ma1122 transforms and partial differential equations · 2009. 8. 1. · ma1122 transforms and...

26
MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS QUESTION BANK UNIT - I FOURIER SERIES PART – A 1. If () x x x f + = 2 is expressed as Fourier series in the interval (-2, 2), to which value this series converges at x = a Solution: The value of the Fourier series of f(x) at x =2 is [ ] [ ] 4 2 4 2 4 2 1 ) 2 ( ) 2 ( 2 1 = + + = + f f 2. If the Fourier series of the function 2 ) ( x x x f + = in the interval ) , ( π π is + 1 2 2 sin 2 cos 4 ) 1 ( 3 nx n nx n n π , then find the value of the infinite series ...... 3 1 2 1 1 1 2 2 2 + + + Solution: = ) ( x f + 1 2 2 sin 2 cos 4 ) 1 ( 3 nx n nx n n π Put π = x , + = 1 2 2 4 3 ) ( n f π π [ ] [ ] = = = + + + = + = 1 2 2 1 2 2 2 2 2 2 3 2 1 4 1 4 3 2 1 ) ( ) ( 2 1 ) ( π π π π π π π π π π π n n f f f ...... 3 1 2 1 1 1 2 2 2 + + + = 6 4 3 2 2 2 π π = × 3. State Dirichlet’s conditions for a given function to expand to Fourier series Solution: (1) ) ( x f is well defined, periodic and single valued. (2) ) ( x f has finite number of finite discontinuities and no infinite discontinuities. (3) ) ( x f has finite number of finite maxima and minima.

Upload: others

Post on 04-Jun-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS · 2009. 8. 1. · MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS QUESTION BANK UNIT - I FOURIER SERIES PART – A 1. If

MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

QUESTION BANK

UNIT - I FOURIER SERIES

PART – A

1. If ( ) xxxf += 2 is expressed as Fourier series in the interval (-2, 2), to which value this series converges at x = a

Solution: The value of the Fourier series of f(x) at x =2 is

[ ] [ ] 42424

21)2()2(

21

=++−=+− ff

2. If the Fourier series of the function 2)( xxxf += in the interval ),( ππ− is

∑∞

⎟⎠⎞

⎜⎝⎛ −−+

12

2

sin2cos4)1(3

nxn

nxn

nπ , then find the value of the infinite series

......31

21

11

222 +++

Solution:

=)(xf ∑∞

⎟⎠⎞

⎜⎝⎛ −−+

12

2

sin2cos4)1(3

nxn

nxn

Put π=x , ∑∞

+=1

2

2 43

)(n

f ππ

[ ] [ ]

∑∑∞∞

=⇒=−∴

=+++−=+−=

1

2

21

2

22

222

321414

3

21)()(

21)(

πππ

ππππππππ

nn

fff

∴ ......31

21

11

222 +++ = 643

2 22 ππ=

×

3. State Dirichlet’s conditions for a given function to expand to Fourier series Solution: (1) )(xf is well defined, periodic and single valued. (2) )(xf has finite number of finite discontinuities and no infinite discontinuities. (3) )(xf has finite number of finite maxima and minima.

Page 2: MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS · 2009. 8. 1. · MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS QUESTION BANK UNIT - I FOURIER SERIES PART – A 1. If

4. If the Fourier series for the function ⎢⎣

⎡≤≤≤≤

=ππ

π2,sin

0,0)(

xxx

xf is

⎥⎦⎤

⎢⎣⎡ ++++−= .....

7.56cos

5.34cos

3.12cos21

2sin)( xxxxxf

ππdeduce that

42......

7.51

5.31

3.11 −

=∞++−π

Solution:

Put x = 2π in the Fourier expansion of )(xf ,

⎥⎦⎤

⎢⎣⎡ +−+−+−=⎟

⎠⎞

⎜⎝⎛ .....

7.51

5.31

3.1121

21

2 πππf

ππ1

21.....

7.51

5.31

3.112

−=⎥⎦⎤

⎢⎣⎡ ++−⇒ since 0

2=⎟

⎠⎞

⎜⎝⎛πf

∴4

222

2.....7.5

15.3

13.1

1 −=×

−=⎥⎦

⎤⎢⎣⎡ ++−

πππ

π

5. What is the const6ant term a0 and the coefficient of cosnx an in the Fourier series of

3)( xxxf −= in ( )ππ ,− ?

Solution:

)()()()(

3

33

xfxxxxxfxxxf

−=−−=

+−=−⇒−=

)(xf∴ is an odd function of x in ( )ππ ,− .

∴The Fourier series of )(xf contains sine terms only.

∴ a0 = 0 and an = 0.

6. Find bn in the expansion of 2x as a Fourier series in ( )ππ ,− .

Solution:

)()()( 22 xfxxfxxf ==−⇒=

)(xf∴ is an even function of x in ( )ππ ,− .

Page 3: MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS · 2009. 8. 1. · MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS QUESTION BANK UNIT - I FOURIER SERIES PART – A 1. If

∴ The coefficient bn of sinnx in the Fourier expansion is zero.

∴ bn = 0.

