m400000-110-dc-001 concentrator

73
document.xls Page 1 of 73 DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001 Project Cerro Casale Feasibility Data Sources Project No M40000 O Owner’s (CMC) Input V Vendor-supplied data Client Compañía Minera Casale C Calculated T Testwork Date 17-Jun-11 P AMEC – Process input M Mass balance Revision 1 D AMEC – Other disciplines inpu R Regulatory/permitting requiremen Design Criteria - Concentrator Value Unit Source Comments Rev. Ref A.1 Ore Physical Characteristics Run-of-Mine ore top size 1,800 mm O ROM % passing sieve of: indicated by Mining group, per Orica simulations 1,200 mm 100 % O 1,000 mm 99.5 % O 800 mm 99 % O 750 mm 98 % O 600 mm 94 % O 380 mm 81 % O 200 mm 55 % O 100 mm 30 % O 50 mm 15 % O 10 mm 5.5 % O 1 6 mm 3.5 % O P20 64 mm A.2 Primary Crushing Bond impact work index MacPherson testwork report; Dec. 1998 Diorite sulphide 10.4 kWh/t T Microdiorite breccia 9.8 kWh/t T Granodiorite sulphide 14.6 kWh/t T Volcanic breccia 10.5 kWh/t T average 11.4 kWh/t C weighted Design impact work index 13.0 kWh/t P Based on a mix of 60% GRD and 40% Volcanic Breccia Design factor for impact work index 20 % P Modified design impact work index 15.6 kWh/t P Based on mix of GRD and Volcanics and 20% design factor Worst-case impact work index 25.0 kWh/t P 0 Number of primary crushers 2 P Type of Primary crusher gyratory P Primary crusher design availability 19 h/d P A 79 % C A Indicated life of crusher mantle 4 mo V 0 Indicated life of crusher concave liners 6 mo V 1 Indicated life of crusher spider liners 8 mo P 1 Primary crusher design utilization 75 % P A Nominal throughput 4,444 t/h C per crusher A Design throughput 4,889 t/h C per crusher A Indicated volumetric capacity at OSS = 191 mm 5,045 t/h V B Indicated volumetric capacity at OSS = 203 mm 5,315 t/h V B Ore haul truck capacity Nominal 360 wet t O 1 Net 310 wet t O 1 Dump hopper capacity 2.0 trucks P 1 Indicated 620 t C 1 Selected 600 t D Surge hopper capacity 2.0 trucks D 1 Indicated 620 t C 1 Selected 750 t D ROM top size 1,800 mm O 800 mm O, C Crusher cavity feed top size 1,220 mm P Indicated top size for the MK-II gyratory Hydraulic rock breaker installed? Yes P one per crusher Open side setting nominal 191 mm P per Bruno simulation A Closed side setting nominal 140 mm C per Bruno c/w 51-mm stroke for MK-II gyratory A Open side setting design 203 mm P, V per Bruno simulation, FLS and Krupp Bids 0 Closed side setting design 152 mm C A 372 mm O, C Nominal. Estimated by Mine blasting consultant A 380 mm B 152 mm C A 161 mm C Design, Bruno simulations A 399 mm P Nominal. Bruno simulations A 425 Design. Bruno simulations 45 mm Primary crusher discharge Cumulative Passing 10 mm 6 % 1 Accounting for variability and higher hardness of recirculated material Lack of confidence in historical testwork data due to limitations of measuring apparatus for very hard ores. Based on Boddington benchmarking through comparison of other indices. Accounting for lost availability for truck waiting time, inspections Per Bruno software, for this OSS and fine ROM feed (F80 = 372 mm) Per Bruno software, for this OSS and fine ROM feed (F80 = 380 mm) ROM d99 Primary crusher ROM feed F80 Design primary crusher ROM feed F80 Primary crusher discharge P80 Nominal. Range between 131 and 200 mm for ROM feeds with variable PSDs. Bruno Simulations Primary crusher discharge P80 Primary crusher discharge P99 Primary crusher discharge P20 A B C D E F G H I J K L 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

Upload: panchoscribd50

Post on 15-Feb-2016

10 views

Category:

Documents


2 download

DESCRIPTION

planilla de calculo

TRANSCRIPT

Page 1: M400000-110-DC-001 Concentrator

document.xls Page 1 of 70

DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001Project Cerro Casale Feasibility Data SourcesProject No M40000 O Owner’s (CMC) Input V Vendor-supplied dataClient Compañía Minera Casale C Calculated T TestworkDate 17-Jun-11 P AMEC – Process input M Mass balanceRevision 1 D AMEC – Other disciplines input R Regulatory/permitting requirement

Design Criteria - Concentrator Value Unit Source Comments Rev. Ref

A.1 Ore Physical Characteristics

Run-of-Mine ore top size 1,800 mm OROM % passing sieve of: indicated by Mining group, per Orica simulations1,200 mm 100 % O1,000 mm 99.5 % O 800 mm 99 % O 750 mm 98 % O 600 mm 94 % O 380 mm 81 % O 200 mm 55 % O 100 mm 30 % O 50 mm 15 % O 10 mm 5.5 % O 1 6 mm 3.5 % OP20 64 mm

A.2 Primary Crushing

Bond impact work index MacPherson testwork report; Dec. 1998Diorite sulphide 10.4 kWh/t TMicrodiorite breccia 9.8 kWh/t TGranodiorite sulphide 14.6 kWh/t TVolcanic breccia 10.5 kWh/t T

average 11.4 kWh/t C weightedDesign impact work index 13.0 kWh/t P Based on a mix of 60% GRD and 40% Volcanic Breccia

Design factor for impact work index 20 % P Accounting for variability and higher hardness of recirculated material

Modified design impact work index 15.6 kWh/t P Based on mix of GRD and Volcanics and 20% design factor

Worst-case impact work index 25.0 kWh/t P 0

Number of primary crushers 2 PType of Primary crusher gyratory P

Primary crusher design availability 19 h/d P A79 % C A

Indicated life of crusher mantle 4 mo V 0Indicated life of crusher concave liners 6 mo V 1Indicated life of crusher spider liners 8 mo P 1Primary crusher design utilization 75 % P Accounting for lost availability for truck waiting time, inspections ANominal throughput 4,444 t/h C per crusher A

Design throughput 4,889 t/h C per crusher A

Indicated volumetric capacity at OSS = 191 mm 5,045 t/h V Per Bruno software, for this OSS and fine ROM feed (F80 = 372 mm) B

Indicated volumetric capacity at OSS = 203 mm 5,315 t/h V Per Bruno software, for this OSS and fine ROM feed (F80 = 380 mm) B

Ore haul truck capacity Nominal 360 wet t O 1Net 310 wet t O 1

Dump hopper capacity 2.0 trucks P 1Indicated 620 t C 1Selected 600 t D

Surge hopper capacity 2.0 trucks D 1Indicated 620 t C 1Selected 750 t D

ROM top size 1,800 mm O800 mm O, C

Crusher cavity feed top size 1,220 mm P Indicated top size for the MK-II gyratoryHydraulic rock breaker installed? Yes P one per crusher

Open side setting nominal 191 mm P per Bruno simulation AClosed side setting nominal 140 mm C per Bruno c/w 51-mm stroke for MK-II gyratory AOpen side setting design 203 mm P, V per Bruno simulation, FLS and Krupp Bids 0Closed side setting design 152 mm C A

372 mm O, C Nominal. Estimated by Mine blasting consultant A380 mm B

152 mm C A

161 mm C Design, Bruno simulations A399 mm P Nominal. Bruno simulations A425 Design. Bruno simulations45 mm

Primary crusher discharge Cumulative Passing 10 mm 6 % 1

Lack of confidence in historical testwork data due to limitations of measuring apparatus for very hard ores. Based on Boddington benchmarking through comparison of other indices.

ROM d99

Primary crusher ROM feed F80

Design primary crusher ROM feed F80

Primary crusher discharge P80Nominal. Range between 131 and 200 mm for ROM feeds with variable PSDs. Bruno Simulations

Primary crusher discharge P80

Primary crusher discharge P99

Primary crusher discharge P20

A B C D E F G H I J K L

1

2

3456789

101112131415161718192021222324252627282930313233343536

37

38

39

4041424344454647484950

51

52

5354555657585960616263

64

65666768697071

72

73

74

75

76

77

78

7980

Page 2: M400000-110-DC-001 Concentrator

document.xls Page 2 of 70

DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001Project Cerro Casale Feasibility Data SourcesProject No M40000 O Owner’s (CMC) Input V Vendor-supplied dataClient Compañía Minera Casale C Calculated T TestworkDate 17-Jun-11 P AMEC – Process input M Mass balanceRevision 1 D AMEC – Other disciplines input R Regulatory/permitting requirement

Design Criteria - Concentrator Value Unit Source Comments Rev. Ref

Calculated crushing duty power required - design hardness 480 kW C At nominal throughput. A

Calculated crushing duty power required - worst-case hardness 771 kW C At nominal throughput. 0

No-load power, per crusher 150 kW V Indicated by BrunoCrusher drive losses 8 % P 0Calculated power draw per crusher - design 684 kW C At nominal throughput ACalculated power draw per crusher - worst-case 1,001 kW C At nominal throughput 0

Indicated crusher size 60” x 113” V FLSmidth VO model or Metso Superior MK-II or equiv.Indicated crusher motor power base 1,000 kW V

Crusher motor selected 1,200 kW P, V 0

Ore Bulk Density – Crushed ROMUnpacked 1.68 P Wet basis, For volume calculations APacked 1.68 P Wet basis, For mechanical/power calculations A

Dust control system baghouse O A

Wet scrubber for crusher dump pocket No O A Foggers for transfer points No R Dust generation rate at transfer points in Primary Crushing 0.02 % D

A.3 Coarse Ore Stockpiling and ReclaimingStockpile live capacity, requested 80,000 t P, O AStockpile live capacity, provided 72,000 t T B

9.18 h C at nominal throughput B

Crushed ore angle of repose – design 40 º T J&J Testwork ADraw down angle – design 65 º T J&J Testwork A

Number of reclaim lines 2 each PReclaim feeder type apron PNumber of feeders 6 each PDesign number of operating feeders 4 each PNormal number of operating feeders 6 each PThroughput capacity per feeder 2,157 tph C At design throughput with 4 feeders operating. ADust control system baghouse O A

A.4 Comminution Circuits

Peak throughput design factor 110 % P 10% above normal tonnage for soft oreDesign throughput for design ore 7,719 t/h C A

Dust control system baghouse O A Foggers for transfer points No R

Dust generation rate at transfer points 0.02 P A

A.4.1 Secondary Crushing Circuit

Scheduled shutdown frequency 3 wk O Boddington benchmarking - full line down at once AScheduled shutdown duration 16 h P Boddington benchmarking c/w 12 hr at low altitude and no winter ADuration of shutdown for bowl/mantle liner replacement 16 h P drop-in complete spare bowl and mantle assemblies providedCrushing Section Availability 96.9 % P AIndicated life of crusher bowl 2.5 to 3.7 wk V Metso estimate CIndicated life of crusher mantle liners 2.5 to 3.7 wk V Metso estimate CIndicated life of crusher spider liners 24 wk P ASecondary crushing circuit utilization 85 % PModified design crushing work index 15.6 kWh/t P Based on a 60% granodiorite, 40% volcanics mining mix

Worst-case impact work index 25.0 kWh/t P 0

Ore abrasive wear 1.5 kg/t T A

To cover worst-case hardness scenario and provide additional throughput capability for stockpile replenishment with softer ores.

t/m3

t/m3

Collected dust from dump pocket, feeder discharge and transfer point to stockpile feed conveyor discharged onto sacrificial conveyors

US EPA AP 42 Fifth edition http://www.epa.gov/ttn/chief/ap42/ch11/final/c11s24.pdfDetails dust collection calculations are in M40000-3100-134-CAL-0005.

Jenike and Johanson analysis indicates live capacity = 72,000 tonnes (worst case minimum)

3 per line; 2 operated, one stand-by for design capacity. Normal operation will be 3 operating.

dust collected from transfer points between reclaim feeders and reclaim conveyors; dust dropped onto reclaim conveyors

% of feed stream

US EPA AP 42 Fifth edition http://www.epa.gov/ttn/chief/ap42/ch11/final/c11s24.pdfDetails dust collection calculations are in M40000-3100-134-CAL-0005.

Lack of confidence in historical testwork data due to limitations of measuring apparatus for very hard ores. Based on Boddington benchmarking through comparison of other indices.

A B C D E F G H I J K L

1

2

3456789

81

82

83848586878889

90

9192

93

94

95

96

979899100101102103104105106107108109110111112113114

115116117118119120121122123

124

125126127128129130131132133134135136137

138

139140

Page 3: M400000-110-DC-001 Concentrator

document.xls Page 3 of 70

DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001Project Cerro Casale Feasibility Data SourcesProject No M40000 O Owner’s (CMC) Input V Vendor-supplied dataClient Compañía Minera Casale C Calculated T TestworkDate 17-Jun-11 P AMEC – Process input M Mass balanceRevision 1 D AMEC – Other disciplines input R Regulatory/permitting requirement

Design Criteria - Concentrator Value Unit Source Comments Rev. Ref

A.4.1.1 Cone Crushers

Number of secondary crushers to be installed 8 ea. PNumber of crushers provided for in layout plans 8 ea. P No future expansion requiredNumber of Lines 2 ea. P

6 ea. P, O 3 operating and 1 standby per line. ANominal Feed Size F80 148 mm P,C Bruno simulation result ANominal Feed Size F99 (Top Size) 399 mm P,C Bruno simulation result ADesign Feed Size F80 154 mm P,C Bruno simulation result ADesign Feed Size F99 (Top Size) 425 mm P,C Bruno simulation result ADesign Feed Size F20 47 mm P,C Bruno simulation result. A

0 % P,C Bruno simulation result. 1

Crusher feed moisture content 2.5 % OCrusher Closed Side Setting (CSS) - nominal feed conditions 35 mm P

45 mm P Boddington benchmarking. ALiner profile medium V 0

566 kW C at nominal throughput

700 kW C at design throughput 0

910 kW C at nominal throughput 0

No-load power, per crusher 100 kW V Indicated by BrunoCrusher drive losses 8 % P

724 kW C A

869 kW P,C 0

1,098 kW P,O Based on benchmarked hardness against Boddington data 0

Crusher model (indicated) MP1250 series O Standard head cone crusher or equivalent AInstalled motor power (per crusher) 932 kW VContingency on power draw design throughput 7.2 % C Relative to available power

Operated crushers at worst-case hardness, nominal throughput 7.1 # 0

Crusher circuit throughput (fresh feed basis) Average 7,843 tph C Design 8,627 tph C peak 10% above average value - soft oreThroughput per crusher (total crusher feed c/w circulating load) Average 1,477 tph M A Design 1,826 tph C peak 10% above average value - soft ore A

1,682 tph V Metso data 0

Capacity contingency vs. nominal throughput 13.9 % C Relative to average throughput at nominal CSS of 35mm

