect the AR700 directly to an IBM-PC compatible 9-pin serial port. Connect a 15 volt power supply to the power and ground lines of the sensor cable. See Signal and Power Interface (section 4) for wire connections. Only the power and ground need be connected for operation in addition to the serial interface. For testing use a terminal emulation program such as the Windows HyperTerminal, set to 9600 baud, 8 bits, no parity, 1 stop bit to communicate with a sensor in the default configuration.

3.3. Power On Caution: be sure that the laser will not cause an eye hazard. Use eyewear specifically designed to block laser light of the wavelength used by the sensor. Use eyewear through which the green “LASER ON” LED is visible.

Page 95: Machine Design Final

AR700 User’s Manual Rev 1.4 12/08 16

P

S

P

S

P

S

When power is applied some function display LEDs may flash briefly and go off. Then the “LASER ON” LED will come on and stay on. Then the laser beam will be emitted from the front laser aperture window. In most models the laser beam will be bright red, but some have invisible or nearly invisible laser light. The sensor will begin transmitting measurement readings as soon as the laser comes on.

3.4. Verifying Operation In its default configuration, the AR700 transmits 5 samples per second at 9600 baud over the serial signals, and transmits measured distance over the current loop output at the same update rate. The current loop should put out 4 mA at the near end of the measurement range, and 20 mA at the far end. Check either, or both, signals to verify basic sensor operation.

3.5. Troubleshooting The sensor can display simple error indications using its function display LEDs. Trouble shooting steps are shown below:

Symptom Possible Cause Correction

“LASER ON” LED never turns on

Power lines not connected

Power lines reversed polarity

Power supply voltage too low or too high

Check wire connections

Check wire connections

Check power supply voltage when loaded

No laser light and no sample data

Sampling is turned off

Serial output is turned off

Power supply voltage is too low

Ambient light level is too high

Turn Sampling on

Turn Serial Output mode on.

Check power supply input voltage

Reduce the ambient light level.

Function display LEDs flash pattern P0S6

Configuration data lost Press function button, default configuration is loaded

Function display LEDs flash pattern P0S8

Calibration data lost Call Schmitt Industries for instructions

Function display LEDs flash pattern P0S10

Waiting for Class 3B laser to start This time-out finishes in 5 seconds.

Page 96: Machine Design Final

AR700 User’s Manual Rev 1.4 12/08 17

3.5.1. Serial Communications Check

If no information is received over the serial port, check the power supply and serial wire connections. The sensor may be in a configuration that prevents serial communication, such as being set at the wrong baud rate.

To reset the sensor to the default: Turn the power off, press the function button on the AR700, and turn the power on with the button held down. The function display LEDs should cycle through a pattern that illuminates each, one at a time. When the button is released, the sensor will reset to the default configuration (9600 baud, 8 bits, no parity, 1 stop bit), and should enable serial RS232 communication with the host system.

3.5.2. Sensor Output Check

If the sensor output value is in error, check that the sensor and target are stationary and stable, that the target is in the middle of the measurement range as an initial test distance, and that the laser beam is hitting the target.

The Zero-Point and Span-Point configuration settings may alter the values output by the sensor. Reset the sensor to the default to remove their effect.

The sensor may need to warm up for 5-10 minutes before reaching full accuracy. Leave it on for a few minutes and re-check the sensor accuracy.

Page 97: Machine Design Final

AR700 User’s Manual Rev 1.4 12/08 18

4. Signal and Power Interface The AR700 has a multipurpose cable (sensor cable) with solder tail wires. If the AR700 is ordered with a power supply, the sensor cable will be connected to the power supply. Connection and termination according to the instructions is essential for correct sensor operation. Read the wire descriptions for connection information.

4.1. Sensor Cable Wire Colors and Functions The tables below shows the wiring on systems ordered without power supplies.

Wire Function in All Modes Red Power Supply, +15V (15 VDC min to 24 VDC max) Black Ground - Power Supply Common Return White Laser Disable (connect to ground to disable) Clear (Shield) Ground at Supply End Pink Limit 1 Output (open collector NPN switch to ground) Grey Limit 2 Output (open collector NPN switch to ground)

The analog output wires can be used for 4-20 mA current output or 0-10V voltage output.

Function in Selected Analog Mode Wire 4-20mA 0-10V Orange Current Loop Output Voltage Output Brown Current Loop Return Voltage Return

The serial communications wires can be used for RS232 or RS422.

Function in Selected Serial Mode Wire RS232 RS422 Yellow RxD – Receive Data RX– : Receive Data – Green TxD – Transmit Data TX– : Transmit Data – Blue RTS – Request To Send TX+ : Transmit Data + Violet CTS – Clear To Send RX+ : Receive Data +

4.1.1. Power Supply (Black, Red)

The Black wire is the Power Supply Common return, also named Ground. It carries the return current for the power supply, the Limit Outputs, the Laser Enable, and the serial data signals. Note that the ground current for the Limit Outputs may be up to 100 mA each.

The Red wire is the Power Supply Input to the sensor. The sensor requires +15 VDC power at 120 mA to 200 mA (depending on the internal laser used). The sensor uses a surge of up to 350 mA at power on. The Analog Output uses an additional current up to 20 mA. The maximum ripple allowed on the supply is 100 mVpp.

Power supplies from 15 VDC to 24 VDC may be used. Higher voltages will result in excessive current drawn by the over-voltage protection circuitry and may cause permanent damage. Voltages less than 14 VDC may result in inaccurate measurement readings.

Class 3B laser operation requires interlocks and other safety features that can be satisfied with the Interlock Box option.

Page 98: Machine Design Final

AR700 User’s Manual Rev 1.4 12/08 19

4.1.2. Shield (Clear)

The Clear wire is the cable and housing shield and is connected to ground inside the sensor. It should also be connected to ground at the power supply end of the cable.

4.1.3. Serial Communications (Green, Yellow, Blue, Violet)

A standard 9-pin D-SUB serial connector can be built to interface with an IBM or compatible computer using connection the pin out table below. The RS422 pin-out shown is not a standard. This pin-out is not compatible with the AR600.

Pin # DCE RS232 Function (PC compatible)

Signal Direction Wire Color RS422 Function (not PC compatible)

1 Data Carrier Detect (DCD) To Computer N/C

2 Transmitted Data To Computer Green (TXD/TX-) TX-

3 Received Data From Computer Yellow (RXD/RX-)

RX-

4 DTE Ready From Computer N/C

5 GND Reference Black (COM) Reference

6 DCE Ready To Computer N/C

7 Clear To Send (Optional) From Computer Violet (CTS/RX+) RX+

8 Request To Send (Optional) To Computer Blue (RTS/TX+) TX+

9 Ring Detect To Computer N/C

RS232 and RS422 modes are compatible with the associated ANSI standards.

See Serial Interface Operation (section 5) for more information.

4.1.4. Analog Output (Brown, Orange)

The Brown wire is the return signal for the Analog Output. It is connected to ground inside the sensor and should not be connected to ground outside the sensor. Inadvertently connecting it to ground may cause a reduction in accuracy of the analog output, especially in voltage mode.

Page 99: Machine Design Final

AR700 User’s Manual Rev 1.4 12/08 20

4.1.4.1. 4-20 mA Current Loop Output (Orange)

In Current Loop mode the Orange wire delivers a current proportional to the measured distance.

The best conversion to voltage is obtained by connecting a 500-ohm load resistor (1/4 Watt minimum) between the orange and brown wires at the measurement point. This gives a 2 volt to 10 volt output range.

See Analog Output Operation (section 6) for mode selection and scaling options.

The sensor may be connected directly to a meter or a filter may be inserted to reduce noise. The filter shown will pass the signal at full speed (nearly 10000 samples per second). To filter better at slower speeds, use a 0.01 uF capacitor (1000 samples per second) or a 0.1 uF capacitor (100 samples per second).

4.1.4.2. 0 – 10 V Voltage Output (Orange)

In Voltage mode the Orange wire delivers a voltage proportional to the measured distance. A load resistance of 10K-ohms or more may be connected between the orange and brown wires in this mode.

Note that the output voltage does not go all the way to zero but the output is linear from about 10 mV (at position = 0) to 10 V.

See Analog Output Operation (section 6) for mode selection and scaling options.

The sensor may be connected directly to a meter or a filter may be inserted to reduce noise. The filter shown will pass the signal at full speed (nearly 10000 samples per second). To filter better at slower speeds, use a 0.01 uF capacitor (1000 samples per second) or a 0.1 uF capacitor (100 samples per second).

Page 100: Machine Design Final

AR700 User’s Manual Rev 1.4 12/08 21

4.1.5. Limit Outputs (Pink, Gray)

The Pink wire is the Limit 1 Output.

The Gray wire is the Limit 2 Output.

See Limit Output Operation (section 7) for operation options and details.

Each Limit Output is an open collector NPN transistor switch to Ground. When a Limit Output is not active, its output will be high impedance and no current will flow through it. When a Limit Output is active (On) it can sink up to 100mA of current. A current limiting circuit will cause the transistor to turn off in the case of a current overload. The transistor will remain off until the sensor’s measurement conditions cause it to turn off and then back on again.

The load for each output should be connected to the Power Supply (Red wire). The voltage on these wires must not exceed the limits of the Power Supply connection voltages (red and black wires), or excessive current may flow into the sensor and cause damage.

4.1.6. Laser Disable and Trigger (White)

The White wire is the Laser Disable input. Connecting it to Ground (black wire) will disable the laser (turn it off). It is normally left unconnected to enable the laser.

If this input will be controlled by an operator from more than two meters from the sensor, then an emission indicator near the operator control area may be necessary to comply with laser safety regulations.

This signal can be driven by a switch, an open collector transistor, or by TTL or 3 to 5 volt CMOS level signals. This signal must be held in one state for at least 70 µs in order to guarantee that the state is recognized. A low signal (0 volt state) disables the laser. A high state (3 to 5 volts) enables the laser.

Additionally this input can be used to trigger a single measurements in the sensor. If the Sampling Control is set to HARDWARE TRIGGER mode then a single sample will be measured each time this signal transitions from low to high. The measurement will begin within 70 µs of the transition. Note that the Laser Disable input signal must remain ‘enabled’ (signal state high) until the sample is acquired or the laser will turn off and disable the sensor’s ability to sample. A mechanical switch is not recommended for triggering unless the switch has excellent ‘bounce’ characteristics.