7. If )(xf is an odd function defined in ),( ll− , what are the values of a0 and an? Solution: Since )(xf is an odd function of x in ),( ll− , its Fourier expansion contains sine terms only. ∴ a0 = 0 and an = 0.

8. Find an in expanding xe− as Fourier series in ( )ππ ,− . Solution:

( )

[ ][ ]

)1(sinh)1(2

)1()1(

)1()1()1(

1

sincos1

1

cos1

22

12

2

nnee

een

nxnnxn

e

nxdxea

nn

nn

x

x

xn

+−

=+−−

=

−+−+

=

⎥⎦

⎤⎢⎣

⎡+−

+=

=

+−

−=

=

−∫

ππ

π

π

π

π

ππ

ππ

π

π

π

π

9. Find the Fourier constant bn for xx sin in ( )ππ ,− . Solution: Let xxxf sin)( = )(sin)sin()()( xfxxxxxf ==−−=∴ )(xf∴ is even function of x in ( )ππ ,− The Fourier series of )(xf contains cosine terms only ⇒bn = 0.

Page 4: MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS · 2009. 8. 1. · MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS QUESTION BANK UNIT - I FOURIER SERIES PART – A 1. If

10. Determine bn in the Fourier series expansion of )(21)( xxf −= π in π20 ≤≤ x

With period 2π . Solution:

( )

nn

nnn

nnx

nnxx

nxdxxbn

1)11(2

0cos2cos21

sin)1(cos21

sin2

1

2

02

2

0

=+=

⎥⎦⎤

⎢⎣⎡ +=

⎥⎦

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛−−−⎟

⎠⎞

⎜⎝⎛−−=

⎟⎠⎞

⎜⎝⎛ −

= ∫

ππ

ππππ

ππ

ππ

π

π

11. If ⎩⎨⎧

≤≤≤≤

=ποπ

2,500,cos

)(xifxifx

xf with period 2π for all x, find the sum of the

Fourier series of )(xf at π=x ? Solution:

[ ] [ ]24950cos

21)()(

21)( =+=++−= ππππ fff

11. Find a sin series for the function .0,1)( π≤≤= xxf Solution:

[ ]nn nn

nxnxdxb )1(12cos2sin2

00

−−=⎥⎦⎤

⎢⎣⎡−== ∫ πππ

ππ

∴The Fourier sine series of )(xf =∑∞

1

.sin nxbn

⎥⎦⎤

⎢⎣⎡ +++= .....

55sin

33sinsin4)( xxxxf

π

12. State Parseval’s identity for full range expansion of )(xf as Fourier series in )2,0( l Solution:

[ ]∫ ∑∞

=

++=l

nnn ba

adxxf

l

2

0 1

222

02 )(21

4)(

21 where a0, an, bn are Fourier coefficients in

the expansion of )(xf as a Fourier series.

Page 5: MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS · 2009. 8. 1. · MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS QUESTION BANK UNIT - I FOURIER SERIES PART – A 1. If

13. Define root mean square value of a function )(xf in .bxa ≤≤ Solution:

R.M.S. value [ ]∫−=

b

a

dxxfab

y 2)(1

14. Find the constant term in the Fourier expansion of xxf 2cos)( = in ),( ππ− . Solution:

x2cos is an even function of x in ),( ππ− .

∑∞

+=+

+=∴

1

0

1

02

cos22

2cos1

cos2

cos

nxaax

nxaa

x

n

n

∴The constant term is a0 = 1 15. Find the constant term a0 and the coefficient an of cosnx in the Fourier series expansion of 3)( xxxf −= in ),( ππ− . Solution:

)()()(

)(33

3

xfxxxxxfxxxf

−=+−=+−=−⇒

−=

)(xf∴ is an odd function ∴ a0 = 0 and an = 0.

PART – B

1. Obtain the Fourier series for 21)( xxxf ++= in ),( ππ− . Deduce that

6....

31

21

11 2

222

π=+++ .

2. Expand the function xxxf sin)( = as a Fourier series in the interval .ππ ≤≤− x 3. Determine the Fourier series of xxf =)( in the interval .ππ ≤≤− x 4. Find the half range cosine series for xsinx in (0,π ).

5. Find the Fourier series of period π2 for the function ( )( )⎩

⎨⎧

=ππ

π2,2

,01)(

inin

xf and

hence find the sum of the series ∞+++ ....51

31

11

222

6. Find the Fourier series for xxf cos)( = in the interval ),( ππ− .

7. Find the Fourier series of 2)( xxf = in ),( ππ− . Hence find ∞+++ ....31

21

11

444

8. Obtain the half range cosine series for xxf =)( in (0,π ).

Page 6: MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS · 2009. 8. 1. · MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS QUESTION BANK UNIT - I FOURIER SERIES PART – A 1. If

9. Expand xxxf −= 2)( as Fourier series in ),( ππ− .

10. Expand ⎢⎣

⎡≤≤≤≤

=πππ2,0

0,sin)(

xxx

xf as a Fourier series of periodicity π2 and

hence evaluate ∞+++ ......7.5

15.3

13.1

1

11. Obtain the Fourier series of ⎢⎣

⎡−

=)2,(2

),0()(

ππππ

inxinx

xf .