2,225 tph V Mean of vendor published range for MP1000 x 1.25 for MP1250. A

Contingency on nominal throughput 50.6 % C Relative to average throughput at maximum CSS of 45mm

Crusher Product Size P80 @ nominal feed size 39 mm C Bruno simulation result. ACrusher Product Size P99 (Top Size) @ nominal feed size 68 mm C Bruno resultCrusher Product Size P80 @ design feed size 39 mm V Metso Simulation 0Crusher Product Size P99 (Top Size) @ design feed size 68 mm V Metso Simulation 0Crusher Product Size P20 7 mm C Bruno simulation result. ACrusher Product cumulative % passing 10 mm 17 % C Bruno simulation result. 1

Type of crusher feeder Belt feeder PNumber of crusher feeders 8 ea. P One per crusher

Secondary Crusher Feed BinsDesign bulk ore SG - volume requirement P Wet Basis. A

Unpacked 1.68 t/m3 For volume calculations AMechanical (Packed) 1.68 t/m3 For mechanical/power calculations A

Crusher Feed Surge Bin residence time 20 min PCone Crusher Feed Surge Bin 359 C Live volume, per crusher, 6 operating crushers BTotal Surge Bin Capacity 2154 C Live Volume, 6 crushers BTotal Surge Bin Capacity 2872 C Live Volume, 8 crushers BCrushed ore angle of repose – design 35 º T Jenike and Johanson Testing ADraw down angle – design 60 º T Jenike and Johanson Testing ACone Crusher Feed Hopper 4.9 V Live volume, per crusher ACone Crusher Feed Hopper residence time 16.2 sec C, V M40000-3100-110-CAL-0004 Based on supplier design of feed chute. ADust generation rate at transfer points in Secondary Crushing 0.06 % D A

Number of Operating Crushers - at design hardness, design throughput

Design Feed Cumulative % Passing 10 mm (Indication of amount of fines in feed)

Crusher Closed Side Setting (CSS) - design feed size conditions @ nominal tonnage

Theoretical crushing power required - design ore hardness (per crusher)Theoretical crushing power required - design ore hardness (per crusher)Theoretical crushing power required - worst-case ore hardness (per crusher)

Indicated power draw (per crusher)

nominal tonnage - design hardness

design tonnage - design hardness

nominal tonnage - worst-case hardness

Indicated maximum capacity at 35 mm CSS (per crusher) @ nominal feed size

Maximum capacity at 45 mm CSS (per crusher) @ design feed size

m3

m3

m3

m3

US EPA AP 42 Fifth edition http://www.epa.gov/ttn/chief/ap42/ch11/final/c11s24.pdf

A B C D E F G H I J K L

1

2

3456789

141142143144145146147148149150151

152

153154155156157

158

159

160

161162

163

164

165

166167168

169

170171172173174175176

177

178

179

180181182183184185186187188189190191192193194195196

197

198

199200201

202

203204205

Page 4: M400000-110-DC-001 Concentrator

document.xls Page 4 of 70

DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001Project Cerro Casale Feasibility Data SourcesProject No M40000 O Owner’s (CMC) Input V Vendor-supplied dataClient Compañía Minera Casale C Calculated T TestworkDate 17-Jun-11 P AMEC – Process input M Mass balanceRevision 1 D AMEC – Other disciplines input R Regulatory/permitting requirement

Design Criteria - Concentrator Value Unit Source Comments Rev. Ref

A.4.1.2 Secondary Dry Screening

Recycle ratio (screen vs. fresh feed tonnage) Average 1.13 C Bruno simulations indicated circulating load A Design 1.27 C Bruno simulations indicated circulating load for worst case scenario BTotal design processing rate 12,451 tph C 25% allowance for instantaneous peaks, at design circulating load ADesign screen undersize at max rate 9,804 tph C 25% allowance for peaks ADesign screen oversize at max rate 2,647 tph C 25% allowance for instantaneous peaks, at design circulating load A

Dry Screen Feed BinsDesign bulk ore SG - volume requirement P Wet Basis, unpacked. A

1.68 T, P For volume calculations A1.68 T, P For mechanical/power calculations A

Dry Screening Feed Surge Bin residence time 15 min PDry Screening Surge Bin Capacity 2,924 C Live Volume ACrushed ore angle of repose – design 40.0 º Jenike and Johanson Testing ADraw down angle – design 75.0 º Jenike and Johanson Testing AScreen feeder type Vibrating pan feeder P

Number of vibrating dry screens 6 ea. V Schenck indicated. ADesign processing rate per dry screen 3,264 tph CType of screen Multi-slope P,V aka Banana screenScreen deck width (indicated) 4.3 m P,V Schenck indicated. AScreen deck length (indicated) 8.5 m P,V Schenck indicated. ANumber of decks per screen 2 ea. V APeak capacity per screen 3,450 tph V Schenck indicated.Screen motor rating 75 kW V Schenck indicated.Screening efficiency 90 % V 0Required Unit screen capacity (at average throughput) 81 C Based on vendor indicated deck dimensions and design tonnage

Screen panels square aperture 45 mm PScreen cut point 38 mm C Bruno indication for nominal throughputBed depth at discharge 41 mm V Bruno indication at nominal throughput. Confirmed by vendor.

Dry screen undersize P80 30 mm O,C Bruno indicationDry screen undersize P20 7 mm O,C Bruno indicationDry screen undersize Cumulative % Passing 10 mm 26 % C Bruno indication 1Average undersize stream flow rate (per screen) 1,307 tph C Fresh feed to crushing circuit rate

m3

t/h/m2

A B C D E F G H I J K L

1

2

3456789

206207208209210211212213214215216217218219

220

221222223224225226227228229

230

231232233

234

235236237238239240241242243244

Page 5: M400000-110-DC-001 Concentrator

document.xls Page 5 of 70

DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001Project Cerro Casale Feasibility Data SourcesProject No M40000 O Owner’s (CMC) Input V Vendor-supplied dataClient Compañía Minera Casale C Calculated T TestworkDate 17-Jun-11 P AMEC – Process input M Mass balanceRevision 1 D AMEC – Other disciplines input R Regulatory/permitting requirement

Design Criteria - Concentrator Value Unit Source Comments Rev. Ref

A.4.2 Tertiary Crushing Circuit

Scheduled shutdown frequency 3 wk O Boddington benchmarking - full line down at once AScheduled shutdown duration 16 hr P Boddington benchmarking c/w 12 hr at low altitude and no winter ADuration of shutdown for roll replacement 30 hr P, V drop-in complete roll assemblies provided BCumulative daily shutdown for roll/edge block checks 2 hr P Boddington benchmarking, per crusher ATertiary crusher availability 88.6 % P A

Indicated roll life per testwork conditions 6,000 op. hours T, V based on 150 kt/d, 1.55 circulating load A

per design conditions 5,200 op. hours C adjusted for actual throughput and circulating load A36,491 kt C A

P 1

Tertiary crushing circuit utilization 85 % O ARecycle ratio (per Polysius testwork scale-up) 1.85 V For 6 mm tested close-out sizeRecycle ratio (crusher throughput vs. fresh feed) 1.65 C Calcul 1Recycle ratio (crusher throughput vs. fresh feed) 2.00 O Benchmarking to Boddington 1Wet screen close-out size 10.0 mm PRecycle ratio (at 10 mm close-out size) 1.65 C, V, P 1Expected recycle ratio at maximum circuit feed size 2.00 C Boddington Benchmarking 1Average processing rate (at crushers) 14,510 tph C Based on benchmarked recycle ratioMaximum processing rate (at crushers) 18,818 tph P At maximum allowable rolls speedDust generation rate at transfer points in Tertiary Crushing 0.003 % D A

A.4.2.1 HPGR Crushing

Specific grinding force (indicated) 3.5 T From testworkSpecific throughput rate (m-dot) (indicated) 227 T From test work resultsScaled-up specific throughput rate (m-dot) 300 T Benchmarking ASpecific energy input (indicated) 1.80 kWh/t T From testworkScaled-up specific energy input 1.44 kWh/t T Benchmarking AATWAL Abrasion Test (indicated) 16 g/t T From Polysius testwork

Number of High Pressure Rolls Crushers 6 ea. VNumber of lines 2 ea. P 2 lines, each with 3 operating HPGRs ARequired throughput rate (per crusher, fresh feed) 2,418 tph C Average instantaneous rate BRequired throughput rate (per crusher, fresh feed) 3,136 tph C Design B

Rolls diameter (indicated) 2.40 m V From Polysius reportRolls width (indicated) 1.65 m V From Polysius reportMaximum allowable rotational speed 21.0 RPM V Calculated from vendor simulation reportMaximum allowable rolls speed (mechanical) 2.64 m/s C At maximum RPM allowed to limit potential mechanical damageMax rolls speed (slippage rule of thumb) 2.40 m/s P Process limit at which slippage becomes a problemNominal rolls speed for required throughput 2.40 m/s C At indicated m-dot and recycle ratio ADesign rolls speed for design throughput 2.55 m/s C At Boddington benchmarking m-dot and recycle rate. AContingency on throughput (Mechanical limit) 10.0 % C At nominal rolls speed required for average throughputContingency on throughput (Process limit) 0.0 % C At nominal rolls speed required for average throughput

Installed power - per crusher 5,500 kW V Polysius basisPower consumed per crusher 3,666 kW C Including 95% electrical drive efficiencyContingency on power 50.0 % C At average throughput rate

Type of feeder Belt feeder PNumber of crusher feeders 6 ea. P One per rolls crusher

HPGR ore Bin Design bulk HPGR feed SG - volume requirements T, C Wet basis, packed A

Unpacked 1.42 T, C For volume calculations AMechanical (power) 1.68 T, C For mechanical/power calculations AStructural 1.88 T, C For structural design calculations 1

HPGR Surge Bin residence time required 15 min P at design throughput i.e. 10% above averageHPGR Surge Bin capacity 4,704 t C Live tonnage at design throughput rates A

3,650 C Live volume at design throughput rates ACrushed ore angle of repose – design 40 º Jenike and Johanson Testing ADraw down angle – design 75 º Jenike and Johanson Testing AAverage % moisture (w/w) of HPGR feed 4.7 % C

HPGR Feed Hopper surge residence time 20 sec P, V One per crusher AHPGR Feed Hopper live surge capacity 25 t C at design throughput rate AHPGR feed size P80 26 mm P,V,C Polysius simulations AHPGR feed size P20 9 mm P,V,C Polysius simulations AHPGR feed cumulative % passing 6 mm 15 % P,V,C Polysius simulations AHPGR feed size P99 (top size) 45 mm P,VHPGR product P80 17.8 mm V,T,C Used in simulations at 10 mm cut size. 1HPGR product P20 0.7 mm V,T,C Used in simulations at 10 mm cut size. 1HPGR product cumulative % passing 6 mm 53 % V,T,C Used in simulations at 10 mm cut size. 1HPGR product cumulative % passing 10 mm 64 % V,T,C Used in simulations at 10 mm cut size. 1

Philosophy for design grinding production rate when 1 line of HPGR is bypassed.

Nominal tonnage ball mill tonnage with high circulating load.

Process requirement for maintaining production and inventory in fine ore silos.

US EPA AP 42 Fifth edition http://www.epa.gov/ttn/chief/ap42/ch11/final/c11s24.pdf

N/mm2

ts/(m3h)ts/(m3h)

t/m3

t/m3

t/m3

m3

A B C D E F G H I J K L

1

2

3456789

245246247248249250251

252

253254

255

256257258259260261262263264265266267268269270

271

272

273274275276277278279280281282283284285286287288289290291292293294295296297298299300

301

302

303

304305

306

307308309310311312313314315316317318319320321

Page 6: M400000-110-DC-001 Concentrator

document.xls Page 6 of 70

DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001Project Cerro Casale Feasibility Data SourcesProject No M40000 O Owner’s (CMC) Input V Vendor-supplied dataClient Compañía Minera Casale C Calculated T TestworkDate 17-Jun-11 P AMEC – Process input M Mass balanceRevision 1 D AMEC – Other disciplines input R Regulatory/permitting requirement

Design Criteria - Concentrator Value Unit Source Comments Rev. Ref

A.4.2.2 Fine Ore Storage

Capacity of twin HPGR product conveyors 9,607 tph C Each. At design throughput rate

Fine Ore Storage AStorage live capacity 60,000 tonnes O A

c/w half of HPGR down 19.4 hrs C AType of storage SilosNumber of silos 6Bulk density of HPGR product T, C Wet basis, packed A

Unpacked 1.37 T, C For volume calculations AMechanical 1.68 T, C For mechanical/power calculations AStructural 1.88 T, C For Structural design calcuations 1

Bin feed moisture content (% w/w) 4.7 % CCrushed ore angle of repose – design 40.0 º Jenike and Johanson Testing ADraw down angle – design 75.0 º Jenike and Johanson Testing A

A.4.2.3 Wet Vibrating Screens

Number of units 12 ea. PType of screen Multi-slope P,V aka Banana screenMax throughput per screen (indicated) 1,300 tph V Vendor indicated maximum rangeAverage processing rate per screen 1,209 tph C At nominal circuit throughput rateFeed arrangement Belt feeder - Repulper P Forward-reverse re-pulping dead boxes in chuteWet Screening Utilization 95 % P To match ball mill utilization 0Deck panels aperture 10.0 mm PRequired Unit screen capacity (average throughput) 36 C Calculated based on Schenck indicated deck dimensions 0Selected Unit screen capacity (average throughput) 33 C Calculated based on Schenck indicated deck dimensions 0Screening area required 34 CSelected screen deck width 4.3 m P,VLength to width minimum ratio 2:1 P for dewatering efficiency AScreen deck length (indicated) 7.9 m P,V AScreen deck length (retained) 8.5 m P,V Schenck indicated. ANumber of decks per screen 1 ea. P Single deck screens with spray barsWet screening efficiency (used in simulations) 88 % V Used in Polysius simulationsWet screening efficiency (expected) 92 % P, V 0Screen motor rating 55 kW V Schenck indicated. 0Expected bed depth at discharge 69 mm C Schenck indicated.

0.50 C 1

0.40 C 1

Screen Sprays Atype duck bills P A

number of bars per screen 3 ea. P Anumber of sprays per bar 6 V Ludowici 1

flowrate per spray 22.0 V Ludowici 1Flowrate per screen 396.0 m3/hr C 1

Total screen spray water 4752.0 m3/hr C 1Pressure 200.0 kPa V 0

type of water used Process P 1

Wet screen undersize product P80 Calculated (worst case) 7.4 mm C 0Wet screen undersize product P80 Selected 5.4 mm V, O, P Benchmarking to Cerro Verde and Boddington, HPGR Simulations. 1Wet screen oversize product moisture content, design 8.0 % w/w P AssumedWet screen oversize product moisture content, nominal 5.0 % w/w P 1

Wet screen undersize product solids content 40.0 % w/w P

Pulp to individual ball mill pumpbox from wet screens 2,604 C

t/m3

t/m3

t/m3

t/h/m2

t/h/m2

m2

Wet screen feed repulping box water consumption, nominal tonnage m3/t

Large volume water required for complete disagglomeration of flakes. Cerro Verde benchmarking is 0.5 to 0.58 m3/t.Wet screen feed repulping box water consumption, design

tonnage m3/t

m3/hr

Required as flowrate is too high for water balance. Ludowici states sprays will work with process water.