For the fastest possible trigger speed, use an open collector transistor and use a trigger pulse that goes low (0 volt state) for 70 µs and remains high the rest of the time. Use BLE OFF (L2), Rate Priority (P2), and limit the exposure. 4500 samples per second can be achieved in this way if the target is close and highly reflective enough to operate with an exposure limit of M33 and a Sample interval of S21.

See Performance Optimization (section 8) for more about Sampling Control.

Page 101: Machine Design Final

AR700 User’s Manual Rev 1.4 12/08 22

4.2. Other Interfaces Terminal block connections can be provided for user connections.

4.2.1. Optional Interface Kit with Serial Cable and Power Supply

The Acuity AR700 Interface Kit (p/n AQ7000001) provides an interface box with terminal block connections, a serial cable for connecting to a PC, and a Power Supply.

One terminal block in the interface box connects to the AR700 sensor. A second terminal block allows user access to all other connections as needed.

A standard 9-pin D-SUB serial connector is provided in the interface box. It provides the pin-out described in the Serial Communications subsection, above. In addition, it ties pins 4 (DTE Ready), 6 (DCE Ready,) and 1 (DCD) together, a standard connection used with a PC. A standard 9-pin cable is supplied to connect the interface box to a PC.

The interface box has a jack to accept the plug from a standard 15V Power Supply, also supplied with the Interface Kit.

4.2.2. Interlock Box

The Interlock Box option may be added to sensors with a Class 3B lasers in order to provide some of the safety features required for compliance with laser regulations.

It provides the same features as the Interface Kit and also includes a beam attenuator, a key switch, a laser interlock connector, and a second laser emission indicator.

4.2.3. OEM Models (Class 3B without Interlock Box)

A Class 3B sensor that doesn’t have the Interlock Box option is for use only as a component for incorporation into a system that must include all applicable safety components prior to use. It is the responsibility of the installer to ensure that the complete system meets all applicable safety standards for Class 3B laser products. This may include but not be limited to a beam attenuator, compliant power supply interlocks and safety switches, emission indicators and user warning labels that may be required to be visible during use.

Page 102: Machine Design Final

AR700 User’s Manual Rev 1.4 12/08 23

P

S

P

S

P

S

5. Serial Interface Operation

5.1. Serial Hardware Interface The serial port hardware mode can operate in RS232 or RS422 mode. The hardware mode can not be selected using a serial command and must be selected through the use of the function button. The default serial port mode is RS232. In RS422 terminated mode, the serial port is set for full-duplex transmission with an internal 120 ohm termination connected between the receiver pair’s wires. In RS422 unterminated mode, the serial port is set for full-duplex transmission and the 120 ohm termination is not connected.

5.1.1. Serial Communication Mode (RS232, RS422)

The Serial Communication Mode command is used to set the hardware communication mode used by the sensor. It can only be set using the function button. See Function Button Command Operation (section 10.3) for instructions.

5.1.1.1. RS232 (function button parameter 9, setting 1 [default]

This command sets the serial communications mode to RS232 using four signals, TX, RX, CTS, and RTS.

5.1.1.2. RS422 (function button parameter 9, setting 2)

This command sets the serial communications mode to RS422 with no termination provided. Two signal pairs (TX and RX) use four wires. CTS and RTS are not available.

5.1.1.3. RS422 Terminated (function button parameter 9, setting 3)

This command sets the serial communications mode to RS422 with and internal 120 Ohm termination on RX. Two signal pairs (TX and RX) use four wires. CTS and RTS are not available.

5.1.2. Baud Rate (B)

The Baud Rate is selectable via the function button. Although changing the Baud Rate using the serial port is also allowed, it requires the host device to change its own Baud Rate after commanding the sensor to change.

The following Baud Rates are provided (with corresponding serial command): 300 B1

1200 B2 2400 B3 4800 B4 9600 B5 (default)

19200 B6 38400 B7 57600 B8

115200 B9 230400 B0

Page 103: Machine Design Final

AR700 User’s Manual Rev 1.4 12/08 24

5.1.3. Serial Output Flow Control (T)

The Serial Flow Control command is used to select the serial output flow control mode.

Whenever sampling is enabled the measurement, analog output, and limit output operations continue, even though serial output flow may be stopped.

5.1.3.1. Output Flow Control OFF (T2[default])

In this mode waiting characters are always transmitted.

5.1.3.2. Hardware Output Flow Control (T1)

This mode uses the RS232 control signal CTS. In this mode the sensor will not transmit any characters if the CTS signal is not active. It will immediately begin transmitting any waiting characters when CTS becomes active. Hardware flow control is not operational in RS422 mode.

This mode responds on a character by character basis.

5.1.3.3. Soft Output Flow Control (T3)

In this mode the sensor responds to software flow control characters (Ctrl-S and Ctrl-Q). It will stop the flow of serial sample data after Ctrl-S is received. The sensor will resume the flow after Ctrl-Q is received. Non sample data information will be transmitted regardless of the flow control characters (Show Version command, for example).

This mode stops the transmission of complete samples. Once the first character of a sample is transmitted, all the characters of the sample will transmit.

5.1.4. Input Flow Control

The sensor provides hardware input flow control in RS232 mode using the RTS signal, which is set active to indicate that the sensor is able to receive at least two more characters. Hardware flow control is not operational in RS422 mode.

The sensor does not transmit software flow control characters (Ctrl-S and Ctrl-Q). If the host is transmitting command sequences that are more than 10 bytes in length, pause for 0.1 seconds between commands.

5.2. Serial Data Output (A, N) The Serial Data Format, units, and offsets modes are selectable using the Serial Output Control command. Serial data is transmitted from the AR700 as 8 data bits with no parity and 1 stop bit. The sample data sent represents calibrated distance readings.

Available units are Native (0 to 50000), English, Metric, and Short (0 to 16378).

Output Formats are ASCII, 3 byte binary, and 2 byte binary.

Adjustable offset modes are Unbiased, Zero-Based, and Offset-Based.

5.2.1. Serial Output Off (A3)

In this mode no serial data is transmitted. Analog and Limit Outputs continue to function.

5.2.2. ASCII Native Format (A0, A4, A7)

Native is the format used for many commands (Z, J, K, U) and it is also provided as an output format. Native has valid measurement values between 0 and 50000, inclusive. The output is

Page 104: Machine Design Final

AR700 User’s Manual Rev 1.4 12/08 25

up to five digits followed by <CR><LF> (Carriage Return and Line Feed characters) that represent a measured distance computed as:

Distance = <Range> * value / 50000 (<Range> is the sensor’s numeric Range)

Errors are represented by values over 50000: Error Native Units value 1 - Target too near 50001<CR><LF> 2 - Target not seen 50002<CR><LF> 3 - Target too far 50003<CR><LF> 4 - Laser Off 50004<CR><LF>

5.2.3. ASCII Distance

In these modes, each sample consists of a string of characters as follows: optional minus sign (see Offset-Based Output – section 5.2.6.3), up to 7 distance digits plus a decimal point (depending on model range – section 5.2.3.4), and followed by <CR><LF>, for a maximum of 10 characters including <CR><LF> characters. Leading zeros are not transmitted except a single zero prior to the decimal point. The maximum number of characters is dependent on the sensor’s <Range> and the measurement units selected. Output formats are as follows:

5.2.3.1. Error Modes (Q1[default], Q2, Q3)

Three user selectable modes of error indication can be set for ASCII distance formats by the Error Report Mode command:

Q1 code ‘E’ + Error + <CR><LF> E1<CR><LF> Q2 plus ‘+’ + ErrorValue + <CR><LF> +5.0001<CR><LF> Q3 natural ErrorValue + <CR><LF> 5.0001<CR><LF>

Error values are indicated by out-of-range distances (see Native Format – section 5.2.2). The numeric error codes are coded as:

ErrorValue = <Range> * ( 50000 + Error ) / 50000

Any numeric output value inclusive of 0.0000 and <Range> is a valid distance measurement. For a 1” sensor 1.00000 is a valid output and 1.00006 represents error 3 (too far). For the same sensor in metric 25.4000 is a valid output and 25.4015 represents error 3. Examples in the sub-sections below represent the output from a 5 inch range sensor for clarity.

5.2.3.2. ASCII English (A1[default], A5, A8)

Error codes for English units (inches) are as follows (AR700-0.500 model):

Q1 (default) Q2 Q3 Error ‘Code’ mode ‘+’ mode natural mode 1 - Target too near E1<CR><LF> +0.50001<CR><LF> 0.50001<CR><LF> 2 - Target not seen E2<CR><LF> +0.50002<CR><LF> 0.50002<CR><LF> 3 - Target too far E3<CR><LF> +0.50003<CR><LF> 0.50003<CR><LF> 4 - Laser Off E4<CR><LF> +0.50004<CR><LF> 0.50004<CR><LF>

Page 105: Machine Design Final

AR700 User’s Manual Rev 1.4 12/08 26

5.2.3.3. ASCII Metric (A2, A6, A9)

Error codes for Metric units (mm) are as follows (AR700-0.500 model):

Q1 (default) Q2 Q3 Error ‘Code’ mode ‘+’ mode natural mode 1 - Target too near E1<CR><LF> +12.7003<CR><LF> 12.7003<CR><LF> 2 - Target not seen E2<CR><LF> +12.7005<CR><LF> 12.7005<CR><LF> 3 - Target too far E3<CR><LF> +12.7008<CR><LF> 12.7008<CR><LF> 4 - Laser Off E4<CR><LF> +12.7010<CR><LF> 12.7010<CR><LF>

5.2.3.4. English and Metric Output Formats

Sensor Range English Metric (Metric Range) 0.125 in: -0.xxxxxx in -x.xxxxx mm 3.17500 mm 0.250 in: -0.xxxxxx in -x.xxxxx mm 6.35000 mm 0.500 in: -0.xxxxx in -xx.xxxx mm 12.7000 mm

1.0 in: -x.xxxxx in -xx.xxxx mm 25.4000 mm 2.0 in: -x.xxxxx in -xx.xxxx mm 50.8000 mm 4.0 in: -x.xxxxx in -xxx.xxx mm 101.600 mm 6.0 in: -x.xxxxx in -xxx.xxx mm 152.400 mm 8.0 in: -x.xxxxx in -xxx.xxx mm 203.200 mm

12.0 in: -xx.xxxx in -xxx.xxx mm 304.800 mm 16.0 in: -xx.xxxx in -xxx.xxx mm 406.400 mm 24.0 in: -xx.xxxx in -xxx.xxx mm 609.600 mm 32.0 in: -xx.xxxx in -xxx.xxx mm 812.800 mm 50.0 in: -xx.xxx in -xxxx.xx mm 1270.00 mm

5.2.4. 3-Byte Binary Data format (N0, N2)

LH<FF>

In this mode, each sample data output consists of 3 bytes representing a value in Native Units: a low byte (L), a high byte (H), and a termination byte (<FF>). The low byte has a value of 0 to 255. The high byte has a value of 0 to 195. The termination byte always has a value of 255. For synchronizing, note that the termination byte (always 255) immediately follows the high byte (never 255). To convert the two bytes to an output value, use the following equation:

Bin3out = H * 256 + L. Distance = Range * Bin3out / 50000

Just as in Native mode, valid measurements are indicated by values between 0 and 50000, inclusive. Errors are represented by values over 50000:

Error value 1 - Target too near 50001<CR><LF> 2 - Target not seen 50002<CR><LF> 3 - Target too far 50003<CR><LF> 4 - Laser Off 50004<CR><LF>

Offset-Based Zero-Point output is not available in binary mode (no negative numbers).