12. Find the half range Fourier sine series of 2)( xxf = in (0,π ). 13. Determine the Fourier series for the function 2)( xxf = of period 2π in

π20 ≤≤ x .

14. Determine the Fourier series of the function ⎩⎨⎧

≤≤+≤≤−+−

πxx

xxxf

0,10,1

)( . Hence

deduce that 4

......71

51

311 π

=+−+− .

15. Find the half range cosine series for the function 2)( xxxf −= π in π≤≤ x0 .

Deduce that 90

....31

21

11 4

444

π=+++

16. By finding the Fourier cosine series for xxf =)( in π≤≤ x0 , show that

∑∞

= −=

14

4

)12(1

90 n nπ

17. Find the half range sine series expansion of xxf −=2

)( π in (0,π ) and deduce

the sum of the series ∑∞

=12

1n n

.

18. Obtain Fourier series for )(xf of period 2l and defined as follows

⎢⎣

⎡≤≤≤≤−

=lxlinlxinxl

xf20

0)( . Hence deduce that

4......

71

51

311 π

=+−+− and

8

.....51

31

11 2

222

π=++

19. Find the Fourier series for the function⎩⎨⎧

≤≤−≤≤

=211

10)(

xinxxinx

xf . Deduce that

8

.....51

31

11 2

222

π=++

20. Obtain the Fourier series for the function⎩⎨⎧

≤≤−≤≤

=21),2(

10,)(

xxxx

xfππ

.

21. Find the Fourier series expansion of 2)( xxf = in (0, l2 ).

Page 7: MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS · 2009. 8. 1. · MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS QUESTION BANK UNIT - I FOURIER SERIES PART – A 1. If

22. Find the Fourier series of ⎢⎣

⎡≤≤≤≤−

=10,101,0

)(xx

xf .

23. Find the Fourier series expansion of period ‘l’ for the function ( )( )⎪⎩

⎪⎨⎧

−=

llinx

linxxf

,212,0

)( . Hence deduce the sum of the series ∑∞

= −14)12(

1n n

.

24. Obtain the half range cosine series of 2)2()( −= xxf in the interval 20 ≤≤ x .

Deduce that ∑∞

=

=−1

2

2 8)12(1

n nπ

25. Obtain sine series for ( )( )⎪⎩

⎪⎨⎧

−=

llinx

linxxf

,212,0

)( .

26. Find half range cosine series, given ⎩⎨⎧

≤≤−≤≤

=21210

)(xinxxinx

xf .

27. Find the half range sine series of axf =)( in (0, l). Deduce the sum of

∞++ ....51

31

11

222 .

28. Find the half range cosine seires of 2)()( xxf −= π in the interval (0, π ). Hence

find the sum of the series ∞+++ ....31

21

11

444 .

29. Obtain a Fourier series for xcos1− in ππ ≤≤− x . 30. Find a0, a1, a2, a3, b1, b2, b3 given

x 0 3

π 32π

π3

4π 35π

π2

y 1.0 1.4 1.9 1.7 1.5 1.2 1.0

Hence find )(xf . 31. Find the Fourier series upto second harmonic for the following data.

x 0 1 2 3 4 5

y 9 18 24 28 26 20

32. Find upto the first two harmonics in the Fourier series of )(xfy = in (0, 360 )

given in the following tabular value. x 0 60 120 180 240 300 360

y 2 2.1 3 3.2 2.5 2.2 2

Page 8: MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS · 2009. 8. 1. · MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS QUESTION BANK UNIT - I FOURIER SERIES PART – A 1. If

UNIT –II FOURIER TRANSFORMS

1. State the Fourier Integral theorem. Statement: If f(x) is the piecewise continuously differentiable and absolutely integrable on ( )∞∞− , , then

dtdsetfxf stxi )()(

21)( −

∞−

∞−∫ ∫=

π

2. Define the Fourier Transform pair. Statement: If f(x) is defined in ( )∞∞− , , then its Fourier Transform is defined by

dxexfsF isx∫∞

∞−

= )(21)(π

and the inversion formulas given by

dsesFxf isx∫∞

∞−

−= )(21)(π

3. Define the Fourier Cosine Transform pair. Fourier cosine Transform of f(x) is defined by

dxsxxfsFc ∫∞

=0

cos)(2)(π

and the inversion formula is given by

dssxsFxf c∫∞

=0

cos)(2)(π

4. Write the Parseval’s Identity for Fourier Transforms. Sol.

If F(s) is the Fourier Transforms of f(x), then dxxfdssF ∫∫∞

∞−

∞−

= 22 )()(

5. State the Convolution theorem on Fourier Transforms.

Sol. The Fourier transforms of Convolution of f(x) and g(x) is the product of their

Fourier Transforms { } )()( sGsFgfF =∗ where dttxgtfgf )()(21

−=∗ ∫∞

∞−π

Page 9: MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS · 2009. 8. 1. · MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS QUESTION BANK UNIT - I FOURIER SERIES PART – A 1. If