Water added at screen sprays for proper screening and minimal additional water addition to prevent sanding of low-angle discharge chute.

m3/h

A B C D E F G H I J K L

1

2

3456789

322323324325326327328329330331

332

333

334335336337338339340341342343344345346347

348

349

350

351352353354355356357358359

360

361

362363364365

366

367368369

370

371372373374

375

376

Page 7: M400000-110-DC-001 Concentrator

document.xls Page 7 of 70

DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001Project Cerro Casale Feasibility Data SourcesProject No M40000 O Owner’s (CMC) Input V Vendor-supplied dataClient Compañía Minera Casale C Calculated T TestworkDate 17-Jun-11 P AMEC – Process input M Mass balanceRevision 1 D AMEC – Other disciplines input R Regulatory/permitting requirement

Design Criteria - Concentrator Value Unit Source Comments Rev. Ref

DESIGN CRITERIA FOR CONCENTRATOR FACILITIES GRINDING, FLOTATION, DEWATERING AREAS - Document M40000-0000-110-DSC-0001

Project Cerro Casale Feasibility Data Sources

Project No M40000 O Owner’s (CMC) Input V Vendor-supplied dataClient Compañía Minera Casale C Calculated T TestworkDate 17-Jun-11 P AMEC – Process input M Mass balanceRevision 1 D AMEC – Other disciplines input R Regulatory/permitting requirement

Design Criteria - Concentrator Value Unit Source Comments Rev. Ref

B.1.1 Ore Reserves CharacteristicsPredominant MineralogyCopper Minerals Distribution T Year 1-5 CompositeChalcopyrite 61.5 % TBornite 11.3 % TChalcocite 3.2 % TDigenite 23.7 % TCovellite 0.4 % TNative copper na % TTotal proportion of Cu-bearing minerals 0.91 % T

Gangue Minerals Year 1-5 CompositeSilica 27.98 % TK-feldspars 33.83 % TAmphiboles 0.92 % TPyrite 1.83 % TMolybdenite 0.09 % TSphalerite 0.05 % TFe/Mn oxides 4.06 % TSulphates 1.18 % TCarbonates 0.55 % TApatite 0.35 % TZircon 0.35 % TMicas 20.83 % TChlorite 3.27 % TTi oxides 1.05 % TClays 2.73 % T

A B C D E F G H I J K L

1

2

3456789

377378

379

380

381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414

Page 8: M400000-110-DC-001 Concentrator

document.xls Page 8 of 70

DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001Project Cerro Casale Feasibility Data SourcesProject No M40000 O Owner’s (CMC) Input V Vendor-supplied dataClient Compañía Minera Casale C Calculated T TestworkDate 17-Jun-11 P AMEC – Process input M Mass balanceRevision 1 D AMEC – Other disciplines input R Regulatory/permitting requirement

Design Criteria - Concentrator Value Unit Source Comments Rev. Ref

Design Clay Content 3.2 % T

Principal Sulphide Lithologies 0

Diorite Porphyry sulphide 29.1 % O 0

DSU 6.9 % C 1DSL 22.2 % C 1

Granodiorite porphyry sulphide 17.0 % O rock code: GRD 1Microdiorite breccia 13.2 % O rock code: MDBX 1Volcanic conglomerate sulphide 21.5 % O rock code: VCGL 1Other volcanics 19.3 % O rock code: VO 1

total 100.0 % CMicrodiorite breccia split as: sulphide ore 12.8 % O rock code: MDBX sul 1

mixed ore 0.3 % O rock code: MDBX mix 1VCGL + VO 40.8 % O 1

Mine Plan Tonnage - Lithological Distribution

Year 3 to Year 7 A (%) B (%)

Porphyry sulphide Upper 22.4 O 1Porphyry sulphide Lower 49.7 O 1Porphyry sulphide 81.1 72.1 O 1Granodiorite porphyry sulphide 3.2 6.6 O 1Volcanic conglomerate sulphide + others 2.7 2.2 O 1Microdiorite breccia - mixed 6.5 0.9 O 1Microdiorite breccia - sulphide 6.5 18.3 O 1

100.0 100.0

Year 8 to Year 12 A (%) B (%)

Porphyry sulphide Upper 0 O 1Porphyry sulphide Lower 26.2 O 1Porphyry sulphide 50.4 26.2 O 1Granodiorite porphyry sulphide 11.9 18.2 O 1Volcanic conglomerate sulphide + others 21.7 38.5 O 1Microdiorite breccia - mixed 8.0 0.3 O 1Microdiorite breccia - sulphide 8.0 16.9 O 1

100.0 100.0

Year 13 to EOM A (%) B (%)

Porphyry sulphide Upper 1.8 O 1Porphyry sulphide Lower 3.0 O 1Porphyry sulphide 3.4 4.8 O 1Granodiorite porphyry sulphide 25.8 22.5 O 1Volcanic conglomerate sulphide + others 64.8 65.7 O 1Microdiorite breccia - mixed 3.0 0.0 O 1Microdiorite breccia - sulphide 3.0 6.9 O 1

100.0 100.0Ore moisture content - average 2.5 % w/w O

Average specific gravity for DP 2.62 TAverage specific gravity for MDBX 2.59 TAverage specific gravity for GRD 2.66 TAverage specific gravity for VCGL 2.76 T assumed equal for the VO component of the volcanic rocks

average 3.61 C For comminution circuits.Solids Specific Gravity Estimate 5.32 * %Cu/100 + 2.77 C Linear regression with testwork data. For flotation circuits.

Ore abrasion index for DP 0.34 g TOre abrasion index for MDBX 0.47 g TOre abrasion index for GRD 0.41 g TOre abrasion index for VCGL 0.30 g T

average 0.38 g C

SGS Report "Gold Deportment Study in Cyclone O/F, 1st Cl. Scav. Tail and Ro Tail Samples from Cerro Casale Project" January 22, 2009; on Year 1-5 composite sample

proportions in CC_2011_MinePlan_CEJV_04-Mar-11 - by reserves tonnagerock code: DP (rock type was divided between upper (DSU) and lower (DSL) in 2000 FS report)

A: per composite samples prepared for testworkB: per CC_2011_MinePlan_CEJV_04-Mar-11 (Year 3 is first year of plant feed)

A: per composite samples prepared for testworkB: per CC_2011_MinePlan_CEJV_04-Mar-11

A: per composite samples prepared for testwork B: per CC_2011_MinePlan_CEJV_04-Mar-11

t/m3

t/m3

t/m3

t/m3

t/m3

A B C D E F G H I J K L

1

2

3456789

415

416

417

418

419420421422423424425426427428429430

431

432433434435436437438439

440

441442443444445446447448

449

450451452453454455456457458459

460

461

462

463

464

465

466467468469470471472

Page 9: M400000-110-DC-001 Concentrator

document.xls Page 9 of 70

DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001Project Cerro Casale Feasibility Data SourcesProject No M40000 O Owner’s (CMC) Input V Vendor-supplied dataClient Compañía Minera Casale C Calculated T TestworkDate 17-Jun-11 P AMEC – Process input M Mass balanceRevision 1 D AMEC – Other disciplines input R Regulatory/permitting requirement

Design Criteria - Concentrator Value Unit Source Comments Rev. Ref

B.1.2 Average Head Grades

Gold (Au) 0.640 g/t O Mine Plan CC_2011_MinePlan_CEJV_04-Mar-11 1Copper (Cu) 0.247 % O Mine Plan CC_2011_MinePlan_CEJV_04-Mar-11 1

na % not available in geological block modelSilver (Ag) 1.40 g/t O Mine Plan CC_2011_MinePlan_CEJV_04-Mar-11 1Sulphur (S) 2.57 % O 2004 FS ore composites

Average Gold Head Grade per Lithology Mine Plan CC_2011_MinePlan_CEJV_04-Mar-11 1Diorite sulphide 0.621 g/t O 1

DSU 0.540 g/t O 1DSL 0.580 g/t O 1

Microdiorite breccia - Mixed 0.763 g/t O 1Microdiorite breccia - Sulphide 0.742 g/t O 1Granodiorite sulphide 0.712 g/t O 1Volcanic sulphide 0.590 g/t O 1

Average Copper Head Grade per Lithology Mine Plan CC_2011_MinePlan_CEJV_04-Mar-11 1Diorite sulphide 0.21 % O 1

DSU 0.21 g/t O 1DSL 0.24 g/t O 1

Microdiorite breccia - Mixed 0.21 % O 1Microdiorite breccia - Sulphide 0.29 % O 1Granodiorite sulphide 0.31 % O 1Volcanic sulphide 0.23 % O 1

Average Silver Head Grade per Lithology Mine Plan CC_2011_MinePlan_CEJV_04-Mar-11 1Diorite sulphide 1.33 g/t O 1

DSU 1.30 g/t O 1DSL 1.34 g/t O 1

Microdiorite breccia - Mixed 2.51 g/t O 1Microdiorite breccia - Sulphide 2.07 g/t O 1Granodiorite sulphide 1.77 g/t O 1Volcanic sulphide 1.08 g/t O 1

Average Gold Head Grade per Periods Mine Plan CC_2011_MinePlan_CEJV_04-Mar-11 1Year 3-7 0.612 g/t O 1Year 8-12 0.658 g/t O 1Year 13+ 0.645 g/t O 1

Mine Plan CC_2011_MinePlan_CEJV_04-Mar-11 1Year 3-7 0.228 % O 1Year 8-12 0.249 % O 1Year 13+ 0.256 % O 1

Average Silver Head Grade per Periods Mine Plan CC_2011_MinePlan_CEJV_04-Mar-11 1Year 3-7 1.48 g/t O 1Year 8-12 1.33 g/t O 1Year 13+ 1.41 g/t O 1

Cyanide-Soluble Copper (CuCN)

Average CuT Head Grade per Periods

A B C D E F G H I J K L

1

2

3456789

473474475476

477

478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512

513

514515516517518519520521522

Page 10: M400000-110-DC-001 Concentrator

document.xls Page 10 of 70

DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001Project Cerro Casale Feasibility Data SourcesProject No M40000 O Owner’s (CMC) Input V Vendor-supplied dataClient Compañía Minera Casale C Calculated T TestworkDate 17-Jun-11 P AMEC – Process input M Mass balanceRevision 1 D AMEC – Other disciplines input R Regulatory/permitting requirement

Design Criteria - Concentrator Value Unit Source Comments Rev. Ref

B.1.3 Design Head GradesGold

0.97 g/t Au O,C 20% above peak year grade of 0.812 g/t in Year 8

Per PFS ore reserves grade vs. tonnage 0.96 g/t Au O,C marginal grade of tonnage fraction to cover 85% of reserves tonnage

Retained design grade 0.873 g/t Au P 0

Total Copper0.40 O,C 20% above peak year grade of 0.33 % in Year 11

per PFS ore reserves grade vs. tonnage 0.39 O,C marginal grade of tonnage fraction covering 85% of reserves tonnage

retained design grade 0.355 P Adjusted equivalent metal units of 160 ktpd at 0.39%Cu. 0Silver

2.28 g/t Ag O,C 20% above peak year grade of 1.903 g/t in Year 11

retained design grade 2.08 g/t Ag P 0

B.2 General Plant Operating RequirementsDesign Life 19 years O Projected mine life (partial operations in first and last years)Operation Schedule 360 d/y P For weather-related interruptions to ore supplyOperating hours per day 24 h P

Plant CapacityAverage 160,000 t/d O nominalDesign 176,000 t/d P, O 10% above averageHourly - average 7,018 t/h C nominal, operated basis AHourly – design 7,719 t/h C AYearly 57.6 Mt/a C nominal

h/week h/y hours weighing based on 100% plant capacity

Maintenance shutdowns 1.5 78 P A

Full plant shutdowns 0.9 48.75 P A

Total 2.4 126.8 C

Grinding/Flotation Availability 8,513 h/y C98.5 % C

hours weighing based on 100% plant capacity

Operational delays 156 h/y P Accounts for material handling issuesOperational Utilization 96.7 % C Based on operational hours divided by total hours per yearExternal Interruptions 149 h/y C for lack of ore, power supply, concentrate or water pipeline issuesOverall Grinding/Flotation/CIL Circuits Utilization 95.0 % O A

8,208 h/y C A

per Mine Plan FSU V2 wSP using 80th percentile of grade distribution per block

Adjusted for equivalent metal units of high head with nominal tonnage.

per Mine Plan FSU V2 wSP using 80th percentile of grade distribution per block %CuT

%CuT

%CuT

per Mine Plan FSU V2 wSP using 80th percentile of grade distribution per block

Adjusted for equivalent metal units of high head with nominal tonnage.