5.2.5. 2-Byte Binary Data format (N1, N3)

LH

In this mode, each sample data output consists of 2 bytes: a low byte (L) and a high byte (H). The low byte has a value of 0 to 127. The high byte has a value of 128 to 255. For

Page 106: Machine Design Final

AR700 User’s Manual Rev 1.4 12/08 27

synchronizing, note that the bigger value (H) always follows the smaller value (L). To convert the two bytes to an output value, use the following equation:

Bin2out = ( H – 128 ) * 128 + L. Distance = Range * Bin2out / 16378 (except errors) Note: Native = 50000 * Bin2out / 16378 (except errors)

In this mode valid measurements are indicated by values between 0 and 16378, inclusive. Errors are represented by values over 16378:

Error value 1 - Target too near 16379<CR><LF> 2 - Target not seen 16380<CR><LF> 3 - Target too far 16381<CR><LF> 4 - Laser Off 16382<CR><LF>

Offset-Based Zero-Point output is not available in binary mode (no negative numbers).

5.2.6. Zero-Point (Z) – Span-Point (U)

NOTE: The Zero-Point (Z) and Span-Point (U) parameters may also affect the Analog Output.

The location of the Zero-Point may be changed with the Zero-Point command (Z). The direction of increasing output serial values from the Zero-Point may be reversed by issuing the Span-Point command (U) with a value smaller than that used in the Zero-Point command.

Example: Z25000 Set Zero-Point to middle of range (0 to 50000). Z/ Set Zero-Point to current location. U12500 Set Span-Point at 1/4 of range.

Z represents the Zero-Point Value U represents the Span-Point value

5.2.6.1. Unbiased Output Units (A7, A8, A9, N2, N3)

This mode reports the distance without applying the Zero-Point value. The Zero-Point value can still be applied to the analog output.

Measurement Z = 20000, U > 20000 Z = 20000, U < 20000 (below) 50001 50001 10 10 10 19990 19990 19990 20000 20000 20000 20010 20010 20010 49990 49990 49990 (above) 50003 50003

Page 107: Machine Design Final

AR700 User’s Manual Rev 1.4 12/08 28

5.2.6.2. Zero-Based Output Units (A0, A1[default], A2, N0, N1)

This mode reports the distance as positive from the Zero-Point value (zero) up to the limit of the sensor. No negative values are transmitted.

Measurement Z = 20000, U > 20000 Z = 20000, U < 20000 (below) 50001 50001 10 50001 19990 19990 50001 10 20000 0 0 20010 10 50003 49990 29990 50003 (above) 50003 50003

5.2.6.3. Offset-Based Output Units (A4, A5, A6)

This mode reports the signed distance from the Zero-Point value (up to the limit of the sensor. This mode is not available in binary modes (no negative numbers).

Measurement Z = 20000, U > 20000 Z = 20000, U< 20000 (below) 50001 50001 10 -19990 19990 19990 -10 10 20000 0 0 20010 10 -10 49990 29990 -29990 (above) 50003 50003

Page 108: Machine Design Final

AR700 User’s Manual Rev 1.4 12/08 29

6. Analog Output Operation (X) The analog output uses two wires not used in the basic configuration. The output is Orange and the return is Brown. The return wire is connected to ground inside the sensor and should not be connected to ground outside the sensor. Three modes, Voltage, Current Loop, or Off may be selected with the Analog Output Control command.

The analog output is updated with each sample measured. The analog output can keep up with the sensor’s fastest measurement rate.

The analog output is not updated (does not change) if a sample is not determined to be valid and within the sensor’s measurement range.

6.1. Analog Output Off (X5) In this mode no analog output is generated on the analog output wires.

6.2. Current Loop Output (X1[default], X3) In 4-20mA analog mode, the analog output will deliver a current which increases linearly from 4 mA at the Zero-Point to 20 mA at the Span-Point.

Best accuracy and noise immunity is obtained by connecting a 500 Ohm resistor to the current return wire at the measurement point. The default configuration is for calibrated output, with the Zero-Point at zero (Z0), and the Span-Point at full scale (U50000).

6.3. Voltage Output (X2, X4) In 0-10V voltage mode, the analog output will deliver a voltage which increases linearly from 0V at the Zero-Point to 10V at the Span-Point.

Best accuracy and noise immunity is obtained by connecting a 10K Ohm resistor to the voltage return wire at the measurement point. The default configuration is for calibrated output, with the Zero-Point at zero (Z0), and the Span-Point at full scale (U50000).

6.4. Zero-Point (Z) – Span-Point (U) NOTE: The Zero-Point (Z) and Span-Point (U) parameters may also affect the Serial Output.

The location of the Zero-Point may be changed with the Zero-Point command (Z). The direction of increasing output serial values from the Zero-Point may be reversed by issuing the Span-Point command (U) with a value smaller than that used in the Zero-Point command.

Example: Z25000 Set Zero-Point to middle of range (0 to 50000). Z/ Set Zero-Point to current location. U12500 Set Span-Point at 1/4 of range.

Z represents the Zero-Point Value U represents the Span-Point value

Page 109: Machine Design Final

AR700 User’s Manual Rev 1.4 12/08 30

6.4.1. Unbiased Analog Output (X3, X4)

Unbiased mode ignores the Zero-Point and Span-Point settings. The analog voltage (X4) or current (X3) output is at a minimum at the near end of the measurement range and a maximum at the far end of the measurement range.

Measurement Z and U = don’t care (below) (no change)

10 0.012 V, 4.003 mA 19990 4.014 V, 10.397 mA 20000 4.016 V, 10.400 mA 20010 4.018 V, 10.403 mA 49990 9.998 V, 19.997 mA

(above) (no change)

6.4.2. Zero-Span Biased Output (X1, X2)

The Zero-Point (Z - the measurement distance of the minimum analog output), and the Span-Point (U - the measurement distance of full-scale analog output) may be set anywhere within the measurement range of the sensor. See Zero-Point and Span-Point (section 5.2.6). The minimum distance between Zero-Point and Span-Point is 5% of the full sensor range. Attempts to set a smaller span will be scaled such that the full analog output range will represent 5% of the sensor range. Note that the full scale value may not be generated if its required location is outside the sensor’s range. Example ZP=49000 and SP=50000. 5% of range (5% of 50000) is 2500. Actual ZP=49000 and the effective SP=51500. Since the sensor can never measure past 50000, the analog output would never go above 40% of full scale (50000 is 40% of the way from 49000 to 51500).

Setting the Span-Point to a value lower than the Zero-Point will reverse the direction of increasing output.

Measurement Z = 20000, U = 50000 Z = 40000, U = 20000 (below) (no change) (no change)

10 0.010 V, 4.000 mA 10.000 V, 20.000 mA 20000 0.010 V, 4.000 mA 10.000 V, 20.000 mA 20010 0.013 V, 4.005 mA 9.995 V, 19.992 mA 30010 3.343 V, 9.339 mA 5.000 V, 11.992 mA 49990 9.997 V, 19.995 mA 0.010 V, 4.000 mA

(above) (no change) (no change)

Page 110: Machine Design Final

AR700 User’s Manual Rev 1.4 12/08 31

7. Limit Output Operation (J, K) The limit outputs use two wires not used in the basic configuration.

Limit 1: Pink Associated with Parameter J and the Limit 1 command Limit 2: Grey Associated with Parameter K and the Limit 2 command

The limit outputs are updated with each sample measured. The limit outputs can keep up with the sensor’s fastest measurement rate.

Example: J25000 Set Limit 1 to middle of range (0 to 50000). J/ Set Limit 1 to current location. K12500 Set Limit 2 at 1/4 of range.

The limit outputs are set based on the sensor reading in Native units. Note that ‘valid’ measurements include values that the sensor detects out of range and an invalid measurement is one for which the sensor cannot determine position.

7.1. Limit Switches both OFF between limits, inclusive (J<K) This mode is determined by the J parameter having a value less than the K parameter.

Limit 1 is ON for a measurement that is invalid or <J (including below range). Limit 1 is OFF for a measurement that is valid and >=J (including above range). Limit 2 is ON for a measurement that is invalid or >K (including above range). Limit 2 is OFF for a measurement that is valid and <=K (including below range).

This mode is default (J=0, K=50000).

7.2. Limit Switches both ON between limits, inclusive (J>K) This mode is determined by the J parameter having a value greater than the K parameter.

Limit 1 is ON for a measurement that is valid and <=J (including below range). Limit 1 is OFF for a measurement that is invalid or >J (including above range). Limit 2 is ON for a measurement that is valid and >=K (including above range). Limit 2 is OFF for a measurement that is invalid or <K (including below range).

7.3. Limit Output Toggle (J=K) for Analog Output Timing This mode is determined by the J parameter having a value equal to the K parameter. The Limit outputs change at the same time the analog output changes.

If J=K<=30000 then Limit 1 is OFF for any valid measurement and ON if invalid. If J=K>30000 then Limit 1 is ON for any valid measurement and OFF if invalid. Limit 2 toggles from ON to OFF or OFF to ON for every sample, valid or invalid.

Page 111: Machine Design Final

AR700 User’s Manual Rev 1.4 12/08 32

8. Performance Optimization

8.1. Sample Definition A Sample consists of one or more scan cycles. A scan cycle is performed in the sensor by scanning its camera. Scan cycles are performed continuously and as fast as possible in the sensor and then reported at the Sample Rate. If more than one scan cycle is performed during a Sample Period, then the results of those cycles are averaged, allowing slower sample rates to be less noisy.