6. If the Fourier Transform of f(x) is F(s), what is the Fourier Transform of f(x-a)? Sol.

dxeaxfaxfF isx∫∞

∞−

−=− )(21))((π

)(

)(21 )(

sFe

axtwheredtetf

isa

atis

=

−== ∫∞

∞−

+

π

7. Find { })(xfxF n . \ Sol.

dxexfsF isx∫∞

∞−

= )(21)(π

diff on both sides w.r.to s, n times

)()())((

)(21)()(

))((21)(

sFdsdixfxF

dxexxfsFdsdi

dxeixxfsFdsd

n

nnn

isxnn

nn

isxnn

n

−=

=−

=

∫∞

∞−

∞−

π

π

8. Prove that { } ⎟⎠⎞

⎜⎝⎛=

asF

aaxfF 1)( , a>0

Sol.

dxexfsF isx∫∞

∞−

= )(21)(π

.0,1

)(211

)(21)]([

>⎥⎦⎤

⎢⎣⎡=

=

==

∫∞

∞−

∞−

aasF

a

dtetfa

axtwheredxeaxfaxfF

aist

isx

π

π

Page 10: MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS · 2009. 8. 1. · MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS QUESTION BANK UNIT - I FOURIER SERIES PART – A 1. If

9. What is the Fourier transform of axxf cos)( ?

Sol. dxexfsF isx∫∞

∞−

= )(21)(π

[ ])()(21)cos)((

))((21

21

2)(

21

cos)(21)cos)((

asFasFaxxfF

dxeeexf

dxeeexf

dxeaxxfaxxfF

isxiaxiax

isxiaxiax

isx

−++=

⎥⎦

⎤⎢⎣

⎡+=

⎟⎟⎠

⎞⎜⎜⎝

⎛ +=

=

∞−

∞−

∞−

π

π

π

10. What is the Fourier sine transforms of .)(axf Sol.

⎥⎦⎤

⎢⎣⎡=

⎟⎠⎞

⎜⎝⎛=

==

=

asF

aaxfF

duuasuf

a

axuwheredxsxaxfaxfF

dxsxxfsF

ss

s

s

1))((

sin)(21

sin)(2))((

sin)(2)(

0

0

0

π

π

π

11. Find the Fourier sine transform of xe− .

Sol.

⎥⎦⎤

⎢⎣⎡+

=

⎥⎦

⎤⎢⎣

⎡−−

+=

=

=

∞−

∞−−

2

02

0

0

12

)cossin(1

2

sin2)(

sin)(2)(

ss

sxssxs

e

dxsxeeF

dxsxxfsF

x

xxs

s

π

π

π

π

Page 11: MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS · 2009. 8. 1. · MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS QUESTION BANK UNIT - I FOURIER SERIES PART – A 1. If

Part – B

1. Find the Fourier transform of )(xf given by ⎪⎩

⎪⎨⎧

>>

<=

.00

1)(

axfor

axforxf

and hence evaluate .sinsin

0

2

0∫∫∞∞

⎟⎠⎞

⎜⎝⎛ dx

xxanddx

xx

2. Find the Fourier transform of )(xf given by ⎪⎩

⎪⎨⎧

>

<−=

.10

11)(

2

xfor

xforxxf

and hence evaluate .cossin

03∫

∞ − dss

ss

3. Find the Fourier transform of )(xf given by ⎪⎩

⎪⎨⎧

>

<−=

.10

11)(

xfor

xforxxf

and hence evaluate .sinsin

0

4

0∫∫∞∞

⎟⎠⎞

⎜⎝⎛ dt

ttanddt

tt

4. Show that 2

2x

e−

is self reciprocal under Fourier transforms.

5. Find the Fourier transform of 0>− aife xadeduce that

(1) .04 3

022 >=

+∫∞

aifaax

dx π

(2) 222 )(2}{

saasixeF xa

+=−

π

6. Evaluate ∫∞

++02222 ))(( bxax

dx using Fourier transforms.

7. Solve for from the integral equation aedxaxxf −∞

=∫ cos)(0

8. Derive the Parseval’s Identity for Fourier Transform.

9. Find the Fourier cosine transform of2xe−

.

10. Find the Fourier cosine transform ⎩⎨⎧ <<−

=otherwise

xxxf

:010:1

)(2

Hence prove that .163

2coscossin

3

π=⎟

⎠⎞

⎜⎝⎛−

∫ dsss

sss

11. Find the Fourier transform of 211x+

.

Page 12: MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS · 2009. 8. 1. · MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS QUESTION BANK UNIT - I FOURIER SERIES PART – A 1. If

12. Find the Fourier cosine transform of 22xae− and hence find the Fourier sine transform

of22xaxe− .

13. Prove that 2

2x

e−

is self reciprocal under Fourier cosine transform.

14. Find the Fourier sine transform of ( )x

exfax−

= .

15. Find the Fourier sine transform of 2

2x

xe−

. 16. Find the Fourier sine transform and Fourier cosine transform of xe− and hence find

the Fourier sine transform of 21 xx+

& Fourier cosine transform of 211x+

.