 Grinding/Flotation Planned Shutdown - Weighted18 hours per grinding line, each line down once per 12 weeks for cyclone feed pump maintenance. Six lines.24 hours per 24 weeks. Combined with individual grinding line shutdown

 Grinding/Flotation/CIL Circuits Unplanned Shutdown - Weighted

A B C D E F G H I J K L

1

2

3456789

523524525

526

527

528529

530

531

532533

534

535536537538539540541542543544545546547548

549

550

551552553554555

556

557558559560561562

Page 11: M400000-110-DC-001 Concentrator

document.xls Page 11 of 70

DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001Project Cerro Casale Feasibility Data SourcesProject No M40000 O Owner’s (CMC) Input V Vendor-supplied dataClient Compañía Minera Casale C Calculated T TestworkDate 17-Jun-11 P AMEC – Process input M Mass balanceRevision 1 D AMEC – Other disciplines input R Regulatory/permitting requirement

Design Criteria - Concentrator Value Unit Source Comments Rev. Ref

B.3 Grinding Parameters

Correlated Autogenous Work Index MacPherson testwork report on Placer Dome samples; Dec. 1998DP 16.5 kWh/t TMDBX 18.5 kWh/t TGRD 18.1 kWh/t TVCGL 17 kWh/t T/P assumed equivalent for VO

average 17.2 kWh/t C weighted

JKTech parameters – Production CompositesYr 3 - 7 Yr 8 - 12 Yr 13 - 18 units Source

A 93.25 94.28 97.61 Tb 0.21 0.21 0.22 TA x b 19.2 20.1 21.8 T

0.3 0.29 0.24 TMia 30.41 30.36 30.86 kWh/t TBMWi 16.94 16.67 16.09 kWh/t TSG 2.62 2.65 2.72 T

Design Ore Equivalent Yr 1 - 5 Blend P

JKTech parameters – Rock Type CompositesDP GRP MDBX Mix MDBX Sul VCGL Source

A 93.7 94.4 79.7 96.8 100 Tb 0.2 0.23 0.3 0.18 0.22 TA x b 18.7 21.7 23.9 17.4 22 T

0.3 0.24 0.4 0.33 0.22 TMia 30.9 32.0 23.0 30.3 30.7 TSG 2.62 2.66 2.56 2.62 2.76 T

Bond Rod Mill Work Index at nominal 1,190 µm Placer Dome SamplesDP 19.3 kWh/t TMDBX 22.1 kWh/t TGRD 18.8 kWh/t TVCGL 19.3 kWh/t T

average 14.4 kWh/t C weighted

Bond Ball Mill Work Index (@ P80), Average

DP (@ 116 µm) 17.3 kWh/t T

MDBX mixed (@ 109 µm) 14.8 kWh/t T for rock type composite sample

MDBX sulphide (@ 118 µm) 14.8 kWh/t T

GRD (@114 µm) 15.3 kWh/t T

VCGL (@ 112 µm) 16.0 kWh/t T

average 11.9 kWh/t C weightedDesign ball mill work index 16.94 kWh/t P per design ore - Year 1 - 5 composite

Bond Ball Mill Work Index (@ P80) Average + 1 Standard Deviation

DP (@ 116 µm) 17.9 kWh/t T

GRD (@114 µm) 16.1 kWh/t T

VCGL (@ 112 µm) 16.2 kWh/t T

B.3.1 Grinding Circuit

Grinding circuit utilization 95 % P, O ANumber of identical parallel grinding lines 6 ea. PDesign (max) circulating load 475 % P To accommodate high granodiorite content in Y11+ mining mixesGrinding circuit feed – T80 Worst case 7.4 mm C, P A

Benchmarking 5.4 mm P, V Benchmarking Cerro Verde & Boddington, HPGR vendor simulations. 1

Targeted grinding circuit product P80 120 micron OFresh grinding circuit feed passing 120 µm 11.3 % V,P,C Benchmarking Boddington. Worst case. Design AFresh feed from wet screens average 1,170 tph C Per ball mill A

design 1,287 tph C Per ball mill, 10% above average A

ta

t/m3

ta

for average of mapping samples CC-3, 5, 6, 7, 8; 17 kWh/t for composite sample

for average of mapping samples CC-12, 14, 15; 15.6 kWh/t for composite sample @ 114 µmfor average of mapping samples CC-17, 18, 21; 18.3 kWh/t for composite sample @ 114 µm

for average of mapping samples CC-22 to 25; 15.8 kWh/t for composite sample @ 111 µm

for average of mapping samples CC-3, 5, 6, 7, 8; 17 kWh/t for composite samplefor average of mapping samples CC-17, 18, 21; 18.3 kWh/t for composite sample @ 114 µm

for average of mapping samples CC-22 to 25; 15.8 kWh/t for composite sample @ 111 µm

A B C D E F G H I J K L

1

2

3456789

563564565566567568569570571572573574575576

577

578579

580

581582583584585586587588

589

590591592593594595596597598599600

601

602

603

604

605

606607608609

610

611

612

613614615616617618619

620

621622623624625

Page 12: M400000-110-DC-001 Concentrator

document.xls Page 12 of 70

DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001Project Cerro Casale Feasibility Data SourcesProject No M40000 O Owner’s (CMC) Input V Vendor-supplied dataClient Compañía Minera Casale C Calculated T TestworkDate 17-Jun-11 P AMEC – Process input M Mass balanceRevision 1 D AMEC – Other disciplines input R Regulatory/permitting requirement

Design Criteria - Concentrator Value Unit Source Comments Rev. Ref

B.3.2 Ball Milling

Mill Type Ball mill P wet overflow, c/w safety trommel screenBall Mill motor type gearless PNumber of Ball Mills 6 ea. PBall Mill Discharge Density 78 % solids O JKSimMet Simulation

Testwork indicated ball mill work index 16.94 kWh/t O for design ore, defined as per composite for Year 1-5Design factor on ball mill work index 0 % P ADesign Bond Ball Mill Work Index 16.94 kWh/t C AReduction in ball mill work index 5 % T for microcracking induced by HPGR crushing AGross power requirement per ball mill, at shell Worse Case 12.82 kWh/t C AGross power requirement per ball mill, at shell Design 12.5 kWh/t C 1Deduction for Fines in Ball Mill Feed 0.0 % O AEF4 Ball Mill Feed Oversize Efficiency factor 1.12 C per Bond's standard grinding theory 0Gearless drive train efficiency 95.1 % P, V Including transformer & cycloconverter A

96.9 V At motor leads 0

Worst case scenarioNet ball mill grinding power required 14.8 kWh/t C at motor leads 0Net ball mill power consumption per ball mill, at mill shell 17.3 MW C For average throughput, design ore 0

at motor leads 17.9 MW C For average throughput, design ore 0

DesignNet ball mill grinding power required 14.4 kWh/t C at motor leads 1Net ball mill power consumption per ball mill, at mill shell 16.9 MW C For average throughput, design ore 1

at motor leads 17.4 MW C For average throughput, design ore 1

Indicated grinding mill dimensions Diameter (ID) 7.92 m P 26 feetLength (EGL) 13.9 m P 45.5 feet EGL 1

Mill nominal rotational speed 78 % critical P AMaximum rotational speed 80 % critical P ARequired mill ball charge 33 % v/v V Vendor metso power draw curve, at mill shell - new liners 1

30 % v/v V Vendor (Metso) power draw tables, at mill shell - worn liners 1Maximum ball charge for mill geometry 33 % v/v V Based on Metso data 1Power draw per ball mill at maximum ball charge 17.3 MW V, P Vendor (Metso) power draw tables; at mill shell 1Installed power per ball mill 18.0 MW C gearless drive 0Contingency on power draw vs. required 0.6 % C At average throughput, with design ore 1Maximum ball charge for drawing installed power 33 % V c/w new liners, Metso 1

30 % V c/w worn liners, Metso 1

Ball mill liner material Ni-hard P AEstimated ball mill liner set weight, per mill 1074 t V Outotec 1Ball mill liners wear rate 5.7 g/kWh P Based on Bond correlations, with design ore

Factor for improved steel metallurgy 0.7 1

Ball mill ball design consumption 79.7 g/kWh T, P, C Bond Abrasion formula with adjustment for metallurgy of steel. 1Ball mill ball design consumption 1072 g/t C 1Ball mill ball design usage 198.5 t/d C at design tonnage and design power 1Ball mill ball nominal usage 180.5 t/d C at nominal tonnage 1Storage capacity minimum 5.0 days O total, on site inventory 0Storage capacity selected 4.6 days C 0Number of storage/metering bins 2.0 units P 0Inventory per bin selected 460 t P live capacity 0Total Bin Inventory selected 920 t C 0Ball diameter 50.8 + 76.2 mm P one third-two-thirds split between 2 and 3" ballsBall charge total weight, per mill 1270 t P at load for maximum ball charge 0

Ball mill feed material top size P99 10.0 mm PBall mill product material size P80 Worst Case 0.71 mm P,V JKSimMet SimulationBall mill product material size P80 Design 0.66 mm C JKSimMet Simulation 1Ball mill feed material size P80 Worst case 7.4 mm P,V 0Ball mill feed material size P80 Design 5.4 mm P,V 1

Reagents added secondary collector, lime T,P

To account for improved steel metallurgy since Bond developed equation.

A B C D E F G H I J K L

1

2

3456789

626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672

673

674675676677678679680681682683684685686687688689690691692693

Page 13: M400000-110-DC-001 Concentrator

document.xls Page 13 of 70

DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001Project Cerro Casale Feasibility Data SourcesProject No M40000 O Owner’s (CMC) Input V Vendor-supplied dataClient Compañía Minera Casale C Calculated T TestworkDate 17-Jun-11 P AMEC – Process input M Mass balanceRevision 1 D AMEC – Other disciplines input R Regulatory/permitting requirement

Design Criteria - Concentrator Value Unit Source Comments Rev. Ref

B.3.3 Classification

Classification equipment type Hydrocyclones PCyclone overflow pulp density 34 % solids P set as rougher flotation pulp densityCyclone overflow P80 120 μm TNominal Circulating Load (indicated) 314 % P,V JKSimMet simulation resultNominal Circulating Load used in mass balance 314 % O,P modified from JKSimMet simulation resultDesign Circulating Load 475 % P To accommodate harder ore typesCyclone underflow slurry density 75 % solids V FLSmidth 1Nominal cyclone feed dataCyclone feed slurry density 58 % solids M At nominal throughput and circulating loadCyclone feed flowrate - solids 4,842 t/h C Per cyclopak at nominal throughput and circulating load - slurry 4,835 CDesign cyclone feed dataCyclone feed slurry density 63.7 % solids C At Design throughput and circulating loadCyclone feed flowrate - solids 6,725 t/h C Per cyclopak - slurry 5,699 C

Number of cyclopak 6 each P one per ball millCyclone data – per cyclopakDiameter 840 mm P Model Krebs DS33 gMax P typicalnumber of cyclones required nominal 8 units P,V

design 9 units P,Vnumber installed, per cyclopak (including spares) 11 units P Aoperating pressure 70-85 kPag P,V

Cyclone feed pumpbox retention time 2.0 min PCyclone feed pumpbox live volume 190 C One cyclopak per pump boxInstalled cyclone feed spare pump? No P, O spare in warehouse

m3/h

m3/h

Krebs Cyclone sizing chart (909 m3/h per cyclone). To be confirmed with suppliers.

m3

A B C D E F G H I J K L

1

2

3456789

694695696697698699700701702703704705

706

707708709

710711712713714715716717718719720721

722

723724

Page 14: M400000-110-DC-001 Concentrator

document.xls Page 14 of 70

DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001Project Cerro Casale Feasibility Data SourcesProject No M40000 O Owner’s (CMC) Input V Vendor-supplied dataClient Compañía Minera Casale C Calculated T TestworkDate 17-Jun-11 P AMEC – Process input M Mass balanceRevision 1 D AMEC – Other disciplines input R Regulatory/permitting requirement

Design Criteria - Concentrator Value Unit Source Comments Rev. Ref

B.4 FlotationB.4.1 Metallurgical Production: Cu

To Copper Concentrate 90.0 % M 1To Flotation Scavenger Tailings 4.7 % M 0To First Cleaner Scavenger Tailings 5.4 % M CIL circuit feed 0To CIL Tailings Solids 3.5 % MTo CIL Tailings Solution - total 1.9 % MTo CIL Tailings Solution – to tails 0.9 % MTo CIL Tailings Solution – to SART 0.5 % MTo Combined Tailings 9.1 % MTotal Copper Recovered 90.9 % C C/W 85% SART recovery

Cu concentrate grade – average 27.1 %Cu M

Years 3 - 7 Summary Copper Distribution - % by mass average ore type mix & feed grade basisTo Copper Concentrate 83.8 % M 1To Flotation Scavenger Tailings 9.4 % M 1

6.7 % M CIL circuit feed 1

To CIL Tailings Solids 4.8 0To CIL Tailings Solution - total 1.4 % M

0.9 % M

0.6 % MTo Combined Tailings 15.1 % MTotal Copper Recovered 84.9 % C c/w 85% SART recovery

Cu concentrate grade – average 25.2 %CuT M 0Cu concentrate productionNominal 1,197 t/d M 0Design 2,395 t/d M Peak value. (Differs from design criteria for concentrate pipeline.)

DP DSU Ore Summary Copper Distribution - % by mass Mine Life Units Source

To Copper Concentrate 78.9 % T, C 1

To Flotation Scavenger Tailings 12.8 % M 1To First Cleaner Scavenger Tailings 8.3 % M 1To CIL Tailings Solids 5.4 % M 1To CIL Tailings Solution - total 1.5 % M 1To CIL Tailings Solution – to tails 0.9 % M 1To CIL Tailings Solution – to SART 0.6 % M 1To Combined Tailings 19.1 % M 1Total Copper Recovered 80.9 % M 1

Cu concentrate grade – average 25.0 %CuT M 1

DP DSL Ore Summary Copper Distribution - % by mass Mine Life Units Source

To Copper Concentrate 85.7 % T, C 1

To Flotation Scavenger Tailings 5.3 % M 1To First Cleaner Scavenger Tailings 9.0 % M 1To CIL Tailings Solids 5.9 % M 1To CIL Tailings Solution - total 1.5 % M 1To CIL Tailings Solution – to tails 0.9 % M 1To CIL Tailings Solution – to SART 0.6 % M 1To Combined Tailings 12.1 % M 1Total Copper Recovered 87.9 % M 1

Cu concentrate grade – average 25.0 %CuT M 1

DP Ore Summary Copper Distribution - % by mass Mine Life Units Source

To Copper Concentrate 80.7 % T, C 1

To Flotation Scavenger Tailings 10.8 % M 1To First Cleaner Scavenger Tailings 8.5 % M 1To CIL Tailings Solids 5.5 % MTo CIL Tailings Solution - total 1.5 % MTo CIL Tailings Solution – to tails 0.9 % MTo CIL Tailings Solution – to SART 0.6 % MTo Combined Tailings 17.2 % MTotal Copper Recovered 82.8 % M

Cu concentrate grade – average 25.0 %CuT M

GRD Ore Summary Copper Distribution - % by mass Mine Life Units SourceTo Copper Concentrate 92.3 % MTo Flotation Scavenger Tailings 6.1 % MTo First Cleaner Scavenger Tailings 1.6 % MTo CIL Tailings Solids 1.0 % MTo CIL Tailings Solution - total 1.2 % MTo CIL Tailings Solution – to tails 0.7 % M

Life of Mine Summary Copper Distribution - % by mass

To First Cleaner Scavenger Tailings

To CIL Tailings Solution – to tailsTo CIL Tailings Solution – to SART

Years 3-7:For Cu Head < 0.13%, y= -67004.4(Cu Head)^2 + 1873.2(Cu Head) - 62.708For Cu Head > 0.025%Cu, y=124.09(Cu Head) + 51.121Years 8+y=11.446Ln(Cu Head) + 101.855

Years 3-7:For Cu Head < 0.13%, y= -67004.4(Cu Head)^2 + 1873.2(Cu Head) - 62.708For Cu Head > 0.025%Cu, y=124.09(Cu Head) + 51.121Years 8+y=11.446Ln(Cu Head) + 101.855

Years 3-7:For Cu Head < 0.13%, y= -67004.4(Cu Head)^2 + 1873.2(Cu Head) - 62.708For Cu Head > 0.025%Cu, y=124.09(Cu Head) + 51.121Years 8+y=11.446Ln(Cu Head) + 101.855

A B C D E F G H I J K L

1

2

3456789

725726727728729730731732733734735736737738739740741742

743

744745

746

747748749750751752753754755756

757

758759760761762763764765766767768769

770

771772773774775776777778779780781782

783

784785786787788789790791792793794795796797798799800801

Page 15: M400000-110-DC-001 Concentrator

document.xls Page 15 of 70

DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001Project Cerro Casale Feasibility Data SourcesProject No M40000 O Owner’s (CMC) Input V Vendor-supplied dataClient Compañía Minera Casale C Calculated T TestworkDate 17-Jun-11 P AMEC – Process input M Mass balanceRevision 1 D AMEC – Other disciplines input R Regulatory/permitting requirement