Note that there is not a direct time correlation between scan cycles and samples. One or more scan cycles take place and are averaged within a sample period, but the exact time of those scan cycles are not known within the sample period.

Samples are not completed at an exact rate, but at an average rate with a small amount of fluctuation. The fluctuation is on the order of 30 microseconds, so it would only make a noticeable difference at very high sample rates.

8.2. Sample Interval (S) The Sample Interval command (S) controls the maximum average Sample Rate. Its parameter has a resolution and units of 5 µs (micro seconds). The command accepts parameter values from S0 to S999999. Note that any value below S22 is taken as S21 (maximum rate is about 9434 samples per second). The sample frequency and period are calculated as:

Sample Rate = 200000 / S (samples per second) Sample Period = 5 * S (microseconds per sample)

The minimum sample rate is 200000 / 999999 = 0.5 samples per second.

Example: S40/ Sets the sample rate to 5000 per second (200000/40).

The maximum possible sample rates are limited by the sensor internal processes.

Two configuration settings can limit the actual or maximum sample rate.

8.2.1. Background Light Elimination (BLE) (L)

BLE (or Background Light Elimination) is controlled by the Background Light Elimination Mode command (L).

8.2.1.1. BLE ON (L1[default])

When BLE mode is ON the sensor scans its camera two times per scan cycle, once with the laser off and once with the laser on. The two scans are subtracted to enhance the laser image and reduce the background image.

The maximum sample rate with BLE ON is about 4717 samples per second (S<43).

8.2.1.2. BLE OFF (L2)

When BLE mode is OFF the sensor scans the camera once per scan cycle and processes the image. This can be done at twice the speed as with BLE ON because the camera is scanned half as often per scan cycle.

The maximum sample rate with BLE OFF is 9433 samples per second (S<22).

Page 112: Machine Design Final

AR700 User’s Manual Rev 1.4 12/08 33

8.2.1.3. ROAD PROFILING (L3 – Default in Road Profiler Models (section 1.5))

This is the mode of operation is allowed only in Road Profiler models. This mode behaves as if BLE is OFF (section 8.2.1.2) and forces RATE Priority (section 8.2.2.2). It is described in detail in section 1.5. An attempt to set this mode in a standard (non-RP) model will be ignored.

8.2.2. Sample Exposure and Priority (P)

Each scan cycle (camera scan) is checked for the correct exposure. The sensor controls the exposure by varying the strength of the laser beam and the camera’s shutter time. For optimal speed performance, the laser power is increased before the shutter time is increased.

Shorter exposure times generally occur with more reflective targets, measurements that are closer to a sensor (shorter range), and with higher power lasers. Longer exposure times generally occur with less reflective targets, measurements that are farther from a sensor (longer range), and with lower power lasers.

Note that because each exposure is based on what the camera saw on the previous scan cycle, there can be a delay of several scan cycles in acquiring the correct exposure. If the reflectance characteristics of the target are changing rapidly, then the required exposure is constantly changing and correcting. For fast changing targets (position or texture) the quality of the measurement will be reduced.

When the exposure time is greater than the requested sample period (S command) then the priority command determines how the camera’s shutter time is calculated.

8.2.2.1. Quality sets Priority (P1[default])

In this mode the sample rate may be slowed down from the programmed value in order to attain the optimum shutter time. If the sample rate is slowed, then that rate is uncontrolled.

8.2.2.2. Rate sets Priority (P2 – forced in Road Profiler Modes (section 1.5))

In this mode the shutter time is limited in order to guarantee the programmed sample rate. If the exposure is too low, then the sample quality (accuracy) may be reduced. If the shutter time is limited in this mode, then there will only be only one scan cycle per sample (no averaging).

8.2.2.3. Exposure Limit (M – limited in Road Profiler Modes (section 1.5))

When the sensors camera doesn’t ‘see’ a laser spot on a target, then it increases the exposure in order to try to see one. If there is no target within range, then the exposure can be increased to just over 0.1 second. Once a target comes into range, it may take the sensor a very long time (up to 0.5 seconds) to get the correct exposure. Also under this condition it is easy for a background point of light to be interpreted as a laser spot.

The Exposure Limit command is provided in order to significantly reduce both of these effects. It can be manually set from M0 to M80, but it is not easy to understand the effect of the value of the parameter:

ExposureLimit = MaxExposure * 2 ( 0.25 * ( M – 80 )). Note that MaxExposure is in units of time * laser power.

However, it is easy to have it acquire a value automatically. Get the least reflective target material that is to be used in an application and position it at the far end of the range such

Page 113: Machine Design Final

AR700 User’s Manual Rev 1.4 12/08 34

that it is getting a good measurement. Issue the M command without a parameter and it will set the Exposure Limit for about 1.5 times the exposure required at the measured location. This value will be sufficient for most applications. To see what value has been set, use the Show Version command (V1234) to display all of the current parameter settings. Once the approximate M value is known, a slightly different one can be used if adjustment is necessary.

8.3. Sampling Control (H, E) The sensor is able to sample the distance using measurement scans on a continual basis.

Whenever sampling is on, the sensor continually updates the limit outputs. If an analog output is enabled, then it is updated with each sample. If serial data is on, then it is updated with each sample.

Sampling may be turned off as needed.

8.3.1. Sampling On – Laser On (H1)

In this mode sampling is on continuously. The laser is on. Enabled outputs are updated at the sample rate.

8.3.2. Sampling Off – Laser Off (H2)

In this mode sampling is off. There is no output. The laser is off. The camera does not track the exposure. This mode is used for measuring single samples, but without the laser being on continuously.

8.3.3. Sampling Off – Laser On (H3)

In this mode sampling is off. There is no output. The laser is on so that the sensor’s camera can keep the exposure up to date.

This mode is useful when single samples will be commanded but the target reflectivity or position may change significantly between each sample.

8.3.4. Hardware Trigger Mode – Laser Off (H4)

In this mode sampling is off. There is no output. The laser is off. The Laser Disable input is used to trigger a single sample measurement each time the signal changes from ‘disabled’ to ‘enabled’. The camera does not track the exposure.

This mode is useful for synchronizing single samples with a hardware input signal. Single samples can also be requested by command in this mode.

Note that the Laser Disable input signal must remain ‘enabled’ until the sample is acquired or the laser will turn off and disable the sensor’s ability to sample.

8.3.5. Measure Single Sample (E)

This command is normally used when sampling is off. It causes a single sample to be measured and outputs to be generated (analog, limit, and serial).

This command is ignored if sampling is on.

This command does not change any configuration settings.

Note: Sending the E command while a sample is in progress will cause a new sample to follow.

Page 114: Machine Design Final

AR700 User’s Manual Rev 1.4 12/08 35

8.3.6. High Speed Sampling Tips

High speed sampling can be hindered by several things.

The sensor gives no indication if the specified sample rate is not being met.

Targets that are dark and/or distant require longer exposure times to obtain good samples, making higher speeds more difficult to attain.

With BLE ON (L1) the exposure time required is double that needed with BLE OFF (L2), and will reduce the sampling speed by up to 50%.

Priority must be set to Rate (P2) to assure sampling takes place at the specified rate.

8.3.7. High Speed Single Sample Tips

The speed of single sample operation is further hindered. Several operations that are overlapped during normal operation must be performed in sequence during single sample operation, particularly at high speed.

The maximum exposure time for single sampling is controlled by the S command as if the sensor were in continuous sampling mode.

The single sample rate can be increased slightly by using the exposure limit command (M) to reduce the exposure. Note that reducing the exposure can also reduce the signal quality.

Use commands S21, L2, and P2 to get the fastest rate.

Use M34 to get a maximum rate of about 4500 samples per second.

Reducing the value to M13 will not make a significant difference in sample speed.

From M12 to M2 the maximum rate may increase slightly. At M2 the rate may exceed 5200 samples per second, but the low exposure may result in no sample signal.

At M40 the maximum single sample rate is about 3450.

Above M40 the M command is no longer influencing an increase in the single sample rate.

8.4. Measurement Resolution The sensor output data was described in the sections on Serial Data Output and Analog Output, where the resolution is defined in terms of how many digits are calculated for the results.

This section discusses measurement resolution: How much does the target need to move before a reliable distance change appears in the measurement.

A target material that is smooth and opaque, such as an enamel painted surface, will measure more reliably than a rough or porous surface such as paper or anodized aluminum.

Page 115: Machine Design Final

AR700 User’s Manual Rev 1.4 12/08 36

This function is dependent on the measurement quality and the sample period and is related to noise and sample quality. In general, the resolution will improve as the square root of the number of scan cycles averaged. The number of cycles averaged is generally proportional to the sample period. Rate priority mode can reduce the resolution if it reduces the signal quality in order to increase the rate. Once the sensor is controlling the exposure time, the target reflectance and distance affect the resolution. Then the number of scan cycles averaged can increase proportionally to the target reflectance. Note that target reflectance refers to the amount of laser light scattered in the direction of the sensor’s lens. A mirror can be highly reflective, but it can reflect nearly all the light away from the lens and have a very low reflectance to the sensor. A flat black surface can appear to have a much higher reflectance to the sensor than the mirror. The number of scan cycles averaged will decrease as the square of the distance from the sensor’s lens to the target.

That being said, the sensor with default settings should have a resolution of 1 part in 20000 for a diffuse white target normal to the laser at the middle of the sensor’s range.

8.5. Serial Data Rate Serial data is transmitted from the AR700 at a variety of formats and baud rates. The time it takes to transmit a measurement is highly dependent on the format and baud rate. The amount of time can be computed as:

TransmitTime (in seconds) = 10 * (Number of characters) / (Baud Rate)

If a typical sensor sends 9 characters per sample at a default baud rate of 9600, this equates to about 94 ms per sample, or about 107 samples per second ( 1 / TransmitTime ). The AR700 sensor is capable of generating samples at more than 800 times that rate, over 9400 samples per second. At a baud rate of 230400, the nine character samples can be transmitted at only 2560 samples per second. Even using 3-byte binary mode only gets the rate up to 7680 samples per second. Only by using 2-byte binary mode at 230400 baud can the sensor transmit the serial data at the full measurement rate of the sensor.

If the serial data rate is faster than the sample rate, then a single sample is transmitted serially for each sample measured.

When the serial data rate can’t keep up with the sample rate, the actual sample rate continues without delay, but the serial sample rate is reduced by skipping samples. Once a sample has finished being transmitted, the most recent new sample is used for the next serial output.

Page 116: Machine Design Final

AR700 User’s Manual Rev 1.4 12/08 37

9. Nonvolatile Memory Storage The AR700 stores its configuration settings and calibration information in electronically erasable non-volatile memory.