17. Find the Fourier sine transform of axe− and hence find the Fourier cosine transform

of axxe− 18. Find the Fourier sine transform and Fourier cosine transform of axe− , .0>a Hence

evaluate ( ) ( )( )∫∫

∞∞

+++ 02222

0222

2

bxaxdxanddx

axx

Page 13: MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS · 2009. 8. 1. · MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS QUESTION BANK UNIT - I FOURIER SERIES PART – A 1. If

UNIT III PARTIAL DIFFERENTIAL EQUATIONS

PART-A

1.Form the Partial differential equation equation by eliminating a and b from z=(x2+a)(y2+b) Solution: z=(x2+a)(y2+b) -------------------1

Differentiating (1)partially w.r.to x and y,

xz∂∂ = p = 2x(y2 +b)

yaxqxz 2)( 2 +==∂∂

Pq = 4xy(x2+a) (y2 +b)

Pq = 4xyz is the required P.D.E

2.Find the PDE of all plane having equal intercepts on the x and y axes Solution: Equation of the plane 1=++

cz

by

ax (intercept form)

x intercept=y intercept ⇒ a=b

1===cz

by

ax

Differentiating (1)partially w.r.to x and y, 0)(11&0)(11

=+=+ qca

pca

acqp

ac −

==− & The required PDE is p=q

Page 14: MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS · 2009. 8. 1. · MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS QUESTION BANK UNIT - I FOURIER SERIES PART – A 1. If

3.Form the PDE of all spheres whose centres lie on the z –axis Solution: Equation of the sphere with centre on z axis is x2+y2+(z-c)2=r2

Differentiating (1)partially w.r.to x and y, 2x+2(z-c)p=0 and 2y+2(z-c)q=0 z-c =

qycz

px

=−− &

qy

px=

Py –qx = 0 is the required PDE 4 . Form a partial differential equation by eliminating ‘f’ from z=f(x2+y2) Solution: Given z=f(x2+y2)------------------1 Differentiating (1)partially w.r.to x and y, P=f΄(x2+y2)2x----------------------2 q= f΄(x2+y2)2y---------------------3 (2)+(3) gives

yx

qp=

Py=qx is the required PDE 6. Eliminate the arbitrary function ‘f’ from z = f

zxy and form the partial differential

equation Solution: Given z = f

zxy

Differentiating (1)partially w.r.to x and y, P= f΄ ( )zxy / [ 2z

xypzy− ] ------------(2)

q= f΄(xy/z)[zx-xyq/z2] ----------(3) (2)÷(3) gives

xyqzxxypzy

qp

−−

=

Page 15: MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS · 2009. 8. 1. · MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS QUESTION BANK UNIT - I FOURIER SERIES PART – A 1. If

P(zx-xyq)=q(zy-xyp) Pzx-pqxy=qzy-pqxy Pzx=qzyPx-qy=0 is the required PDE 7.Form the PDE by eliminating the arbitrary function from φ ⎥⎦

⎤⎢⎣⎡ −

zxxyz ,2

Solution: Given φ ⎥⎦

⎤⎢⎣⎡ −

zxxyz ,2 = 0

)( 2 xyzf

zx

−= -----------------(1) Differentiating (1)partially w.r.to x and y, )2)((1 2

2 yzpxyzfpzx

z−−′=− ------------------------(2)

And )2)(( 2

2 xzqxyzfqz

x−−′=

− ------------------------------(3) z-px = z2 f ′ (z2- xy)(2zp –y) -qx = z2 f ′ (z2 – xy)(2zq –x) ⇒

xzqyzp

qxpxz

−−

=−−

22

∴(z-px)(2zp-x) = qxy -2zpqx ∴ 2z2q – 2zpqx –xz +px2 = qxy -2zpqx ⇒px2 + q(2z2 –xy) = xz is the required PDE. 8.Find the solution of ptanx+qtany=tanz Solution : Subsidiary equations are

zdz

ydy

xdx

tantantan==

Cotxdx = cotydy =cotzdz We know that ∫ = xxdx sinlogcot Cotxdx = cotydy

Page 16: MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS · 2009. 8. 1. · MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS QUESTION BANK UNIT - I FOURIER SERIES PART – A 1. If

Integrating logsinx = logsiny +c Log c

yx log

sinsin

=⎟⎟⎠

⎞⎜⎜⎝

∴ c

yx=

sinsin

Similarly cotydy =cotzdz

1sinsin c

zy=

The general solution is Φ 0

sinsin,

sinsin

=⎟⎟⎠

⎞⎜⎜⎝

⎛zy

yx

9.Solve: p + q =1 Solution: The equation is of the form f(p,q) = 0 The complete integral is z = ax+by+c Where f(a,b) = 0 f(a,b) = 0 ⇒ ( )211 abba −=⇒=+ The complete integral is z = ax + ( 1 - a )2 y +c 10. Find the complete integral of p+q=pq Solution: The equation can be written p +q –pq =0 The complete integral is z = ax+by+c Where a+b =ab ⇒ b =

1−aa

Therefore z = ax + cy

aa

+−1

11. Find the complete integral of q=2px Solution: q=2px = a ⇒ q=a and 2px= a ⇒p=

xa2

Consider dz = pdx+qdy dz= ∫ ∫ ++ bdya

xdxa

2

z = .log

2solutionrequiredtheisbayxa

++

Page 17: MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS · 2009. 8. 1. · MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS QUESTION BANK UNIT - I FOURIER SERIES PART – A 1. If