Design Criteria - Concentrator Value Unit Source Comments Rev. Ref

To CIL Tailings Solution – to SART 0.5 % MTo Combined Tailings 7.9 % MTotal Copper Recovered 92.1 % M

Cu concentrate grade – average 30.5 %CuT T, C y=44.356(Cu Head) + 16.81 0

A B C D E F G H I J K L

1

2

3456789

802803804805806807

Page 16: M400000-110-DC-001 Concentrator

document.xls Page 16 of 70

DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001Project Cerro Casale Feasibility Data SourcesProject No M40000 O Owner’s (CMC) Input V Vendor-supplied dataClient Compañía Minera Casale C Calculated T TestworkDate 17-Jun-11 P AMEC – Process input M Mass balanceRevision 1 D AMEC – Other disciplines input R Regulatory/permitting requirement

Design Criteria - Concentrator Value Unit Source Comments Rev. Ref

MDBX Sul Ore Summary Copper Distribution - % by mass Mine Life Units Source

To Rougher Concentrate T, C

To Copper Concentrate 94.2 % T, C 1

To Flotation Scavenger Tailings 2.1 % M 1To First Cleaner Scavenger Tailings 3.7 % MTo CIL Tailings Solids 2.4 % MTo CIL Tailings Solution - total 1.4 % MTo CIL Tailings Solution – to tails 0.8 % MTo CIL Tailings Solution – to SART 0.5 % MTo Combined Tailings 5.3 % MTotal Copper Recovered 94.7 % M

Cu concentrate grade – average 27.0 %CuT M 0

Mine Life Units Source

To Copper Concentrate 93.0 % M 1To Flotation Scavenger Tailings 1.0 % M 1To First Cleaner Scavenger Tailings 6.0 % M 1To CIL Tailings Solids 3.9 % MTo CIL Tailings Solution - total 1.4 % MTo CIL Tailings Solution – to tails 0.9 % MTo CIL Tailings Solution – to SART 0.6 % MTo Combined Tailings 5.8 % MTotal Copper Recovered 94.2 % M

Cu concentrate grade – average 27.6 %CuT T, C y=48.878*(Cu Head) + 16.149 1

Rougher Tail %CuYears 3-7 0.024 M 1Years 8-12 0.009 M 1Years 11+ 0.008 M 1

DP 0.025 T, C 1

DP DSU 0.030 M 1DP DSL 0.015 M 1GRD 0.021 T y=-0.0105+0.1273*(Cu Head)VCGL 0.002 T y=0.0249+0.007*ln(Cu Head)MDBX Mix 0.044 M 0MDBX Sul 0.007 M 1

DP Rougher Concentrate %Cu T, C Years 8+ y=8.8528*(Cu Head) - 0.1661

1st Cleaner Tail Grade 0.5 %Cu Design0.72 %Cu Nominal 0

Copper RecoveryCleaner Circuit Copper Recovery % as ratio of %Cu in stage conc vs. %Cu in stage feed

Years 3-7 92.6 M, P 1Years 8-12 94.6 M, P 1Years 11+ 95.2 M, P 1

DP 90.5 P,T 1DP DSU 90.5 M 1DP DSL 90.4 M 1

GRD 98.3 P,TVCGL 93.9 P,T

MDBX Mix 96.5 P,TMDBX Sul 96.2 P,T

1st Cleaner Stage Copper Recovery % as ratio of %Cu in stage conc VS. %Cu in stage feedYears 3-7 76.4 M 1

Years 8-12 81.4 M 1Years 11+ 85.3 M 1

DP 73.1 M 1DP DSU 44.4 M 1DP DSL 77.1 M 1

GRD 85.7 M 1VCGL 85.5 M 1

MDBX Mix 35.4 M 1MDBX Sul 68.9 M 1

2nd Cleaner Stage Copper Recovery % as ratio of %Cu in stage conc VS. %Cu in stage feedYears 3-7 88.5 M 1

Years 8-12 88.2 M 1Years 11+ 83.4 M 1

DP 87.3 M 1DP DSU 79.9 M 1DP DSL 89.8 M 1

GRD 89.8 M 1VCGL 79.9 M 1

MDBX Mix 79.9 M 1MDBX Sul 94.2 M 1

3rd Cleaner Stage Copper Recovery % as ratio of %Cu in stage conc VS. %Cu in stage feedYears 3-7 94.5 M 1

Years 8-12 93.9 M 1Years 11+ 89.0 M 1

DP 93.5 M 1DP DSU 85.9 M 1DP DSL 99.8 M 1

GRD 92.8 M 1

y= MAX{Final Cu Rec /0.975, MIN[-13.855(Cu Head)^2 + 20.296(Cu Head) -1.989, 5.444]/100/(Cu Head)}For Cu Head < 0.68%Cu, y=-43.204(Cu Head)^2 + 58.8(Cu Head) + 78.007For Cu Head >=0.68%Cu, y=97.6%

VCGL, VO Sul Ore Summary Copper Distribution - % by mass

Years 3-7 if Cu Head < 0.3 then y=0.0053-0.0171*ln(Cu Head)else y = 0.0259

A B C D E F G H I J K L

1

2

3456789

808

809

810

811812813814815816817818819820821

822

823824825826827828829830831832833834835836837838

839

840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896

Page 17: M400000-110-DC-001 Concentrator

document.xls Page 17 of 70

DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001Project Cerro Casale Feasibility Data SourcesProject No M40000 O Owner’s (CMC) Input V Vendor-supplied dataClient Compañía Minera Casale C Calculated T TestworkDate 17-Jun-11 P AMEC – Process input M Mass balanceRevision 1 D AMEC – Other disciplines input R Regulatory/permitting requirement

Design Criteria - Concentrator Value Unit Source Comments Rev. Ref

VCGL 85.9 M 1MDBX Mix 95.9 M 1MDBX Sul 99.8 M 1

A B C D E F G H I J K L

1

2

3456789

897898899900

Page 18: M400000-110-DC-001 Concentrator

document.xls Page 18 of 70

DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001Project Cerro Casale Feasibility Data SourcesProject No M40000 O Owner’s (CMC) Input V Vendor-supplied dataClient Compañía Minera Casale C Calculated T TestworkDate 17-Jun-11 P AMEC – Process input M Mass balanceRevision 1 D AMEC – Other disciplines input R Regulatory/permitting requirement

Design Criteria - Concentrator Value Unit Source Comments Rev. Ref

Copper upgrading factor in flotation stages

Years 3-7 4.92 M 1Years 8-12 4.15 M 1Years 11+ 3.62 M 1DP 5.47 M 1GRD 3.71 M 1VCGL 3.83 M 1MDBX Mix 4.18 M 0MDBX Sul 3.42 M 1

Years 3-7 2.33 M, P 1Years 8-12 2.45 M, P 1Years 11+ 2.38 M, P 1DP 2.40 P,T 1GRD 2.45 P,T 1VCGL 2.19 P,T 1MDBX Mix 2.00 P,T 0MDBX Sul 2.54 P,T 1

Years 3-7 1.29 M, P 0Years 8-12 1.31 M, P 0Years 11+ 1.30 M, P 0DP 1.22 P,TGRD 1.31 P,TVCGL 1.22 P,TMDBX Mix 1.22 P,TMDBX Sul 1.33 P,T

as ratio of %Cu in stage conc vs. %Cu in stage feed, used in mass balancing

1st Cleaner

2nd Cleaner

3rd Cleaner

A B C D E F G H I J K L

1

2

3456789

901

902

903904905906907908909910911

912

913914915916917918919920921

922

923924925926927928929930931

Page 19: M400000-110-DC-001 Concentrator

document.xls Page 19 of 70

DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001Project Cerro Casale Feasibility Data SourcesProject No M40000 O Owner’s (CMC) Input V Vendor-supplied dataClient Compañía Minera Casale C Calculated T TestworkDate 17-Jun-11 P AMEC – Process input M Mass balanceRevision 1 D AMEC – Other disciplines input R Regulatory/permitting requirement

Design Criteria - Concentrator Value Unit Source Comments Rev. Ref

B.4.2 Metallurgical Production: AuLife of Mine Summary Gold Distribution - % by massTo Copper Concentrate 64.9 % M 0

To Flotation Scavenger Tailings 28.0 % M

7.1 % M 1

To CIL Tailings Solids 0.8 % MTo CIL Carbon 6.9 % M

- % M

To Combined Tailings 28.2 % M 1To Dore 6.9 % MTotal Gold Recovered 71.8 % MTotal plant silver recovery - average 32.9 % M Based on available testwork data

average ore type mix & feed grade basisTo Copper Concentrate 61.9 % M 1To Flotation Scavenger Tailings 25.0 % M 1To First Cleaner Scavenger Tailings 13.1 % M CIL circuit feed 1To CIL Tailings Solids 0.8 % MTo CIL Carbon 5.7 % MTo CIL Tailings Solution – to tails - % MTo Combined Tailings 32.4 % MTo Dore 5.7 % MTotal Gold Recovered 67.6 % CTotal plant silver recovery - average 81.5 % P Based on available testwork data

DP Ore Summary Gold Distribution - % by mass Mine Life Units SourceTo Copper Concentrate 60.8 % T, CTo Flotation Scavenger Tailings 23.3 % M Rougher Tails Au grade = 0.1955(Au Head) + 0.657To First Cleaner Scavenger Tailings 15.9 % MTo CIL Tailings Solids 1.0 % MTo CIL Carbon 5.0 % MTo CIL Tailings Solution – to tails - % MTo Combined Tailings 34.2 % MTo Dore 5.0 % MTotal Gold Recovered 65.8 % C

DP DSU Ore Summary Gold Distribution - % by mass Mine Life Units SourceTo Copper Concentrate 60.1 % T, CTo Flotation Scavenger Tailings 24.2 % M Rougher Tails Au grade = 0.1955(Au Head) + 0.657To First Cleaner Scavenger Tailings 15.7 % MTo CIL Tailings Solids 1.0 % MTo CIL Carbon 5.0 % MTo CIL Tailings Solution – to tails - % MTo Combined Tailings 34.9 % MTo Dore 5.0 % MTotal Gold Recovered 65.1 % C

DP DSL Ore Summary Gold Distribution - % by mass Mine Life Units SourceTo Copper Concentrate 60.7 % T, CTo Flotation Scavenger Tailings 23.5 % M Rougher Tails Au grade = 0.1955(Au Head) + 0.657To First Cleaner Scavenger Tailings 15.8 % MTo CIL Tailings Solids 1.0 % MTo CIL Carbon 5.0 % MTo CIL Tailings Solution – to tails - % MTo Combined Tailings 34.3 % MTo Dore 5.0 % MTotal Gold Recovered 65.7 % C

To First Cleaner Scavenger Tailings

To CIL Tailings Solution – to tails

Years 3-7 Summary Gold Distribution - % by mass

y=11.183e0.0205(Final Concentrate Cu Recovery) * (if (Au Head) > 0.3, 1, (Au Head)/0.3)

y=11.183e0.0205(Final Concentrate Cu Recovery) * (if (Au Head) > 0.3, 1, (Au Head)/0.3)

y=11.183e0.0205(Final Concentrate Cu Recovery) * (if (Au Head) > 0.3, 1, (Au Head)/0.3)

A B C D E F G H I J K L

1

2

3456789

932933934

935

936

937938

939

940941942943944945946947948949950951952953954955956957

958

959960961962963964965966967968

969

970971972973974975976977978979

980

981982983984985986987988

Page 20: M400000-110-DC-001 Concentrator

document.xls Page 20 of 70

DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001Project Cerro Casale Feasibility Data SourcesProject No M40000 O Owner’s (CMC) Input V Vendor-supplied dataClient Compañía Minera Casale C Calculated T TestworkDate 17-Jun-11 P AMEC – Process input M Mass balanceRevision 1 D AMEC – Other disciplines input R Regulatory/permitting requirement

Design Criteria - Concentrator Value Unit Source Comments Rev. Ref

GRD Ore Summary Gold Distribution - % by mass Mine Life Units SourceTo Copper Concentrate 67.7 % M Final Concentrate Gold Grade = 34.846*(Au Head) + 33.913 1To Flotation Scavenger Tailings 23.9 % M Rougher Tails Au grade = 0.248(Au Head)^0.7855 1To First Cleaner Scavenger Tailings 8.4 % MTo CIL Tailings Solids 0.6 % MTo CIL Carbon 6.0 % MTo CIL Tailings Solution – to tails - % MTo Combined Tailings 26.3 % MTo Dore 6.0 % MTotal Gold Recovered 73.7 % M

MDBX Sul Ore Summary Gold Distribution - % by mass Mine Life Units SourceTo Copper Concentrate 64.7 % T, C y= 1.7253(Final concentrate Cu recovery) - 87.156 1

To Flotation Scavenger Tailings 28.2 % T, C 1

To First Cleaner Scavenger Tailings 7.1 % M 1To CIL Tailings Solids 0.6 % MTo CIL Carbon 6.6 % MTo CIL Tailings Solution – to tails - % MTo Combined Tailings 28.7 % MTo Dore 6.6 % MTotal Gold Recovered 71.3 % M

MDBX Mix Ore Summary Gold Distribution - % by mass Mine Life Units SourceTo Copper Concentrate 55.5 % T, C y= 57.4*(if Au Head >0.5, 1, (Au Head)/0.5)To Flotation Scavenger Tailings 22.0 % M Rougher tails Au grade = 0.18 gptTo First Cleaner Scavenger Tailings 22.5 % MTo CIL Tailings Solids 0.8 % MTo CIL Carbon 6.6 % MTo CIL Tailings Solution – to tails - % MTo Combined Tailings 37.9 % MTo Dore 6.6 % MTotal Gold Recovered 62.1 % MTotal Gold Recovered

VCGL, VO Sul Ore Summary Gold Distribution - % by mass Mine Life Units Source

To Copper Concentrate 67.0 % T, C 1

To Flotation Scavenger Tailings 22.8 % M 1

To First Cleaner Scavenger Tailings 10.2 % M 1To CIL Tailings Solids 0.7 % MTo CIL Carbon 8.8 % MTo CIL Tailings Solution – to tails - % MTo Combined Tailings 24.2 % MTo Dore 8.8 % MTotal Gold Recovered 75.8 % M

Rougher Tails Au recovery = 1.862(rougher tails Cu recovery) + 12.301

For final concentrate Cu recovery < 90.6, y= if((Au Head) > 0.3, 1, (Au Head)/0.3*(-1.3883*(Final Cu Recovery)^2 + 251.83(final Cu recovery) -11347)For final Cu Recovery => 90.6%, y = 73.14%At a rougher mass pull of 9%, rougher concentrate Au grade = 9.5938(Au Head) - 0.6035