9.1. Calibration The calibration information is specific to the sensor, and cannot be changed by the user.

If the sensor cannot validate the calibration information when the sensor is turned on, then the function display LEDs will flash code 08 and the sensor will continuously transmit the following message at 9600 baud using RS232 communication mode:

“CALIBRATION DATA CORRUPTED, RELOAD”

The sensor cannot be used if the calibration data is not valid. Contact the factory for return instructions.

9.2. Configuration

9.2.1. Default Configuration

Default configuration values are stored for the configuration settings when the sensor is shipped, and the default configuration settings may be restored at any time using the Default command. The easiest way is to hold the function button down and then apply power to the sensor. Once the function display LEDs start sequencing, release the button and the configuration will be set to the default settings.

If the sensor cannot validate the configuration information when the sensor is turned on, then the function display LEDs will flash code 06 and the sensor will continuously transmit the following message at 9600 baud (default) using RS232 communication mode (default):

“SAVED SETTINGS INVALID - USING DEFAULT”

Pushing the function button will stop the light from flashing, stop the error message from transmitting, and will start the sensor using the default configuration. The sensor can also send this message as the result of the Read Configuration Data command with configuration data that is not valid.

The default settings described in this manual are the “standard” default settings. Custom default settings may be generated by special factory order.

9.2.2. Write Configuration Data Command (W1234)

The commands used to change the configuration do not automatically store the changes to the nonvolatile memory. The Write Configuration Data command must be used to make these changes permanent. The Write Configuration Data command stores all of the current configuration settings, so it can be used after making several changes.

The Write command should not be issued repeatedly under computer control, since the nonvolatile memory expected lifetime is 1,000,000 writes.

9.2.3. Read Configuration Data Command (R)

The Read Configuration Data command is used to restore the saved configuration from nonvolatile memory, and will immediately replace the sensor’s configuration settings.

Page 117: Machine Design Final

AR700 User’s Manual Rev 1.4 12/08 38

9.2.4. Initialize Configuration Data Command (I – Except Serial)

This Initialize Configuration Data command is used to immediately restore the default configuration setting, EXCEPT for the Serial port communication mode and baud rate. The Write Configuration Data command must be used to save these settings permanently.

9.2.5. Initialize Configuration Data Command (Q8)

This Initialize Configuration Data command is used to immediately restore the complete default configuration setting. The Write Configuration Data command must be used to save these settings permanently.

9.2.6. Show Version, Configuration Command (V1234)

This command causes the current configuration settings and other information about the sensor to be transmitted out the serial port.

If sampling is on, use a data capture program to save the information in a file for viewing. Sampling can be turned off (H2) to keep the information from scrolling off the screen, but that changes the sampling mode that is displayed by the command.

The following is sample output from the command:

AR700-0.500 Rev 0.10 - Copyright 2007-2008, Schmitt Industries, Inc. Zero Point: 0 Span Point: 50000 Sample Interval: 40000 Analog Output Mode: Zero Based Current Background Light Elimination: On Sampling Mode: On Serial Mode: RS232 Baud Rate: 9600 Output Data: Zero Based English Error Mode: Code Sample Priority: Rate Serial Output Flow Control: Off Limit 1: 0 Limit 2: 50000 Exposure Limit: 80 Class 3B: NO Serial Number: 000001

In addition to the configuration settings, the output contains the sensor’s model (Road Profiler and Range), firmware revision, serial number, and information on whether the laser is class 3B.

9.2.7. Show Version Command (V1235)

This command causes the model, firmware version, and serial number of the sensor to be transmitted out the serial port.

Page 118: Machine Design Final

AR700 User’s Manual Rev 1.4 12/08 39

10. AR700 Command Set The AR700 commands are used to operate the sensor, change the sensor’s configuration, or check the configuration. There are two different means provided to command the sensor, although their capabilities doesn’t completely overlap.

Commands may be sent over the serial port. The serial commands provide the best resolution for most settings, but can’t be used to set the Serial Communications Mode (RS232, RS422, etc). The serial commands use ASCII characters and any device that can communicate over a serial port may send the commands.

Commands may be entered manually by using the function button and the function display LEDs. The function button provides limited resolution, but is required for setting the Serial Communications Mode.

Configuration settings may be retained through power cycling with the Write command (see Nonvolatile Memory Storage – section 9).

10.1. ‘Current Status’ Commands (Z, U, J, K, M) Several commands may be used to acquire the current location or current exposure as the command’s parameter value. When using these commands, make sure the target is stable and the sensor is actively measuring the target (sampling is not off, etc.) to ensure that a valid measurement is acquired for the command.

10.2. Serial Command Operation The sensor is always receptive to serial commands. Once a command is recognized as complete, it is executed immediately.

10.2.1. Serial Command Communications

Serial commands may only be processed when the serial port characteristics match the serial communications mode and baud rate.

Use the function button to set the Serial Communications Mode (RS232 or RS422).

Although the baud rate may be set using the serial commands, it may be easier to set the baud rate using the function button.

10.2.2. Serial Command Format

ASCII commands have a general form of a command letter, an optional parameter value made of up to 6 numeric digits, and may optionally have a terminating character.

Each command letter represents a different command. The letter is not case sensitive. It may be upper or lower case.

Some commands do not have parameters. They are executed as soon as the letter is received.

The remaining commands may be followed by a parameter value made of up to six numeric digits. The maximum number of digits depends on the individual command. For some commands the parameter is optional.

Commands with incorrect parameters are ignored.

The following all send a valid Sample Interval command with parameter = 50:

Page 119: Machine Design Final

AR700 User’s Manual Rev 1.4 12/08 40

P

S

S50/ (Terminating character [slash] after only 2 of 6 digits entered.) s000050 (Executed automatically after 6th digit entered.) S50A2 (The ‘A’ command [Serial Output Control] terminates the ‘S’ command.)

10.2.3. Serial Command Execution

Each command is executed when it is recognized as complete. There is no specific termination character. Commands are completed in the following ways:

When the maximum number of parameter digits is received. Note that for some commands the maximum number of digits is zero and the command letter itself is the complete command.

When a non numeric character is received. This may be a new command letter or some other character such as a period, slash, space, or Carriage Return (<CR>).

It is advisable to terminate a command if uncertain as to whether is has been terminated. Use a character such as period, slash, space, or <CR> to ensure immediate command execution. Extra characters of this type have no ill effects.

When a command is executed, it is first evaluated. If the parameter is valid the command execution is completed. A command with an invalid command is ignored.

Commands are executed in the order received. A command’s execution is completed before the next command is evaluated.

10.2.4. Serial Command Response

There is no acknowledgement character from the sensor when a command is received, evaluated, or executed. If the command is a valid it will be executed. If the command is not valid it is ignored.

All commands interrupt the sampling process momentarily when they are executed. In some cases this is negligible. Commands that change non-volatile memory may take up to 100 ms to complete. Commands that alter the sampling mode cause a restart of sampling.

Multiple commands may be grouped together in a single transmission. However, sending more than 10 characters in a single transmission at high baud rates may result in loss of characters.

In RS232 mode, the sensor always uses the RTS signal to indicate when there is a danger of losing characters. Enable hardware flow control on the sending system to avoid the loss of characters. The sensor does not send software flow control characters.

Note that a special response is returned for the V command.

10.3. Function Button Command Operation The function button is used in conjunction with the function display LEDs in order to display or change many of the configuration settings (or parameter settings).

10.3.1. Function Display LEDs

There is only one button on the sensor, the function button. Below the function button are the function display LEDs. They are organized as two sets of four LEDs. The LEDs marked P represent the function Parameter and the LEDs marked S represent the parameter Setting.

Page 120: Machine Design Final

AR700 User’s Manual Rev 1.4 12/08 41

1

2

30

4 5 6

7 8 9

10 11 12

13 14 15

10.3.2. Function Display LED codes

Each set of LEDs has 16 different combinations in which the LEDs can be illuminated to represent numbers. They are shown here (black dot = ON). Note that the LEDs are illuminated in groups in a clockwise direction. The first illuminated LED is next to a number (1, 4, 7, or 10). Add 1 to this number for each extra illuminated LED. For example, number 8 has #7 as the first illuminated LED (going clockwise) plus one more is 8. 13, 14 and 15 don’t fit this rule, but the illumination patterns shown represent the indicated values.

10.3.3. Function Button: Displaying a Parameter

Normally all function display LEDs are off and the “LASER ON” LED is on indicating normal operation. There is no parameter number zero. This condition indicates that the function display is idle, no parameters are displayed.

Each momentary push of the function button (less than one second) will advance the display to the next parameter. All parameters can be viewed in increasing order, one at a time. After the last parameter, a momentary push of the function button cycles the display back off.

For each parameter displayed, the setting for that parameter is displayed on the setting LEDs.

The setting LEDs will display 0 (all off) if the parameter’s current setting does not match one of the possible selections available from the function button. For example, there are nearly a million possible settings for the Sample Interval parameter, but only fifteen possible setting values are available from the function button.

If a parameter has been displayed for ten seconds without a push of the function button, then the function display will return to idle. The LEDs will go off.

10.3.4. Function Button: Changing a Setting

The function button can be used to change the setting of a displayed parameter. While the parameter is being displayed, the setting LEDs do not flash. Push and hold the function button for at least one second. The next available setting for that parameter will flash continuously on the setting LEDs. Note that the parameter LEDs continue to display the parameter value and do not flash.

A value flashing on the setting LEDs indicates an available setting value, not the current setting value.

Each momentary push of the function button (less than one second) will advance the setting LEDs to display the next available setting value (again, flashing). After the last available setting is displayed, a momentary push of the function button cycles the setting LEDs back to displaying the current setting (not flashing).

When the desired selection is flashing, push and hold the function button for at least one second. The selection will become active and the settings LEDs will stop flashing and display the current setting for the parameter, normally the one selected.

Some parameter settings are functions and not settings, so the display will not show the function that was activated, but instead revert to the current parameter setting.

If a setting has been flashing for ten seconds without a push of the function button, then the function display will return to displaying the current setting (not flashing).

Page 121: Machine Design Final

AR700 User’s Manual Rev 1.4 12/08 42

P

S

10.3.5. Function Display Error Codes

The function display error codes will display by flashing all LEDs. Typical error codes have the parameter LEDs all off, so they don’t flash while the setting LEDs flash. Common codes are shown in the Troubleshooting section.

10.4. Saving the Configuration Any configuration changes will not be saved unless a Write Configuration Data command is issued before turning off the power. This can be done using either serial communications or the function button.