12. Solve:p+q=x-y Solution: P+q = x-y ⇒ p-x = -(y+q) x-p = y+q = a x-p = a ⇒ p = x-a and y+q=a ⇒ q = a-y dz = pdx +qdy ⇒dz = (x-a)dx +(a-y)dy Integrating z = byayaxx

+−+−22

22

13. . Find the complete integral of pq

py

qx

pqz

+= Solution: Z = px+qy+(pq)3/2 This is Clairaut’s equation The Complete integral is z = ax+by+(ab)3/2 14. Solve : y

xz sin2

2

=∂∂

Solution: Integrating w.r.t ‘x’ )(sin yfyx

xz

+=∂∂ --------------------------(1)

Integrating (1) w.r.t ‘x’ Z = )()(sin

2

2

ygyxfyx++

Where f(y) and g(y) are functions of y alone. 15. Solve : (D2 -3D D′ 2 + 2 3D′ )z = 0 Solution: The auxiliary equation is m3 -3m +2 =0 m=1 is a root (m-1)(m2+m-2) =0 m=1,1,-2 The complete solution is z = )2()()( 321 xyfxyxfxyf −++++

Page 18: MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS · 2009. 8. 1. · MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS QUESTION BANK UNIT - I FOURIER SERIES PART – A 1. If

PART –B

1.Find the differential equation of all planes which are at a constant distance ‘k’ from the origin . 2.Form the partial differential equation by eliminating the arbitarary functions f and g in=x2f(y)+y2g(x) 3.Form the partial differential equation by eliminating f and Φ from z=f(y)+ Φ(x+y+z) 4.Form the PDE from z=yf(x)+xΦ(y) by eliminating the arbitrary functions 5.Obtain the PDE by eliminating f and g from z=f(y+2x)+g(y-3x) 6.solve:(y-z)p-(2x+y)q=2x+z 7.Find the general solution of (3z-4y)p+(4x-2z)q=2y-3x. 8. solve:x(y-z)p+y(z-x)q=z(x-y). 9.solve:y2p-xyq=x(z-2y). 10.(x2+y2+yz)p+( x2+y2-xz)q=z(x+y). 11.(x-2z)p+(2z-y)q=y-x. 12.(y+z)p+(z+x)q=x+y 13.(y2+z2)p-xyq+xz=0 14. Find the general solution of z(x-y)=px2-qy2. 15.solve:x(y2+z2)p+y(z2+x2)q=z(y2-x2). 16.solve:x(y2+z)p+y(x2+z)q=z(x2-y2). 17.solve:z=1+p2+q2

18.solve:p(1-q2)=q(1-z) 19.solve:9(p2z+q2)=4 20.Find the complete integral of p2+q2=x+y 21.solve:x2p2+y2q2=z2 22.solve:z2(p2+q2)=x2+y2

23.solve:p2+q2=z2(x2+y2) 24.Find the singular solution of z=px+qy+c√1+p2+q2

Page 19: MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS · 2009. 8. 1. · MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS QUESTION BANK UNIT - I FOURIER SERIES PART – A 1. If

25. solve : (D2-DD΄-20 D΄2)Z=e5x+y+sin(4x+y)

26.solve:(D2-2DD΄)=e2x+x3y

27.solve:(D3+D2 D΄-D D΄2- D΄3)Z=COS(2X+Y)

28. solve 2

22

2

2

2y

zyxz

xz

∂∂

−∂∂

∂+

∂∂

=sin h(x+y)+xy

29. solve: (D2+2DD΄+ D΄2 -2D-2 D΄)Z=sin(x+2y)

30. solve: (D2-D΄2 -3D+3 D΄)Z=xy+7

---------------------------------------------------------------

Page 20: MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS · 2009. 8. 1. · MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS QUESTION BANK UNIT - I FOURIER SERIES PART – A 1. If

UNIT-4 APPLICATION OF PARTIAL DEFFERENTIAL EQUATION

PART-A

1. Classify the p.d.e   2 24 4 12 7 .xx xy yy x yu u u u u u x y+ + − + + = +  

 

2. Classify the p.d.e 2 2 2

2 32 2

x yu u u ex x y y

+∂ ∂ ∂+ + =

∂ ∂ ∂ ∂ 

 

3. Classify the p.d.e 2 2 2

2 23 4 6 2 0.u u u u u ux x y y x y

∂ ∂ ∂ ∂ ∂+ + − + − =

∂ ∂ ∂ ∂ ∂ ∂ 

 

4. Classify the p.d.e 2 2 2(1 )(4 ) (5 2 ) 0.xx xy yyx x u x u u+ + + + + =  

 

5. In wave equation 

2 22

2 2 ,y yct x

∂ ∂=

∂ ∂ what is the physical meaning for  

2c  

and what is the agent for vibration. 6. What is the Fourier law of heat conduction? 