A B C D E F G H I J K L

1

2

3456789

989990991992993994995996997998999

100010011002

1003

10041005100610071008100910101011101210131014101510161017101810191020102110221023

1024

1025

1026

10271028102910301031103210331034

Page 21: M400000-110-DC-001 Concentrator

document.xls Page 21 of 70

DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001Project Cerro Casale Feasibility Data SourcesProject No M40000 O Owner’s (CMC) Input V Vendor-supplied dataClient Compañía Minera Casale C Calculated T TestworkDate 17-Jun-11 P AMEC – Process input M Mass balanceRevision 1 D AMEC – Other disciplines input R Regulatory/permitting requirement

Design Criteria - Concentrator Value Unit Source Comments Rev. Ref

Rougher Tail gpt AuYears 3-7 0.17 M 0Years 8-12 0.18 M 0Years 11+ 0.17 M 0DP 0.16 M 0DP DSU 0.15 M 1DP DSL 0.16 M 1GRD 0.19 MVCGL 0.15 M 1MDBX Mix 0.19 M 0MDBX Sul 0.23 M 1

Cleaner Circuit Gold Recovery % as ratio of gold in stage conc vs. gold in stage feedYears 3-7 82.5 M, P 1

Years 8-12 84.4 M, P 1Years 11+ 86.9 M, P 1

DP 79.3 P,TDP DSU 79.3 M 1DP DSL 79.3 M 1

GRD 89.0 P,TVCGL 86.8 P,T

MDBX Mix 71.1 P,TMDBX Sul 90.1 P,T

Gold upgrading factor in flotation stages

Years 3-7 3.17 M 0Years 8-12 2.99 M 0Years 11+ 2.91 M 1

DP 3.65 M 1GRD 3.77 M 1

VCGL 3.29 M 1MDBX Mix 2.05 M 0MDBX Sul 3.10 M 1

Years 3-7 2.11 M, PYears 8-12 2.19 M, P 0Years 11+ 2.09 M, P 0

DP 2.18 P,T 1GRD 2.11 P,T 1

VCGL 2.29 P,T 1MDBX Mix 2.05 P,T 0MDBX Sul 1.99 P,T 1

Years 3-7 1.33 M, P 1Years 8-12 1.35 M, PYears 11+ 1.31 M, P 1

DP 1.24 P,TGRD 1.27 P,T

VCGL 1.22 P,TMDBX Mix 1.30 P,TMDBX Sul 1.33 P,T

as ratio of gold in stage conc vs. gold in stage feed, used in mass balancing

1st Cleaner

2nd Cleaner

3rd Cleaner

A B C D E F G H I J K L

1

2

3456789

103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058

1059

1060

1061106210631064106510661067106810691070

107110721073107410751076107710781079

1080

108110821083108410851086108710881089

Page 22: M400000-110-DC-001 Concentrator

document.xls Page 22 of 70

DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001Project Cerro Casale Feasibility Data SourcesProject No M40000 O Owner’s (CMC) Input V Vendor-supplied dataClient Compañía Minera Casale C Calculated T TestworkDate 17-Jun-11 P AMEC – Process input M Mass balanceRevision 1 D AMEC – Other disciplines input R Regulatory/permitting requirement

Design Criteria - Concentrator Value Unit Source Comments Rev. Ref

B.4.3 Metallurgical Production: Ag

Cleaner Circuit Silver Recovery % as ratio of silver in stage conc vs. silver in stage feedYears 3-7 78.1 M 0

Years 8-12 81.1 MYears 11+ 82.4 M 0

DP 72.8 M 1DP DSU 72.8 M 1DP DSL 72.8 M 1

GRD 82.1 MVCGL 82.3 M

MDBX Mix 41.6 MMDBX Sul 88.1 M

Silver upgrading factor in flotation stages

Years 3-7 3.5 M 0Years 8-12 4.0 M 0Years 11+ 3.5 M 0

DP 4.0 M 0GRD 4.0 M 0

VCGL 3.4 M 0MDBX Mix 5.1 M 0MDBX Sul 4.1 M 0

Years 3-7 1.6 M, PYears 8-12 1.5 M, P 0Years 11+ 1.4 M, P 0

DP 1.6 P,T 0GRD 1.5 P,T 0

VCGL 1.4 P,T 0MDBX Mix 1.3 P,T 0MDBX Sul 1.3 P,T

Years 3-7 1.2 M, P 0Years 8-12 1.1 M, P 0Years 11+ 1.1 M, P 0

DP 1.2 P,T 0GRD 1.1 P,T 0

VCGL 1.1 P,T 0MDBX Mix 1.1 P,T 0MDBX Sul 1.1 P,T 0

as ratio of silver in stage conc vs. silver in stage feed, used in mass balancing

1st Cleaner

2nd Cleaner

3rd Cleaner

A B C D E F G H I J K L

1

2

3456789

1090109110921093109410951096109710981099110011011102

1103

1104

1105

110611071108110911101111111211131114

1115

111611171118111911201121112211231124

1125

112611271128112911301131113211331134

Page 23: M400000-110-DC-001 Concentrator

document.xls Page 23 of 70

DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001Project Cerro Casale Feasibility Data SourcesProject No M40000 O Owner’s (CMC) Input V Vendor-supplied dataClient Compañía Minera Casale C Calculated T TestworkDate 17-Jun-11 P AMEC – Process input M Mass balanceRevision 1 D AMEC – Other disciplines input R Regulatory/permitting requirement

Design Criteria - Concentrator Value Unit Source Comments Rev. Ref

B.4.4 Flotation ParametersYear 1-5 Rougher Retention Time Required. 40.0 minutes T Based on analysis of pilot plant cell by cell recovery dataResidence Time Scale Up Factor 1.0 PScaled-up rougher retention time 40 min COptimum laboratory rougher flotation time 15 minutes TIndicated residence time scale-up factor 2.7 C

34 minutes T Based on analysis of pilot plant cell by cell recovery dataResidence Time Scale Up Factor 1 P1st cleaner retention time 20 min C1st cleaner scavenger retention time 14 min Based on analysis of pilot plant dataSecond cleaner retention time 5 min T Based on analysis of pilot plant dataThird cleaner retention time 5 min T Based on analysis of pilot plant data

Rougher flotation feed tonnage, design 7,719 tph

nominal 11.3 % T,P DP Ore

design 11.3 % T,P DP Ore1st Cleaner Scavenger Feed % solids 24.4 % O, P, M at design throughput

solids SG 2.89 M at design throughput2nd Cleaner Feed % solids 15.8 % O, P, M at design throughput A

solids SG 3.20 M at design throughput3rd Cleaner Feed % solids 21.7 % O, P, M at design throughput

solids SG 3.79 M at design throughput

Solids specific Gravity in flotation T, C

Flotation air holdup volume allowance 12 % P

Required flotation cell volumeRougher 13,067 C at design throughput and nominal head grade1st Cleaner 1,699 C at design throughput and design metal units1st Cleaner Scavenger 855 C at design throughput and design metal units

2nd Cleaner 147 C

3rd Cleaner 38 C

Flotation stages retention time provided as proportion of requirementRougher 44.1 min C 110.2%1st Cleaner 21.2 min C 105.9%1st Cleaner Scavenger 16.4 min C 116.9%2nd Cleaner 17.1 min C 341.0%3rd Cleaner 19.9 min C 397.8%

Flotation cells type retained Tank Pforced aeration O

Target froth removal rate range for design Max 1.5 t/h/m VFroth removal efficiency of internal launders 0.75 m/m P recognizing crowding limitations with double lipTarget carrying rate range for design for minimum open cell area requirements

Rougher 0.5 to 1.5 V1st Cleaner Scavenger 0.3 to 0.8 VCleaners 1.0 to 2.0 V

Rougher flotation cells configurationcell size 300 PNo. of lines 6 each P matching number of grinding linesNo. of cells per line 8 each Ccell line arrangement 1+1+1+1+1+1+1+1 P

launder configuration P

Estimated Lip Loading Rate 1.50 t/h/m C Assuming 7.13 m as diameter for cells, at design production

Estimated Carry Rate 1.50 C

Rougher concentrate lip density 30 % solids P

1st Cleaner flotation cells configurationcell size 200 PNo. of lines 1 each PNo. of cells per line 10 each Ccell line arrangement 1+1+1+1+1+1+1+1+1+1 Plaunder configuration P Cell 2-10: peripheralEstimated Lip Loading Rate 1.50 t/h/m C Assuming 7 m as diameter for cells, at design production AEstimated Carry Rate 2.00 C A

17.1 % solids P

Pilot Plant 1st Cleaner/1st Cleaner Scavenger Retention Time Required.

Mass recovery to rougher concentrate

t/m3

t/m3

t/m3

Function (SolidsSGfromCuGrade) of copper assaySolidsSGfromCuGrade = 5.32 * CuGr / 100 + 2.77Solids SG = 5.1548*(%Cu)+2.7525

m3

m3

m3

m3 at design throughput and design metal units, based on lip loading and froth carrying capacity

m3 at design throughput and design metal units, based on lip loading and froth carrying capacity

for minimum lip length requirementsOutotec Reference\Flotation\Minerals Engineering International Online - Froth Flotation Latest News.mht

t/h/m2Outotec Reference\Flotation\Minerals Engineering International Online - Froth Flotation Latest News.mht

t/h/m2

t/h/m2

m3

Cell 1: Peripheral and radialCells 2-8: Peripheral

t/h/m2 Assuming 7.13 m as diameter for cells, at design productionValue can be increase through adjustment of froth crowder

m3

Cell 1: peripheral + radialsCells 2 - 10: Peripheral

t/h/m2 Assuming 7 m as diameter for cells, at design productionValue can be increase through adjustment of froth crowder

1st Cleaner concentrate lip density

A B C D E F G H I J K L

1

2

3456789

113511361137113811391140114111421143114411451146114711481149

1150

115111521153

1154

1155

1156

1157

1158

1159

1160116111621163

1164

1165

1166

1167

1168

11691170117111721173117411751176117711781179118011811182

1183

1184

1185

11861187

1188

118911901191

1192

1193

1194

11951196119711981199

12001201120212031204

1205

1206

1207

Page 24: M400000-110-DC-001 Concentrator

document.xls Page 24 of 70

DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001Project Cerro Casale Feasibility Data SourcesProject No M40000 O Owner’s (CMC) Input V Vendor-supplied dataClient Compañía Minera Casale C Calculated T TestworkDate 17-Jun-11 P AMEC – Process input M Mass balanceRevision 1 D AMEC – Other disciplines input R Regulatory/permitting requirement

Design Criteria - Concentrator Value Unit Source Comments Rev. Ref

1st Cleaner Scavenger flotation cells configurationcell size 200 PNo. of lines 1 each PNo. of cells per line 5 each Ccell line arrangement 1+1+1+1+1 Plaunder configuration PEstimated Lip Loading Rate 0.1 t/h/m C Assuming 7 m as diameter for cells, at design production AEstimated Carry Rate 0.1 C A

27 % solids P

2nd Cleaner flotation cells configurationcell size 100 PNo. of lines 1 each PNo. of cells per line 5 each Ccell line arrangement 1+2+2 Plaunder configuration PEstimated Lip Loading Rate 1.3 t/h/m C Assuming 5.6 m as diameter for cells, at design production AEstimated Carry Rate 0.8 C A

23 % solids P 0

3rd Cleanercell size 30 PNo. of lines 1 each PNo. of cells per line 5 each Ccell line arrangement 1+2+2 Plaunder configuration P Cell 3-5: peripheralEstimated Lip Loading Rate 1.50 t/h/m C Assuming 3 m as diameter for cells, at design production AEstimated Carry Rate 2.00 C A

25 % solids P

Rougher Flotation pH 9.2 TCleaner Flotation pH 10.5 - 11 T

Flotation Air Superficial Velocity, JgRougher 1.4 cm/s PCleaners 2.5 cm/s P

B.4.6 WaterProcess water to Rougher Launder 2.5 % v/v % of Concentrate volumeProcess water to 1st Cleaner Launder 4.2 % v/v P % of Concentrate volumeProcess water to 1st Cleaner Scavenger Launder 4.2 % v/v P % of Concentrate volumeProcess water to 2nd Cleaner Launder 5.8 % v/v P % of Concentrate volumeProcess water to 3rd Cleaner Launder 7.5 % v/v P % of Concentrate volume

B4.7 ReagentsReagents added

Rougher T

Regrinding P

secondary collector, frother Tsecondary collector, frother T

T

P

m3

Cell 1: peripheral + radialsCells 2 - 5: Peripheral

t/h/m2 Assuming 7 m as diameter for cells, at design productionValue can be increase through adjustment of froth crowder

1st Cleaner Scavenger concentrate lip density

m3

Cell 1 - 2: peripheral + radialsCells 3-5: Peripheral

t/h/m2 Assuming 5.6 m as diameter for cells, at design productionValue can be increase through adjustment of froth crowder

2nd Cleaner concentrate lip density

m3

Cell 1-3: peripheral + radialsCells 4-5: peripheral

t/h/m2 Assuming 3 m as diameter for cells, at design productionValue can be increase through adjustment of froth crowder

3rd Cleaner concentrate lip density

lime, primary & secondary collectors, frother

lime, cellulose, secondary collector

1st Cleaner1st Cleaner Scavenger

2nd Cleaner lime, cellulose, secondary collector, frother

3rd Cleaner lime, cellulose, secondary collector, frother

A B C D E F G H I J K L

1

2

3456789

1208

1209

12101211121212131214

1215

1216

12171218

1219

12201221122212231224

1225

1226

12271228

1229

12301231123212331234

1235

1236

12371238123912401241124212431244124512461247124812491250125112521253

1254

1255

1256

1257

1258

1259

1260

Page 25: M400000-110-DC-001 Concentrator

document.xls Page 25 of 70

DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001Project Cerro Casale Feasibility Data SourcesProject No M40000 O Owner’s (CMC) Input V Vendor-supplied dataClient Compañía Minera Casale C Calculated T TestworkDate 17-Jun-11 P AMEC – Process input M Mass balanceRevision 1 D AMEC – Other disciplines input R Regulatory/permitting requirement

Design Criteria - Concentrator Value Unit Source Comments Rev. Ref

B4.8 Flotation Pumping

1.5 min P

Froth factors - pumpsGrinding circuit cyclone feed 1.00 PRegrinding circuit cyclone feed 1.25 PRougher Concentrate and all cleaner tails 1.50 PCleaners 2.00 P

Froth factors – launders and pumpboxesGrinding

Ball Mill Cyclone Overflow 1.00 P 1Ball Mill Cyclone Underflow 1.00 P 1

Rougher Concentrate 1.25 P 1Rougher tails 1.25 P 1Concentrate scavenger flotation 2.00 P 1Tails Thickener Underflow 1.00 P 1Scavenger Concentrate 2.00 P 13rd Cleaner Concentrate 3.00 P 12nd Cleaner flotation Concentrate 3.00 P 11st Cleaner Concentrate 3.00 P 1Regrind Area

Concentrate to Regrinding Mills 1.25 P 1Cyclone Overflow 1.25 P 1

Cyclone Underflow 1.00 P 1

1st Cleaner Feed PumpboxDesign feed flowrate 4428 M unaerated 1Indicated pumpbox volume 332 C Froth Factor applied as direct multiplier 1