The serial command is “W1234”.

The function button is parameter 10 setting 9. Push the function button (10 times) until parameter 10 is displayed on the parameter LEDs. Push and hold the function button until the setting LEDs flash. Push the function button several times until the setting LEDs flash the code for “9”. Push and hold the function button until the setting LEDs stop flashing. The configuration is saved.

Page 122: Machine Design Final

AR700 User’s Manual Rev 1.4 12/08 43

11. Serial Command Quick Reference The maximum number of digits is shown. Example: Snnnnnn indicates 6 digits maximum.

AR-700 Configuration Data Settings (Serial) Command Name Serial Command Serial Code / Function

Function Button Parameter

Default

Sample Interval Snnnnnn 21 = Interval = 999999 (5µs increments ) (f = 200,000/S) 3 S40000 (5Hz)

Z (none) Saves present location as Zero-Point Zero-Point

Znnnnn 0 = Zero-Point = 50000 (where 50000 = full scale) 1 Z0

Sampling Control Hn

1 = On – continuous output – laser is on 2 = Off – laser is off (no output) 3 = Off – laser is on (no output, but tracks exposure) 4 = Hardware Trigger Mode – laser is off (no output)

6 H1

(On)

Serial Flow Control Tn 1 = On: Hardware (Any chars Transmit only if CTS is true) 2 = Off (Always transmit) 3 = On: Software (CTRL-S stops sample output, CTRL-Q allows)

8 T2

(Off)

An

0 = Zero Based Native (0-50000) (Zero-Point Subtracted, negatives = 0) 1 = Zero Based English Units 2 = Zero Based Metric Units 3 = Off 4 = Offset Based Native (Zero-Point subtracted, negatives reported) 5 = Offset Based English 6 = Offset Based Metric 7 = Unbiased Native (Zero-Point ignored) 8 = Unbiased English 9 = Unbiased Metric

Serial Output Control

Nn

0 = Zero Based 3-Byte Binary 1 = Zero Based 2-Byte Binary 2 = Unbiased 3-Byte Binary 3 = Unbiased 2-Byte Binary

11

A1 (in)

Baud Rate Bn 1 = 300, 2 = 1200, 3 = 2400, 4 = 4800, 5 = 9600, 6 = 19200, 7 = 38400, 8 = 57600. 9 = 115200, 0 = 230400

7 B5

(9600) U (none) Saves present location as Span-Point

Span-Point Unnnnn 0 = Span = 50000 (where 50000 = full scale)

2 U50000 (Full)

J (none) Saves present location as Limit 1 Limit 1

Jnnnnn 0 = Limit 1 = 50000 (where 50000 = full scale) if J=K then {toggle limit2, limit1: if J>30000 then ON else OFF = GOOD}

13

J0

K (none) Saves present location as Limit 2 Limit 2

Knnnnn 0 = Limit 2 = 50000 (where 50000 = full scale) if J=K then {toggle limit2, limit1: if J>30000 then ON else OFF = GOOD}

14

K50000

Analog Output Control Xn

1 = Zero-Span Based Current Loop (4 - 20 ma) 2 = Zero-Span Based Voltage (0 – 10 V) 3 = Unbiased Current Loop (4 - 20 ma) 4 = Unbiased Voltage (0 – 10 V) 5 = Off

4 X1

(Cur Loop)

L1 (On)

Background Light Elimination Mode

Ln 1 = On (Difference of alternate sample with laser on/off) 2 = Off (Laser is on for every sample) 3 = RP (Selects Road Profile Mode – In RP version only – default in RP)

5 L3 (RP)

Sample Priority Pn 1 = Sample Quality has priority over sample rate 2 = Sample Rate has priority over sample quality (Forced in RP mode)

12

P2 (Rate)

Error Report Mode Qn 1 = Send Error Code (E1..E5) 2 = Send ‘+’ prefix to output value (above range limit) 3 = Send output value (above range limit, the only binary error mode)

10

Q1 (Code)

Read Configuration Data R (none) Restores saved settings (also done at power on) 10

- Write Configuration Data Wnnnn 1234 = Save the current settings 10

-

Initialize Configuration Data I

Q8 (none) Restore Default, excluding Serial Communications and Baud Rate Restore Default, including Serial Communications and Baud Rate

10

-

Take Single Sample E (none) Valid when Sample Mode is not On (not H1) - -

Show Version, Configuration Vnnnn 1234 = Send the current version and configuration (Response is very long) 1235 = Send the Model, version, and serial number (Short response)

- -

M (none) uses current exposure x 1.5 as Max Exposure Exposure Limit

Mnn 0 <= nn <= 80; use MAX x 2**(0.25 * (nn-80)) as Max Exposure 15

M80 (MAX)

Serial Communication Mode - 9 1

(RS232)

Page 123: Machine Design Final

AR700 User’s Manual Rev 1.4 12/08 44

12. Function Button Command Quick Reference AR-700 Configuration Data Settings (Function Buttons) Command Name Serial

Command

Function Button Parameter

Function Button Setting (X), *Special Function Codes

Default

Sample Interval S 3 1 = S40, 2 = S100, 3 = S400, 4 = S1000, 5 = S4000, 6 = S10000, 7 = S40000, 8= S100000, 9 = 400000, 10 = S999999 (5 µs increments, F=200000/S)

7 (5Hz)

1 = Uses present location as Zero-Point Zero-Point Z 1

2 = 0, 3 = 10000, 4 = 20000, 5 = 30000, 6 = 40000, 7 = 50000 2

(0)

Sampling Control H 6

1 = On – continuous output – laser is on 2 = Off – laser is off 3 = Off – laser is on 4 = Hardware Trigger Mode – laser is off (no output)

1 (On)

Serial Flow Control T 8 1 = Hardware (transmit character disable by CTS) 2 = Off (transmit not disabled) 3 = Software (transmit sample disabled by CTRL-S, enabled by CTRL-Q)

2 (Off)

A

10 = Zero Based Native 1 = Zero Based English Units 2 = Zero Based Metric Units 3 = Off 4 = Offset Based 5 = Offset Based English 6 = Offset Based Metric 7 = Unbiased Native 8 = Unbiased English 9 = Unbiased Metric

Serial Output Control

N

11

11 = Zero Based 3-Byte Binary 12 = Zero Based 2-Byte Binary 13 = Unbiased 3-Byte Binary 14 = Unbiased 2-Byte Binary

1 (inch)

Baud Rate B 7 1 = 300, 2 = 1200, 3 = 2400, 4 = 4800, 5 = 9600, 6 = 19200, 7 = 38400, 8 = 57600, 9 = 115200 10 = 230400

5 (9600)

1 = Uses present location as Span-Point Span-Point U 2

2 = 0, 3 = 10000, 4 = 20000, 5 = 30000, 6 = 40000, 7 = 50000 7

(50000) 1 = Uses present location as Limit 1

Limit 1 J 13 2 = 0, 3 = 10000, 4 = 20000, 5 = 30000, 6 = 40000, 7 = 50000

2 (0)

1 = Uses present location as Limit 2 Limit 2 K 14

2 = 0, 3 = 10000, 4 = 20000, 5 = 30000, 6 = 40000, 7 = 50000 7

(50000)

Analog Output Control X 4

1 = Zero-Span Based Current Loop (4 - 20 ma) 2 = Zero-Span Based Voltage (0 – 10 V) 3 = Unbiased Current Loop (4 - 20 ma) 4 = Unbiased Voltage (0 – 10 V) 5 = Off

1 (Cur

Loop)

1 (On) Background Light Elimination L 5

1 = On 2 = Off 3 = RP (Road Profile version only – default in RP version) 3 (RP)

Sample Priority P 12 1 = Quality 2 = Rate (Forced in Road Profile mode)

2 (Rate)

Error Report Mode Q 10 1 = Codes (E1..E5) 2 = Send ‘+’ prefix to values (above range limit) 3 = Send output value (above range limit, the only binary error mode)

1 (Code)

Read Configuration Data R 10 *6 = Restore saved settings - Write Configuration Data W

10 *9 = Save the current settings -

Initialize Configuration Data I

Q8

10 *7 = Restore Default, excluding Serial Communications and Baud Rate *8 = Restore Default, including Serial Communications and Baud Rate

-

Take Single Sample E - n/a - Show Version, Configuration V - n/a -

15 = uses current exposure * 1.5 as Max Exposure Exposure Limit M

15 nn = 6*X-4 (X:nn -> 1:2, 2:8, 3:13, 4:20, 5:26, … 13:74, 14:80)

14 (80)

Serial Communication Mode - 9 1 = RS232, 2 = RS422, 3 = RS422 Terminated 1

(RS232)

Page 124: Machine Design Final

AR700 User’s Manual Rev 1.4 12/08 45

13. Command Index See the two quick reference chapters (sections 11 and 12) for programming reference (not operation).

All commands and their interactions are described in detail in the operation section appropriate for each command.

(button) Serial Communication Mode 23 An, Nn Serial Output Control 24 Bn Baud Rate 23 Hn Sampling Control 34 I Initialize Configuration Data 38 J[nnnnn] Limit 1 31 K[nnnnn] Limit 2 31 Ln Background Light Elimination 8, 10, 32 M[nn] Exposure Limit 33 Pn Sample Priority 8, 10 Qn Error Report Mode 25 R Read Configuration Data 37 Snnnnnn Sample Interval 8, 32 Tn Serial Flow Control 24 U[nnnnn] Span Point 27, 29 V1234 Show Version, Configuration 38 W1234 Write Configuration Data 37, 42 Xn Analog Output Control 29 Z[nnnnn] Zero Point 27, 29

Page 125: Machine Design Final

Interlock Kit For Acuity distance sensors

with Class 3B lasers

User’s Manual

December 12, 2008

Acuity A product line of Schmitt Measurement Systems, Inc.

2765 NW Nicolai St. Portland, OR 97210 www.acuitylaser.com

1/4

Page 126: Machine Design Final

1. Background Some Acuity™ laser sensors are configured with Class 3B laser diodes that require conformance to additional safety procedures. This document discusses those additional safety precautions as specified by ANSI Z136.1 Standards for the Safe Use of Lasers. Additionally, Acuity makes available a special Connectivity Kit with a keyswitch interlock as well as a remote emission indicator. Purchasers of Acuity sensors with Class 3B who plan to further integrate these devices into engineered systems should design their systems to meet these safety requirements.