7. Write all possible solution for O.D.H.E. 

8. State the law assumed to derive the O.D.H.E. 

9. Write three possible solutions of Laplace equations in two – dimensions? 

10. What are the possible solutions of one dimensional wave equation? 

11. In one dimensional heat equation 2 .t xxu uα= what does 

2α  stands for? 

12. In steady state conditions derive the solution of one dimensional heat flow 

equation. 

13. Write the Initial conditions of the wave equation if the string has an initial 

displacement. 

(Or) 

Write the initial conditions of the wave equation if the string has an initial 

displacement but no initial velocity. 

Page 21: MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS · 2009. 8. 1. · MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS QUESTION BANK UNIT - I FOURIER SERIES PART – A 1. If

14. A tightly stretched string of length 2L  is fixed at both ends. The mid point of 

the string is displaced to distance  ' 'b and released from rest in this position 

write the initial conditions. 

15. State the two solutions of the Laplace equation by method of variable separable. 

16. State one dimensional heat equation with the initial and boundary conditions. 

17. Write the boundary conditions and initial conditions for solving the vibration of 

string equation, if the string is subjected to initial displacement  ( )f x  and initial 

velocity ( )g x . 

18. Solve the equation  2 0 ,u ux y

∂ ∂+ =

∂ ∂given that  ( ,0) 4 xu x e−=   by the 

method of separation of variables. 19. A rod of 50cm   long with insulated sides has its ends  A  and B kept at 

20 cο and 70 cο respectively. Find the steady state temperature distribution of 

the rod. 

20. An infinitely long uniform plate is bounded by the edges 

x l= 0,x x l= = and an end right angle to them. The breadth of the edge 

0y =  is l  and is maintained at 

2 22

2 2y ya

t x∂ ∂

=∂ ∂

All the other edges are 

kept at  .o cο Write down the boundary conditions in mathematical form 

 

 

 

PART – B 

1. A string is stretched and fastened to two points  l  apart.  Motion is started by 

displacing the string into the form 250( )y lx x= −  (Or) 

2( )y k lx x= −  

Page 22: MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS · 2009. 8. 1. · MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS QUESTION BANK UNIT - I FOURIER SERIES PART – A 1. If

from which it is released at time  0.t = Find the displacement of any point on 

the string at a distance  x from one end at time   .t  

2. A string of length 2l is fastened at both ends.  The mid point of a string is taken 

to a height b and then released from rest in that position. Find the displacement 

of any point of the string at any subsequent time. 

3. A tightly stretched string with fixed end points  x o=  and  2x l= is initially in 

a position given by       

, 0( ,0)

(2 ), 2 .

kx x lly x

k l x l x ll

⎧⎪⎪ ≤ ≤⎪⎪⎪=⎨⎪⎪ − ≤ ≤⎪⎪⎪⎩

 

If it is released from rest from this position, find the displacement 

function ( , )y x t  at any point of the string. 

4. A string of length l  has its ends  0x and x l= =  fixed. The point  where 

3lx = is drawn aside a small distance h  the displacement 

( , )y x t satisfies2 2

22 2 .y ya

t x∂ ∂

=∂ ∂

 Find at any time  .t  

 

5. A tightly string with fixed end points  0x and x l= =  is initially at rest in its 

equilibrium position.  If it is set vibrating by giving each point a velocity 

( )x l xλ − (or)   ( ) 0 .kx l x for x l− < < Find the displacement of the 

string at any distance from one end at any time t  (or)  Find the displacement 

function  ( , ).y x t  

6. A string is stretched between two fixed points at a distance 2l apart and the points on the string are given initial velocities v  where  

Page 23: MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS · 2009. 8. 1. · MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS QUESTION BANK UNIT - I FOURIER SERIES PART – A 1. If

                                                     : 0

( 2 ) : 2 .

c x x llvc l x l x ll

⎧⎪⎪ < <⎪⎪⎪= ⎨⎪⎪ − < <⎪⎪⎪⎩

 

7. If a string of length l  is initially at rest in its equi9librium position and each of its 

points is given a velocity v such that 

                                                   0

2

( ) .2

lv c x fo r x

lc l x fo r x l

= < <

= − < <

  

Show that the displacement at any time is given by 

2

3 34 1 3 3( , ) sin sin sin sin ...... .

3l c x at x aty x t

l l l laπ π π π

π

⎡ ⎤⎢ ⎥= − +⎢ ⎥⎣ ⎦

 

8. The ends  A  and B  of a rod 30cm   long have their temperatures kept at 

20 c° and 80 c° until steady prevails. The temperatures at the end B  is then 

suddenly reduced to 60 c° and that of  A is raised to 40 c° and maintained so.  

Find the temperature distribution.  

9. A metal bar 10cm  long with insulated sides has its ends  A and  B kept at 20 c°  

and 40 c°  respectively until steady state conditions prevail. The temperatures at 

A is then suddenly raised to 50 c°  and B is lowered to 10 c° .  Find the 

subsequent temperature at any point at the bar at any time. 

10. A rod 30cm long has its ends A and B kept at 20 c°  and 80 c°  until steady 

conditions prevail. The temperature at both ends reduced to 0 c°  and kept so.  

Find the temperature distribution. 