1st Cleaner Concentrate PumpboxDesign feed flowrate 1688 M unaerated 1Indicated pumpbox volume 127 C Froth Factor applied as direct multiplier 1

1st Cleaner Tailings PumpboxDesign feed flowrate 3052 M unaerated - nominal + 10% 1Indicated pumpbox volume 95 C Froth Factor applied as direct multiplier 1

2nd Cleaner Concentrate PumpboxDesign feed flowrate 434 M unaerated 1Indicated pumpbox volume 33 C Froth Factor applied as direct multiplier 1

2nd Cleaner Tailings PumpboxDesign feed flowrate 1278 M unaerated 1Indicated pumpbox volume 40 C Froth Factor applied as direct multiplier 1

3rd Cleaner Concentrate PumpboxDesign feed flowrate 289 M unaerated 1Indicated pumpbox volume 22 C Froth Factor applied as direct multiplier 1

Regrind Mills Distributor feed pumpbox P 1st Cleaner Scavenger ConcentrateDesign feed flowrate 697 M unaerated - nominal + 10% 1Indicated pumpbox volume 22 C Froth Factor applied as direct multiplier 1

Standby pumps Yes O 0

Flotation pumpbox minimum design retention timecalculated considering volume between height covering minimum pump NPSH requirements and 85% pumpbox level as maximum normal control range

m3/hm3

m3/hm3

m3/hm3

m3/hm3

m3/hm3

m3/hm3

m3/hm3

A B C D E F G H I J K L

1

2

3456789

1261

1262

1263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287

128812891290

1291

1292

129312941295

129612971298

1299

1300

13011302

1303

130413051306

1307

1308

13091310

1311

1312

131313141315

Page 26: M400000-110-DC-001 Concentrator

document.xls Page 26 of 70

DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001Project Cerro Casale Feasibility Data SourcesProject No M40000 O Owner’s (CMC) Input V Vendor-supplied dataClient Compañía Minera Casale C Calculated T TestworkDate 17-Jun-11 P AMEC – Process input M Mass balanceRevision 1 D AMEC – Other disciplines input R Regulatory/permitting requirement

Design Criteria - Concentrator Value Unit Source Comments Rev. Ref

B.5 Flotation Concentrate RegrindingMill type Ball Mill OMill product P80 25 μm T BMill product P80 Selected 30 μm O, T, C Result with 1 ball mill. 0Mill feed F80 85 μm P design

Regrind required mill power Yr 8-12 11.75 kWh/t T, P at shaftYr 3-7 8.55 kWh/t T, P

Yr 8-12 1,053 t/h M

Yr 3-7 1,101 t/h M

Regrind mill drive efficiency 95 % P,VRequired regrinding power input 13,024 kW C at motor leads

Indicated regrind ball mill dimensions For 2 ball mills and P80 = 25 microns. ball mill diameter 5.5 m P 18 ft ball mill length 12.2 m P 40 ftLiner material rubber P A

Installed motor rated capacity 6.71 MW V 9000 hp per ball millNumber of installed regrinding mills indicated 2 each C Required for P80 = 25 microns.Number of installed regrinding mills selected 1 each O Client´s Request 0Indicated power requirement coverage 51.5 % C

Ball size – dia. 20 mm PRequired ball loading 35 % v/v V FLSmidth and Metso 0Ball charge weight, per mill 517 t V FLSmidth 0Fraction of critical speed 76 % P

Classification equipment type cyclone PNominal Circulating Load 150 % PDesign Circulating Load 200 % PCyclone underflow slurry density 56-60 % solids P,V

Design cyclone feed dataCyclone feed slurry density 42.6 % solids MCyclone feed flowrate solids 3,302 t/h M Totals for both cyclopaks

slurry 5,588 M unaerated

Number of cyclopak 2 each PCyclone data – per cyclopakdiameter 380 mm Pnumber required, maximum 14 units P,Vnumber installed (including spares) 16 units P

Cyclone feed pumpbox retention time 2 min P 0Number of pumpbox 1 ea PDesign feed flowrate, per pumpbox 5,587 M unaeratedCyclone feed pumpbox volume required 0.0 C per pumpbox - Froth factor applied

2nd and 3rd Cleaner Tails Distributor P 3-way split into regrind mills cyclone feed pumpboxesRetention time 45 s PDesign feed flowrate 2062 M unaerated – 1.25 froth factorIndicated pumpbox volume 39 C

Regrind mill ball design consumption 0Bond abrasion index 0.15 g P Assumed value for sulphides 0

30 % P 0

Unit consumption 0.057 kg/kWh C Bond equation 0Regrind mill power draw 6365 kW P installed motor power - 5% for drive efficiency 0Design ball usage Regrinding 8.8 tpd per mill C 0Design ball usage Lime Grinding 0.10 tpd per mill C 0Design ball usage Regrinding + Lime 8.9Ball Consumption, ROM basis 55.4 g/t C 0Ball Consumption, fresh feed basis 353 g/t C 0Storage capacity 5 days P 0

44 t PBall diameter 20 mm P 0

Regrind circuit fresh feed design tonnage

m3/h

m3/hm3

m3/hm3

Consumption reduction for ball alloy and heat treatment

reduction of empirical equation stated consumption for improved ball metallurgy

A B C D E F G H I J K L

1

2

3456789

1316131713181319

1320

1321

13221323

1324

1325132613271328132913301331133213331334

1335

13361337133813391340134113421343134413451346134713481349135013511352

1353

135413551356135713581359136013611362

1363

1364

136513661367

1368

1369137013711372

1373

13741375137613771378137913801381138213831384

Page 27: M400000-110-DC-001 Concentrator

document.xls Page 27 of 70

DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001Project Cerro Casale Feasibility Data SourcesProject No M40000 O Owner’s (CMC) Input V Vendor-supplied dataClient Compañía Minera Casale C Calculated T TestworkDate 17-Jun-11 P AMEC – Process input M Mass balanceRevision 1 D AMEC – Other disciplines input R Regulatory/permitting requirement

Design Criteria - Concentrator Value Unit Source Comments Rev. Ref

B.6 Flotation Concentrate DewateringCopper concentrate production rate

54.1 t/h M average Yr 1-5 feed grade75.0 t/h M nominal throughput@design feed grades, Year 1-1072.6 t/h M nominal throughput@design feed grades, Year 11-19

Concentrate P80 60 µm T Yr 1-5 composite pilot plant testworkConcentrate thickener feed slurry density 23.3 % solids M Average Yr 1-5

Thickener internal dilution implemented? Yes PLimiting rise rate 1.2 T 0.5 scale-up factor applied

B.6.1 Concentrate Thickening at PlantUnderflow solids, weight percent 70 % solids D pipeline design basis AUnit rate – conventional basis 0.125 m²/t/d P,T Minimum limit to unit rate for sizing conventional thickenersYield stress 100 Pa T at targeted U/F density, unsheared 1Selected thickener type Conventional PIndicated thickener diameter 16.9 m C nominal throughput @ design feed grades, year 1 - 10Selected thickener diameter <17 m P

Overflow clarity target < 15 g/l PFlocculant addition 20 g/t T,P anionic, 15% charge densityFroth Control Water Addition 25 PThickener overflow standpipe retention time 3 min PThickener overflow standpipe volume 12.0 C

B.6.2 Concentrate PipelineUtilization of concentrate transfer system 98 % T Testwork indicated continuous operation required to prevent settlingMinimum slurry flow rate in pipeline 36 T, O From testwork and Brass/Techint interpretation 1Operating slurry density range of pipeline, minimum 64 % solids O Brass-Techint 1Operating slurry density range of pipeline, maximum 68 % solids O Brass-Techint 0

B.6.3 Concentrate Thickening at Port

Service 0

Port Thickener Feed solids, weight percent 51.9 % solids M Design for flushing of pipeline.Underflow solids, weight percent 65 % solids PUnit rate – conventional basis 0.26 m²/t/d TYield stress 200 Pa T at targeted U/F density, unsheared 1Selected thickener type Conventional PIndicated thickener diameter 16.9 m C nominal throughput @ design feed grades, year 1 - 10Selected thickener diameter <17 m P

Overflow clarity target < 15 g/l PFlocculant addition 15 g/t T,P anionic, 15% charge densityFroth Control Water Addition 25 PThickener overflow tank retention time 11 min PThickener overflow standpipe volume 9.9 C

B.6.4 Concentrate Pipeline Storage TanksDry Solid SG 4.1 M Copper ConcentrateSlurry SG 2.12 C 65% Solids (Plant site) Plantsite tanks Retention time 26 hours PIndicated Volume Required 1,311 C Based on 65% Solids

Portsite tanks Retention time 12 hours P Tanks half full at design feed rate. 0 Inventory in Tank 50 % P 0 Total Tank volume 24 Hours CSlurry SG 1.94 C Based on 64% Solids 0Slurry density 64 % solids O 0Slurry flowrate 55 O 0Indicated Volume Required 1,063 C 0

Number of agitated storage tanks2 each P2 each P

Recommended H:D ratio 1:1 PRetained tank diameter 10 m PCalculated tank height - live fraction 8 m C

·         Nominal·         Design

m3/h/m2

m3/h

m3

m3/h

For intermittent batch flushing of pipeline and collection of sumps, polishing filter rejects, filtrate, sand filter rejects, and emergency pond reclaim.

m3/h

m3

m3

m3/hm3

·         at plant site·         at port site

A B C D E F G H I J K L

1

2

3456789

138513861387138813891390139113921393

1394

13951396139713981399140014011402140314041405

1406

1407

1408

1409141014111412

1413141414151416

1417

1418141914201421142214231424142514261427

1428

1429

1430

143114321433143414351436

1437143814391440144114421443

144414451446144714481449145014511452

Page 28: M400000-110-DC-001 Concentrator

document.xls Page 28 of 70

DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001Project Cerro Casale Feasibility Data SourcesProject No M40000 O Owner’s (CMC) Input V Vendor-supplied dataClient Compañía Minera Casale C Calculated T TestworkDate 17-Jun-11 P AMEC – Process input M Mass balanceRevision 1 D AMEC – Other disciplines input R Regulatory/permitting requirement

Design Criteria - Concentrator Value Unit Source Comments Rev. Ref

B.6.5 FiltrationFlow moisture limit of concentrate 11.6 % P SGS Lakefield result for Year 6 to 10 concentrateMaximum Moisture content for sea shipping 10.5 % P SGS Lakefield result for Year 6 to 10 concentrateTargeted concentrate residual moisture 9.0 % PBulk density of dry cake 2.19 T Calculated from Larox test reportCake thickness 42 mm T Larox test report

Indicated filtration cycle duration 10.0 min C0.5 min P,V1.5 min V 11 min V 1

3.0 min V 1

0.0 min V 1

0.5 min P,V2.0 min V 10.5 min P,V1.0 min P,V

Filtration circuit utilization rate 85 % PFiltration circuit utilization rate taken 75 % VExcess installed filtration capacity 11.8 % C For design tonnage 1Unit filtration rate required 469.1 C Based on indicated filtration cycle durationMinimum filtration area required nominal 151.9 V For Nominal concentrate generation rate 1Minimum filtration area required design 192.0 V For Design concentrate generation rate 1

Filter type pressure Phorizontal plates O Type Larox PF 96/96 M60

Number of filtration units provided 2 each PNominal individual plate area 6 P,V 1.5 m x 4.01 mNumber of installed plates, per filter 16 each P 1Filtration area provided, per filter 96 V 1Filtration area provided 192 V 1Expanded area potential per filter 96 V 1Expanded area potential 192 V 1

Total filtration area provided 192 CUnit filtration rate provided by installation 590.0 C 1

Indicated cake discharged per cycle, per filter - dry basis 9,393 kg C dry basis, excludes allowance for delays between cyclesInstantaneous cake discharge rate, per filter - dry basis 282 tph C

Drying air pressure 800 kPag P,VDrying airflow rate 230 P,VPressing air pressure 1,600 kPag P,VSlurry feed pressure 600 kPag PInstantaneous filter feed flowrate 297.9 C Filter feed pump output required for this application 0

Number of compressors installed 3 P 1 operated per filter, one stand-by

Cloth wash water consumption (average) 0.5 V Outotec 1Other filtered water to pressure filter (average) 1.2 V Outotec 1Solids recovery to filtrate 0.5 % PTotal Water Reporting to Port Site Water Treatment

878 m³/d M At Design Concentrate Production (75 tph)1,105 m³/d M Based on Yrs 1 - 5

B.6.6 Concentrate ShiploadingConcentrate shed design capacity 60,000 t OConcentrate stockpile angle of repose 45 degrees P benchmarking of 5 sites, value is average + one std deviation AConcentrate load-out rate 800 t/h O

B.6.7 Port Site Sand FiltersFeed stream Portsite thickener overflow 0Filtration Rate (Feed slurry) 19.5 m3/h/m2 P SME Mineral Processing Handbook, Equipment maximum BSolids content in sand filter feed effluent 200 mg/l P SME Mineral Processing Handbook, Equipment maximum BSolids content in sand filter filtrate water 10 mg/l P SME Mineral Processing Handbook, Equipment maximum BBackwash as percentage of feed volume, nominal 3.5 % P From SME Mineral Processing Handbook P 9-17 0Backwash as percentage of feed volume, design 5 % P 0

B.6.8 Port Site Polishing FiltersFeed stream Sand Filter filtrate 0Filtration rate TBD V 0Solids content in feed 10 mg/l C 0Solids content in polishing filter rejects TBD V 0Filtration Efficiency 70 % P The Nalco Water Handbook, page 6.43 0Reduction of TSS ratio 0.2 fraction V To be confirmed in equipment selection process 0Filtrate content in polishing filter filtrate 2 mg/l C To be confirmed in equipment selection process 0Backwash water volume 1.1 V To be confirmed in equipment selection process 0Back wash pressure <20 psi V To be confirmed in equipment selection process 0Backwash cycle frequency 18 to 36 hours V To be confirmed in equipment selection process 0Backwash duration 45 minutes V To be confirmed in equipment selection process 0Backwash Air requirement 40 V To be confirmed in equipment selection process 0

t/m3

·         pump ramping up and down·         feed pumping·         diaphragm pressing·         cake blow (drying)

·         extended blowing time allowance Provision to accommodate gradual blinding of cloth in field application, Included in cake blow.