2. Compliance with Safety Precautions CAUTION! - This laser device should not be aimed at the human eye. Installers of laser sensors should follow precautions set forth by ANSI Z136.1 Standard for the Safe Use of Lasers or by their local safety oversight organization. Be sure that the laser will not cause an eye hazard. For Class 3B models, use eyewear specifically designed to block laser light of the wavelength emitted by the sensor. Use eyewear through which the green “LASER ON” LEDs are visible. The AR700 Class 3B sensor requires the addition of safety features before it may be used. The AQ7000011 (US power plug) or AQ700012 (EU power plug) Interface Kits with Interlocks provide these features. The AR700 sensor must be wired correctly to the Interlock Kit and have the beam attenuator installed in order to comply with laser safety regulations. - Beam Attenuator. The Beam Attenuator should be installed on the sensor if it is not already installed. The beam attenuator kits are included with the Interlock Kits. Follow the instructions depicted in the picture below.

2/4

Page 127: Machine Design Final

Rotate the beam attenuator to block the laser aperture as required in your system. Note that the sensor will not operate correctly with the beam blocked.

BEAM ATTENUATOR

- Key Switch. Power is applied to the sensor only when the key is in the ON position. Laser emission is only possible when the key is ON. - Interlock Connect. Power is applied to the sensor only when the connection exists between the terminals of this connector. Laser emission is only possible when the interlock circuit is connected. Connect this plug to any required external safety switches such that the connection is broken for an unsafe condition. - Remote Emission Indicator. This will illuminate whenever power is applied to the sensor, indicating that laser emission is possible at any time.

3. Connecting the Interlock Kit Read the AR700 user’s manual for operation information on the sensor unit.

1. Remove the cover of the interlock box and loosen the strain relief and route the

sensor’s cable through it. 2. Connect each of the cable’s wires to the terminal block on the ‘SENSOR CABLE’

side, matching each wire color with the corresponding label. Note that the shield’s color is ‘clear’.

3. Tighten the strain relief on the cable jacket. 4. (Optional) Connect any desired interface circuits to the terminal block on the

other end of the Interlock Box. These include analog outputs, limits, RS232,

3/4

Page 128: Machine Design Final

4/4

RS422, and trigger or enable inputs. See the AR700 manual for details on these signals.

5. Replace the cover. 6. Insert the Interlock plug into the interlock connector. 7. Plug the power supply into the +15VDC connector. Optionally, +15VDC power

can be supplied via the other end of the Interlock Box using terminal block connections labeled ‘GROUND’ and ‘+15V’.

8. (Optional) Connect a host computer to the ‘Serial’ connector. See the AR700 manual for details. The serial connector Interlock Box is wired in accordance with the connections shown in chapter 4 of the user’s manual.

9. Insert the key and turn the key switch ON.

Page 129: Machine Design Final

Cart | Help

ASEAN Region

Local Events

Training Courses

Technical Support

More News

Alliance Program

ASEAN Customer Solutions

Careers in ASEAN

Contact Us Locally

NI Home > Company > Wor ldwide Of f ices > Asia /Paci f ic > ASEAN Region

LabVIEW DAQ For Non-Contact Thickness Measurement,Remote Monitoring And Data Logging

Author:Irsal Tanjung, PT. Krakatau Steel, IndonesiaRustam Harzenko, PT. Krakatau Steel, Indonesia

Products Used:DAQ PCI6052E, PCI6533LabVIEW Development SuiteTBX68, SCB68, SH6868

The Challenge:Replacing obsolete and unreliable proprietary control system for an isotope, non contact gauge thatmeasures the thickness of metal in a steel mill with a modern, user friendly, and easy-to-maintain controlsystem using a reasonable amount of time and cost. The system must provide accuracy, remotemonitoring, easy calibration, and data logging.

The Solution:Design and implement a new PC-based system that can increase system reliability, enhance usabilityusinggraphical user interface (GUI), provide facility for remote monitoring, and paperless recorder using NIsoftware and hardware products.

AbstractOne of the main issue of a steel mills is thickness measurement, non-contact thickness gauge havebeen used for this application. The gauge emits radiation on one side and the detector senses theradiation on the other side. The detector converts the amount of radiation which is proportional to thethickness to a voltage then a control loop performs calculations. This control loop is developed andimplemented using National Instrument Multi IO PCI6052, Digital IO PCI-6533, and LabVIEWDevelopment Suite. The new system also allow paperless recorder, remote monitoring and centralizeddata center.

Thickness Measurement in Steel ManufacturingThe thickness measurement in PT Krakatau Steel, Cold Rolling Mill Division which is supplied by SeregSchlumberger uses isotope AM 241 as source of radiation and Xenon gas ion chamber as the sensor.This process must be able to accurately measure the strip thickness in order to successfullymanufacture correct thickness of steel strip and maintain a high yield. The core process is the radiationmeasurement and subsequent calculations to obtain the thickness. The control loop that performscalculations is based on radiation, encoder and look-up table values.

Currently, Cold Rolling Mill Division of PT Krakatau Steel has ten thickness gauge systems. This paperdiscussed implementation in the Electrolytic Cleaning Line, where two thickness gauges are currently inoperation.

National Instrument Hardware and Software Provides Simple UpgradeAs the new measurement system is an upgrade to existing equipments, the source of radiation and thesensor which are located inside a C-Frame remained the same. The electronic parts for the control werereplaced with National Instrument Multi IO PCI6052 and Digital IO PCI-6533.

The electronic parts for the thickness calculation, control loop, and user interface were replaced withLabVIEW. With these, operator can easily monitor any error in thickness measurement and take arequired action faster. As the new system can be monitored from control pulpit, and quality inspectorroom, actions taken can be more accurate, save time, and prevent misunderstanding between operatorsworking in different position of the mill. Figure 1 below shows the thickness gauge system in ECL afterthe upgrade.

Advisors

PXI Advisor

Compact FieldpointAdvisor

CompactRIO Advisor

NI CompactDAQ Advisor

Hot Links

Online Tutorials

Download Software

Call Me Back

On-Demand Webcasts

Application Notes

Online Demos

Improve your ni.com experience. Login or Create a user profile.

National Instruments Asean - LabVIEW DAQ For Non-Contact Thickness... http://digital.ni.com/worldwide/singapore.nsf/web/all/D9B9E7E99B997...

1 of 5 3/1/2010 12:19 AM

Page 130: Machine Design Final

Figure 1 Upgraded Thickness Gauge System in Electrolytic Cleaning Line, PT Krakatau Steel.

The new user interface also provides easier calibration and troubleshooting. Operator can do calibrationfaster hence increase production time. The user interface also shows errors such as hardware orcommunication errors.

LabVIEW Provide Reliability and Cost SavingsThere are two main reasons for replacing the old systems, system reliability and cost savings. The oldsystem proved not too healthy when running continuously, problems related to CPU crashed reached ashigh as 11 times per month. With the new system, this problem never occurred.

Table 1 below shows comparison of cost estimations between upgrading and replacing each existingsystem. The NI/LabVIEW solution is only 6.25 % of an existing solution.

Cost in US$

Existing Solution 200000

NI/LabVIEW Solution 12500Table 1 Cost Savings Estimation for NI/LabVIEW modernization

Thickness Measurement and Remote Monitoring Using LabVIEW Development SuiteAs the new system is also expected to have better accuracy than the previous one and ability to monitorfrom remote places, National Instruments LabVIEW provides several tools to achieve this. First, thesystem is calibrated using a known thickness standard. The values obtain from these standards arestored in a look-up table. By using Polynomial Fit sub VI to produce order 8th polynomial fit coefficients,measured voltage can be converted to thickness value. Figure 2 shows a block diagram of the thicknessgauge application.

National Instruments Asean - LabVIEW DAQ For Non-Contact Thickness... http://digital.ni.com/worldwide/singapore.nsf/web/all/D9B9E7E99B997...

2 of 5 3/1/2010 12:19 AM

Page 131: Machine Design Final

Figure 2 The Application Program Block Diagram in Thickness Gauge Server Side.

The server which hosts both multi IO and Digital IO interacts directly with the C-Frame. Signal from theanalog input is filtered to produce measured thickness in Voltage. Conversion to strip thickness is doneby taking the logarithmic value of the voltage then multiplied with the polynomial fit coefficients. Themeasured thickness is compared with the target to get the error, if the error value above the tolerancethen a warning is generated.

The C-Frame movement and position are controlled using digital input and output. The system needs toknow whether the C-Frame currently in the parking position or in normal operating position. The systemalso needs to know whether the C-Frame shutter which is used to protect the radiation duringmaintenance or troubleshooting is opened or closed. Information about C-Frame and its shutterpositions are important for safety and operation interlocks.

National Instruments LabVIEW also provides a simple to use but reliable communication protocol calleddatasocket. With this protocol, remote monitoring and paperless data collection are made available.Measured thickness, speed, length, and C-Frame status are transmitted by making the data availableusing datasocket. Control data from thickness gauge client are received in the same way, i.e. usingdatasocket.

Figure 3 shows the graphical user interface (GUI) in the server developed using LabVIEW. The interfaceshows the status of digital inputs and outputs, C-Frame position, shutter status, analog voltagemeasurement, and the thickness converted from the analog input for thickness gauge #1 and #2. Fortroubleshooting purposes, the information provided by the GUI is very helpful as problem can bedetected faster.

National Instruments Asean - LabVIEW DAQ For Non-Contact Thickness... http://digital.ni.com/worldwide/singapore.nsf/web/all/D9B9E7E99B997...

3 of 5 3/1/2010 12:19 AM

Page 132: Machine Design Final

Figure 3 Graphical user interface in the server panel located at the control room.

The result of thickness measurement can be monitored from several places, two consoles are installedin the Electrolytic Cleaning Line, the first console TGCLIENT1 is located in the operator pulpit, itprovides information for C-Frame position, move or park the C-Frame, open or close shutter, thicknesscalibration, and check sample. Figure 4 shows the GUI in the operator pulpit.

Figure 4 Thickness Measurements and Control User Interface in the operator pulpit.

The second console TGCLIENT2 is located in quality control inspector room where it can only monitorthe thickness measurement and insert coil data. Figure 5 shows the user interface for the quality controlinspector. With the new GUI, thickness gauge measurement can easily be read and corrections can bedone immediately. The console also produced a warning sound when the measurement falls outside thetolerance.

National Instruments Asean - LabVIEW DAQ For Non-Contact Thickness... http://digital.ni.com/worldwide/singapore.nsf/web/all/D9B9E7E99B997...