11. A rod of length l  has its ends  A and B kept at 0 c°  and 100 c°  until steady 

state conditions prevail.  The temperature at  A raised to 25 c°  and  B is 

reduced to 75 c° . Find the temperature distribution. 

Page 24: MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS · 2009. 8. 1. · MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS QUESTION BANK UNIT - I FOURIER SERIES PART – A 1. If

12. A rectangular plate with insulated surfaces is 10cmwide and so long compared 

to its width that it may be considered infinite in length.  The temperature along 

the short edge  0y =  is given by  

                                        

( , 0 ) 2 0 : 0 52 0 (1 0 ) : 5 1 0 .

u x x xx x

= < <= − < <

 

Other edges are kept at  0 c°  .  Find the steady state temperature distribution. 

13. A square plate is bounded by the lines 0, 0, 20, 20x y x y= = = = . It faces are 

insulated. The temperature along the upper horizontal edge is given by  

( , 20) (20 )u x x x= −   When 0 20x< <  while the other three 

edges are kept at 0 c° .  Find the steady state temperature in the plate. 

14.  A rectangular plate is bounded by the lines  0, 0, ,x y x a y b= = = =  .  Its 

surfaces are insulated and temperature along two adjacent edges is kept at 

100 c°  and the temperature along other tow edges is kept at 0 c° . Find the 

steady state temperature distribution. 

15. An infinitely long rectangular plate with insulated surfaces is 10cmwide. The 

two long edges and one short edge is kept at 0 c°  while the other short edge 

0x =  is kept at  

                                                         

2 0 , 0 52 0 ( 2 0 ) , 5 1 0 .

x y yu y y

= < <= − < <

 

 Find the steady state temperature distribution in the plate.  

16. Find the steady state temperature at any point of a square plate whose two 

edges are kept at 0 c°  and other two edges are kept at the constant 

temperature100 c° .Find the steady state temperature distribution at any point 

of a square plate. 

17. A rectangular plate with insulated surface is 10cmwide and so long compared 

to its width that it may be considered as an infinite plate.  If the temperature at 

Page 25: MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS · 2009. 8. 1. · MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS QUESTION BANK UNIT - I FOURIER SERIES PART – A 1. If

short edge 0y =   is given by 3 (10 )x x−  and all the other three edged 

are kept at 0 c° .  Find the steady state temperature at any point of the plate. 

UNIT - 5 Topics: Z-Transform

Part – A

1. Find the Z-Transform of cosnπ/2. Ans: Z [cosn π/2] = (1+1/z2)-1=z2/z2+1 if |Z|>1

2. State Convolution theorem on Z-Transform.

Ans: If f (z) and G (z) are the Z-transform of f (n) and g (n) respectively, then Z[f(n)*g(n)]= F(z). G(z) Where, f(n) .g(n) is defined as the convolution of f(n) and g(n) given by f(n)*g(n)=∑k=0f(k) g(n-k).

3. Find the Z-Transform of 1/ (n+1)!

Ans: Z[e1/z-1]

4. Find the Z-Transform of 1/n!

Ans: e1/z

5. Express Z {f (n+1)} in terms of f⎯ (Z).

Ans: Z[f(n)=Z F(z)-z F(0)

6. Find the valve of Z{f(n)} When f(n)=n.an

Ans: z [nan] = az/ (z-a) 2

Page 26: MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS · 2009. 8. 1. · MA1122 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS QUESTION BANK UNIT - I FOURIER SERIES PART – A 1. If

7. Find z [an/n!] in Z-Transforms.

Ans: z [an/n!] =ea/z

8. Find z [e-iat] using Z-Transforms.

Ans: zeiat/zeiat-1

9. State and Prove Initial valve theorem in Z-Transform.

Ans: Lt F (z) = Lt f (n) Z-∞ n-0

10. Find the Z-Transform of (n+1). (n+2)

Ans: z (z+1)/ (z+1)3 +3z/ (z-1)2+2z/ (z-1)

Part – B

11. Solve the difference equation y (n+3)-3y(n+1)+2y(n)=0 . Given that y(0)=4, Y(1)=0 and y(2)=8.

12. Find Z-1[Z2/(Z+2)(Z2+4)], by the Method of Partial fraction.

13. To find Z-1[(Z2-4Z)/(Z-2)2]

14. Prove that Z[1/n+1]=Z log (Z/Z-1)

15. Find a) F[xnf(x)]=(-i)n dnF/dsn

b) F [dnf(x)/dxn] = (-is)n F(s)

16. State and Prove the second shifting theorem in Z-Transform.

17. Find F[dnf(x)/dxn]=(-is)n F(s)

18. a) Find the Z-transform of n (n+1). b) Find the Inverse Z-transform of Z2/ (Z-a)2 using Convolution

theorem.

19. a) Find the Z-transform of 2n(1-n), n≥0 b) Solve, Using Z-transform Yn+2- 4yn=0, given y0=2, y1=1 20. a) Find the Z-transform of CosnӨ and SinnӨ. Hence find Z [cos n π/2]

b) Find the Inverse Z-transform of Z2-3Z/ (Z+2) (Z-5)