4 of 5 3/1/2010 12:19 AM

Page 133: Machine Design Final

Figure 5 Thickness Measurements User Interface in the quality inspector room.

Centralized DatacenterAs quality standard required every product be documented and stored for later inspection in the event ofquality audit or customer claim, TGCLIENT2 console stores the data into a database. This console alsoacts as HTTP server by running National Instrument G Web Server. With the Web server installed, thedata can be analyze and downloaded from anywhere within PT Krakatau Steel Intranet.

ConclusionUsing National Instrument hardware and software, a robust and cost-effective solution for modernizingobsolete thickness gauges control can be developed and implemented. The new system performs wellabove the previous system both in equipment availability and maintainability. The system also reducesmodernization cost by at least 93 percents. LabVIEW provides plenty built-in controls and functionswhich can be directly used to built a application and its user interface. LabVIEW also provides easynetwork communications and a Web server (G-Server), remote monitoring through the Web can beimplemented only in two weeks.

My Profile | RSS | Privacy | Legal | Contact NI © 2010 National Instruments Corporation. All rights reserved. | E-Mail this Page

National Instruments Asean - LabVIEW DAQ For Non-Contact Thickness... http://digital.ni.com/worldwide/singapore.nsf/web/all/D9B9E7E99B997...

5 of 5 3/1/2010 12:19 AM

Page 134: Machine Design Final

Evaluation Machine Design.viF:\Senior Design\Design4\Machine Design.viLast modified on 4/14/2010 at 12:55 AMPrinted on 4/22/2010 at 12:35 PM

Page 1

Plate Target Thickness

Tolerance

Noise

2

stop 2

Lower Limit

Upper Limit

Waveform Graph

Cursor.PosYActCrsr

Waveform Graph

0

Delay Time (s)Time Delay

0.25

YScale.MinimumYScale.Maximum

Waveform Graph0.01

0.01

Cursor.PosYActCrsr

Waveform Graph

1

Plate Target Thickness 2

Tolerance 2

Noise 2

2

Lower Limit 2

Upper Limit 2

Waveform Graph 2

Cursor.PosYActCrsr

Waveform Graph 2

0

YScale.MinimumYScale.Maximum

Waveform Graph 20.01

0.01

Cursor.PosYActCrsr

Waveform Graph 2

1

Limit Alarm 2

Limit Alarm

Value

Waveform Graph Thickness Line A

Value

Waveform Graph 2 Thickness Line B

stopLoop Index

Volume

status

Sound Output Write.vi

Sound File Read.vi3.

Device ID

Number of Samples/Iteration

Sound File Close.vi

Sound Output Configure.vi

Sound File Open.vi

Read

Sound File Info.vi

Sound Output Wait.vi

Continuous Samples

1.

2.

4.

C:\Users\Ryan\Documents\Documents\Clark, Ryan\School Work\Machine Design\Senior Design\Design4\buzzerheavy.wav True

1

0

100

E

Array

000

D

B

a

{

A

C

00

False

10

EXIDE THICKNESS MEASUREMENT

Page 135: Machine Design Final

Evaluation Machine Design.viF:\Senior Design\Design4\Machine Design.viLast modified on 4/14/2010 at 12:55 AMPrinted on 4/22/2010 at 12:23 PM

Page 1

0

Plate Target Thickness

0

Tolerance

0.01

-0.01

-0.005

0

0.005

Noise

STOP0

Upper Limit

0

Lower Limit

0.053

0.027

0.03

0.035

0.04

0.045

0.05

Time1300 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125

Plot 0Waveform GraphWaveform Graph

0

0

Array

Limit Alarm

0

Plate Target Thickness 2

0

Tolerance 2

0.01

-0.01

-0.005

0

0.005

Noise 2

0

Lower Limit 20

Upper Limit 2

0.093

0.067

0.07

0.075

0.08

0.085

0.09

Time1300 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125

Plot 0Waveform Graph 2

Limit Alarm 2

0Thickness Line A

0Thickness Line B

Page 136: Machine Design Final

Gantt Chart 0

EXIDE BATTERIES - Inline Thickness MeasurementSouthern Polytechnic State University Today's Date: Sunday

Project Lead:Start Date: Tuesday

[42] First Day of Week (Mon=2): 2 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

WBS TasksTaskLead Start End D

urat

ion

(Day

s)

% C

ompl

ete

Day

s C

ompl

ete

Day

s R

emai

ning

1 Brainstorming ALL 2/16/10 2/ 27 100% 27 01.1 Problem Statement 2/16/10 2/22/10 7 100% 7 01.2 Design Statement 2/16/10 2/22/10 7 100% 7 01.2.1 Customer Requirements 2/16/10 2/22/10 7 100% 7 01.3 Matrix 2/16/10 2/22/10 7 100% 7 01.4 Research 2/16/10 3/14/10 27 100% 27 02 Economic Study David, Ryan 3/16/10 3/24/10 9 100% 9 02.1 Cost of Design 3/17/10 3/24/10 8 100% 8 02.2 Cost of Prototype 3/17/10 3/24/10 8 100% 8 02.3 Cost of Production 3/17/10 3/24/10 8 100% 8 02.4 Miscellaneous Costs 3/17/10 3/24/10 8 100% 8 03 Machine Design Kev. Dev. 3/16/10 4/05/10 21 100% 21 03.1 Component Design 3/16/10 3/22/10 7 100% 7 03.2 Assembly Design 3/24/10 4/02/10 10 100% 10 03.3 CAD Drawings 3/24/10 4/02/10 10 100% 10 03.4 Motion Analysis 3/31/10 4/05/10 6 100% 6 03.5 FEA Analysis 4/05/10 4/09/10 5 100% 5 04 Software Design Ryan, Kev., David 4/05/10 4/25/10 21 100% 21 04.1 Research 4/05/10 4/06/10 2 100% 2 04.2 Planning 4/06/10 4/10/10 5 100% 5 04.3 LABView Programming 4/10/10 4/16/10 7 100% 7 04.4 MATLAB Programming 4/16/10 4/25/10 10 100% 10 05 Project Finalize ALL 4/22/10 5/03/10 12 100% 12 05.1 Poster 4/22/10 4/24/10 3 100% 3 05.2 Power Point 4/22/10 4/24/10 3 100% 3 05.3 Report 4/22/10 5/03/10 12 100% 12 0

© 2008 Vertex42 LLC

5/2/2010

15 -

Mar

- 10

22 -

Mar

- 10

15 -

Feb

- 10

22 -

Feb

- 10

01 -

Mar

- 10

08 -

Mar

- 10

HELP

29 -

Mar

- 10

12 -

Apr -

10

19 -

Apr -

10

26 -

Apr -

10

Ryan, Kevin, David, Devon2/16/2010

03 -

May

- 10

05 -

Apr -

10

Gantt Chart Template by Vertex42.com © 2008 Vertex42 LLC

Page 137: Machine Design Final

5/2/2010 

Group Members:

David Guffey, Devon Antione, Kevin McCall, Ryan Clark

MET4141 - Machine Design

Professor Mir Atiqullah

April 26, 2010

THICKNESS MEASUREMENT DEVICE

BACKGROUND INFORMATION • Lead acid batteries contain electrodes composed of elemental lead (Pb) and Lead(IV)

Oxide (PbO2) in an electrolyte of approximately 33.5% v/v (4.2 Molar) sulfuric acid (H2SO4)

• Electrodes are casted or fabricated into “grids” which hold the lead oxide paste.

• For our design, plates are manufactured as a continuous strip, pasted, and then cut into individual electrodes.

PROBLEM DEFINITION • Design a system to provide “Plate” thickness information as feedback for

processes and quality controlling

CUSTOMER REQUIREMENTS • Measurement device has to be inline

• Measurement resolution should be precise enough to qualify the product based on product specification

• Data rate: minimum of 8 measurements per second

• Data will be dynamically updated on screen

• Data will be stored in an accessible database for statistical analysis

• Device will have no “reject” function and cannot change current process.

• Device must not affect the continuity of the paste

DESIGN SPECIFICATIONS • Plate Specifications

• Thickness: range: 0.04 to 0.08 inches

• Tolerance +/- 0.003 inches

• Typical size: Individual plate 6 x 4.5 inches

• Line speed: 90 to 140 Ft/Min

• Other Measurements: 6ft between pasting and cutting machine.

• Lead strip enters cutting machine at a height of 31”

FLOOR PLAN LOCATION OPTIONS

After pasting operation

Middle

Before cutting operation

Page 138: Machine Design Final

5/2/2010 

BEFORE CUTTING OPERATION

cutting pasting

Lead Strip

Reasoning: • Affected curvature or “sag” of the lead strip the least. • Clear floor space in front of cutting machine.

cutting pasting

Lead Strip

DESIGN CONCEPTS

Concept 1. Concept 2.

FINAL DESIGN FINITE ELEMENT ANALYSIS

Maximum Stress = 33 MPa Yield Stress = 55 MPa

Maximum Displacement 0.336 mm

Max Strain = 3.5396 x 10-4

MEASUREMENT SYSTEM SPECS Acuity Laser- AR700-16 • Profile: Compact • Data Rate: 4500 measurements/second (9400 measurements/sec MAX) • Measurement ranges from .125” to 50.00” • +/- .00075” resolution with 15” span

MEASUREMENT SYSTEM SPECS (CONT’D)

Page 139: Machine Design Final

5/2/2010 

DATA ACQUISITION • Customer Requirement:

• Data will by dynamically updated on screen.

• Program written in LabVIEW 2009 to simulate data acquisition

• Simulated data using Gaussian White Noise VI to generate random “measurements”.

DATA ACQUISITION (CONT’D) DATA INTERFACE MODULE

- The Data Interface box is designed to power and read the information given by the Acuity Lasers.

- Data is transferred to the computer using a standard RS232 cable.

- A “hub” will be used to compile the RS232 Cables into individual COM ports and cut down on loose cables.

DATA INTELLIGENCE • This program is designed to compile data from the laser sensors and output a histogram,

an X-Y plot graph, and perform statistical analysis on the plates.

COST ANALYSIS

GANTT CHART COMPLETE CONCEPT PHOTOS

Page 140: Machine Design Final

5/2/2010 

COMPLETE CONCEPT PHOTOS COMPLETE CONCEPT PHOTOS

ACKNOWLEDGEMENTS • The Thickness Measurement team would like to thank the following people:

• Professor Mir Atiqullah (Project Instructor)

• Professor Kenton Fleming (FEA)

• Professor Gregory Conrey (FEA)

• Hongbo Zhang (Exide Project)

• Erika Olausen (Exide)