·         filter opening·         cake discharge/cloth wash·         filter closing·         valves opening/closing delays

kg/h/m2

m2

m2

m2

m2

m2

m2

m2

m2

kg D.S./m2h

Nm3/min

m3/h

m3/cycle/filterm3/cycle/filter

·         average·         maximum

m3/cycle

Nm3/cycle

A B C D E F G H I J K L

1

2

3456789

1453145414551456

1457

1458145914601461146214631464

1465

146614671468146914701471147214731474

1475

1476

147714781479148014811482

1483

1484

1485

1486

14871488

1489

1490

14911492149314941495

1496

14971498

1499

150015011502

1503

1504

15051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530

1531

153215331534

1535

1536

Page 29: M400000-110-DC-001 Concentrator

document.xls Page 29 of 70

DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001Project Cerro Casale Feasibility Data SourcesProject No M40000 O Owner’s (CMC) Input V Vendor-supplied dataClient Compañía Minera Casale C Calculated T TestworkDate 17-Jun-11 P AMEC – Process input M Mass balanceRevision 1 D AMEC – Other disciplines input R Regulatory/permitting requirement

Design Criteria - Concentrator Value Unit Source Comments Rev. Ref

B.7 Flotation Tailings DewateringB.7.1 Rougher Tailings Thickening

Average feed tonnage 6,316 t/h M Assuming 10% rougher mass pullDesign feed tonnage 6,870 t/h P peak tonnage; 11% rougher weight recoveryRougher Tailings Dry SG 2.77 MRougher tailings P80 150 µm PRougher tails slurry density 34.5 % MFroth control spray water (PW) 50 m³/h P Per Thickener

Target underflow density 64 % solids P Required to meet permitted fresh water extraction limitTarget underflow density Years 8-12 62 % solids T Outotec TestworkThickener type high rate PYield stress 70 Pa T,P at targeted U/F density, unsheared 1Internal feed dilution slurry density 25 % solids TEquivalent settling rate 0.75 t/h/m² T

Number of units 2 each PIndicated thickener diameter 76.4 m CSelected thickener diameter 80 m PLimiting rise rate 1.9 m³/h/m² T 0.5 scale-up factor appliedActual rise rate 0.91 m³/h/m² C per volume of supernatant crossing through solids bedOverflow clarity < 50 g/l PFlocculant addition per ton rougher tails 32.5 g/t T,P anionic, 15% charge densityThickener O/F standpipe retention time na min PThickener U/F pumpbox retention time 2.35 min PThickener U/F pumpbox volume 290 C c/w O/F from cleaner tails thickener at Design throughputsEvaporation 0.84 C 0

B.7.2 Cleaner Scavenger Tailings ThickeningAverage solids feed rate 750.5 t/h MDesign solids feed rate 776.4 t/h P Worst case scenario for flotation recoveryFirst cleaner tailings specific gravity 2.78 MCleaner tailings P80 20 µm TAverage Cleaner tails slurry density 27 % M Base CaseDesign Cleaner tails slurry density 16.3 % M Design CaseLimiting rise rate 1.7 m³/h/m² T 0.5 scale-up factor applied

Thickener type high rate PYield stress 60 Pa T,P at targeted U/F density, unsheared 1

Pre-leach ThickenerTarget underflow density 50 % solids OInternal feed dilution slurry density 18 % solids TEquivalent settling rate 0.2 t/h/m² T,P

Indicated thickener diameter 70 m C Based on design throughput at settling rateSelected thickener diameter 70 m PActual rise rate 0.83 m³/h/m² C per volume of supernatant crossing through solids bedFlocculant addition 20 g/t T,P anionic, 15% charge densityFroth control spray water addition 30 P AssumedEvaporation 0.64 C 0

Pre-leach thickener overflow flowrate 3,349 M designOverflow standpipe retention time na min P

B.8 Reagents Handling.B.8.1 General Reagents Systems Configuration (except for packaged flocculant systems)

3 days OMixing tank ~ 2 batches/day P

Distribution tank P

m3

m3/h

m3/hm3/h

m3/h

Holding tank / Warehouse inventory volume sufficient for mixing frequency of 2 batches/day (not

applicable to lime, Cellulose and liquid reagents added neat)storage for ~ 1.5 batches (not applicable to lime, Cellulose and liquid reagents added neat)

A B C D E F G H I J K L

1

2

3456789

1537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561

1562

15631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585

1586

1587

15881589

159015911592159315941595

1596

1597

Page 30: M400000-110-DC-001 Concentrator

document.xls Page 30 of 70

DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001Project Cerro Casale Feasibility Data SourcesProject No M40000 O Owner’s (CMC) Input V Vendor-supplied dataClient Compañía Minera Casale C Calculated T TestworkDate 17-Jun-11 P AMEC – Process input M Mass balanceRevision 1 D AMEC – Other disciplines input R Regulatory/permitting requirement

Design Criteria - Concentrator Value Unit Source Comments Rev. Ref

B.8.2 Potassium Amyl Xanthate (PAX)Role primary collector TConsumption 30 g/t T 2000 Feasibility

5,280 kg/d C operated basis, based on design throughput rateDesign factor 1.2 PDesign peak consumption 6,336 kg/d C operated basis, based on design throughput rate + 20% safety factorForm of supply 1000 kg V lined tote bags of pelletsReagent SG 1.35 t/m³ V

Holding tank na P not required

Mixed solution strength 15 % w/w P

Design solution consumption 40.60 m³/d C

Mixed reagent quantity per batch 3,000 kg CSolution SG 1.040 t/m³ CMixing tank capacity 3 bags P

19.2 C net volume11.4 hours P at design consumption

Holding tank capacity 18 hours P at design consumption30.4 C net volume

1 P head tank; net volume

Addition points and consumptionsto Rougher Line #1 30 g/t T per ton of fresh feed to this Rougher lineto Rougher Line #2 30 g/t T per ton of fresh feed to this Rougher lineto Rougher Line #3 30 g/t T per ton of fresh feed to this Rougher lineto Rougher Line #4 30 g/t T per ton of fresh feed to this Rougher lineto Rougher Line #5 30 g/t T per ton of fresh feed to this Rougher lineto Rougher Line #6 30 g/t T per ton of fresh feed to this Rougher line

B.8.3 Aero 3477 Promoter (A3477)Role secondary collector TConsumption 33 g/t T 2000 Feasibility

5,808 kg/d C operated basis, 176000 tpdDesign factor 1.2 PDesign peak consumption 6,970 kg/d C operated basisForm of supply 22 O Tanker Truck of liquid 1

24.3 t C 1Reagent SG 1.105 t/m³ V

Viscosity cP P 0

Holding tank capacity 1.30 trucks P Sufficient to receive contents of a full truck when at low level (30%)28.6 C Live capacity4.5 days C at design consumption

Mix solution strength 100 % w/w PDesign solution consumption 6.31 m³/d C

Distribution tank capacity 1.5 P head tank; net volume5.7 h C

Addition Points and ConsumptionsBall Mill/Cyclone feed pump box #1 24 g/t T,P per ton of fresh feed to this grinding lineBall Mill/Cyclone feed pump box #2 24 g/t T,P per ton of fresh feed to this grinding lineBall Mill/Cyclone feed pump box #3 24 g/t T,P per ton of fresh feed to this grinding lineBall Mill/Cyclone feed pump box #4 24 g/t T,P per ton of fresh feed to this grinding lineBall Mill/Cyclone feed pump box #5 24 g/t T,P per ton of fresh feed to this grinding lineBall Mill/Cyclone feed pump box #6 24 g/t T,P per ton of fresh feed to this grinding lineto Rougher Line #1 6 g/t T,P per ton of fresh feed to this Rougher lineto Rougher Line #2 6 g/t T,P per ton of fresh feed to this Rougher lineto Rougher Line #3 6 g/t T,P per ton of fresh feed to this Rougher lineto Rougher Line #4 6 g/t T,P per ton of fresh feed to this Rougher lineto Rougher Line #5 6 g/t T,P per ton of fresh feed to this Rougher lineto Rougher Line #6 6 g/t T,P per ton of fresh feed to this Rougher line Regrind mill Cyclone Feed Pumpbox #1 1.0 g/t T per ton of plant feed to 1st Cleaner Flotation Cell #1 0.6 g/t T per ton of plant feed to 1st Cleaner Scavenger flotation 0.8 g/t T per ton of plant feed to 2nd Cleaner Flotation Cell #1 0.4 g/t T per ton of plant feed to 3rd Cleaner Flotation Cell #1 0.2 g/t T per ton of plant feed

m3

m3

 Distribution tank capacity m3

m3

41 @ 0ºC11 @ 30ºC

m3

m3

A B C D E F G H I J K L

1

2

3456789

159815991600160116021603160416051606160716081609

1610

16111612161316141615

161616171618

1619

16201621

1622162316241625162616271628162916301631163216331634163516361637

16381639

1640

16411642

1643

16441645164616471648

1649165016511652165316541655165616571658165916601661166216631664166516661667166816691670

Page 31: M400000-110-DC-001 Concentrator

document.xls Page 31 of 70

DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001Project Cerro Casale Feasibility Data SourcesProject No M40000 O Owner’s (CMC) Input V Vendor-supplied dataClient Compañía Minera Casale C Calculated T TestworkDate 17-Jun-11 P AMEC – Process input M Mass balanceRevision 1 D AMEC – Other disciplines input R Regulatory/permitting requirement

Design Criteria - Concentrator Value Unit Source Comments Rev. Ref

B.8.5 Frother - MIBCRole frothing agent TConsumption 10.05 g/t T 2000 Feasibility B

1,769 kg/d C operated basis, 176000 tpdDesign factor 1.2 PDesign peak consumption 2,123 kg/d C operated basisForm of supply 22 O Tanker Truck of liquid 1

17.732 t C 1Reagent SG 0.806 t/m³ VViscosity 5 cP P 0

Holding tank capacity 1.25 trucks P27.5 C10.4 days C at design consumption

Mix solution strength 100 % w/w PViscosity 5.2 MmPa·s P MSDSDesign solution consumption 2.63 m³/d C

Distribution tank capacity 14 hours P at design consumption1.5 C net volume

Addition Points and Consumptionsto Rougher Flotation Line #1, Cell #1 5.8 g/t T per ton of feed to Rowto Rougher Flotation Line #2, Cell #1 5.8 g/t T per ton of feed to Rowto Rougher Flotation Line #3, Cell #1 5.8 g/t T per ton of feed to Rowto Rougher Flotation Line #4, Cell #1 5.8 g/t T per ton of feed to Rowto Rougher Flotation Line #5, Cell #1 5.8 g/t T per ton of feed to Rowto Rougher Flotation Line #6, Cell #1 5.8 g/t T per ton of feed to Rowto Rougher Flotation Line #1, Cell #4 3 g/t T per ton of feed to Rowto Rougher Flotation Line #2, Cell #4 3 g/t T per ton of feed to Rowto Rougher Flotation Line #3, Cell #4 3 g/t T per ton of feed to Rowto Rougher Flotation Line #4, Cell #4 3 g/t T per ton of feed to Rowto Rougher Flotation Line #5, Cell #4 3 g/t T per ton of feed to Rowto Rougher Flotation Line #6, Cell #4 3 g/t T per ton of feed to Rowto 1st Cleaner Flotation, Cell #1 0.5 g/t T per ton of plant feedto 1st Cleaner Scavenger Flotation, Cell #1 0.45 g/t T per ton of plant feedto 2nd Cleaner Flotation, Cell #1 0.2 g/t T per ton of plant feedto 3rd Cleaner Flotation, Cell #1 0.1 g/t T per ton of plant feed

B.8.6 Cellulose P packaged preparation systemRole clay depression PConsumption 150 g/t T of rougher concentrate

16.95 g/t C of plant feed2,959 kg/d C at design concentrate production rate – operated basis

Design factor 1.33 P for ore variabilityDesign peak consumption 3,936 kg/d C operated basisForm of supply 700 kg V per lined tote bag of free flowing powder

Mix solution strength 2 % w/w P in agitated preparation tank included in vendor packageViscosity 15.0 to 20.0 cP P 0

Design solution consumption 197 m³/d C Assumed solution SG of 1.0Distribution tank capacity 11.25 hours P at design consumption

92.2 m³ C net volume

Mixing system utilization 54 % PBatch preparation duration 60 min P,VNumber of batches per day 13.0 ea. C at design consumptionBatch size 15.2 m³ C net volume

Addition Points and ConsumptionsRegrind Mills Cyclone Feed Pumpbox 100 g/t P of rougher concentrate

35 g/t P of rougher concentrate15 g/t P of rougher concentrate

m3

m3

m3

1st Cleaner Concentrate Pumpbox2nd Cleaner Concentrate Pumpbox

A B C D E F G H I J K L

1

2

3456789

167116721673167416751676

1677

16781679168016811682

1683

16841685168616871688168916901691

169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733

1734

17351736

Page 32: M400000-110-DC-001 Concentrator

document.xls Page 32 of 70

DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001Project Cerro Casale Feasibility Data SourcesProject No M40000 O Owner’s (CMC) Input V Vendor-supplied dataClient Compañía Minera Casale C Calculated T TestworkDate 17-Jun-11 P AMEC – Process input M Mass balanceRevision 1 D AMEC – Other disciplines input R Regulatory/permitting requirement

Design Criteria - Concentrator Value Unit Source Comments Rev. Ref

B.8.7 Plant Site Flocculant - Magnafloc 351 P packaged preparation systemRole sedimentation PConsumption Concentrate 20 g/t P of concentrate

Cleaner Tails 45 g/t P of cleaner tailsRougher Tails 32.5 g/t P of rougher tailings

34.1 g/t C of plant feed at design throughput and head grades6233.2 kg/d C at design concentrate production rate – operated basis

Design factor 1.2Design peak consumption 7479.9 kg/d C operated basisForm of supply free-flowing powder V 700 kg lined tote bags

Mix solution strength 0.5 % w/w P in agitated preparation tank included in vendor packageMix solution viscosity 100 cP P 0Diluted solution strength 0.05 % w/w P as added to addition points after in-line dilution BDiluted solution viscosity 22 cP P 0Design solution consumption 1496.0 m³/d C Assuming solution SG = 1Distribution tank capacity 8.0 hours P at design consumption

496 m³ C net volume

Number of mix systems 2 1Mixing system utilization 13 % P 0Batch preparation duration 125 min P,V 0Number of batches per day 3.0 ea. C at design consumption 0Batch size 85.0 m³ C net volume 0

Addition Points and ConsumptionsConcentrate Thickener 20 g/t P of concentratePre-leach Flotation Tails Thickener 20 g/t P of cleaner tailingsPost leach Flotation Tails Thickener 25 g/t P of cleaner tailingsRougher Tailings Thickener #1 32.5 g/t P of rougher tailings to this thickenerRougher Tailings Thickener #2 32.5 g/t P of rougher tailings to this thickener

B.8.9 Filter Plant (Port) Flocculant - Magnafloc 336 P packaged preparation systemRole sedimentation PConsumption 15 g/t P of concentrate

0.15 g/t C of plant feed27 kg/d C at design concentrate production rate – operated basis

Design factor 1.2Design peak consumption 32.4 kg/d C operated basisForm of supply powder V 700 kg lined tote bags

Mix solution strength 0.2 % w/w P in agitated preparation tank included in vendor packageMix solution viscosity 37.4 cP P 0Diluted solution strength 0.02 % w/w P as added to addition points after in-line dilution BDiluted solution viscosity 20.0 cP P 0Design mix solution consumption 16.2 m³/d CDistribution tank capacity 12 hours P at design consumption

8.1 m³ C net volume

Mixing system utilization 50 % PBatch preparation duration 60 min P,VNumber of batches per day 12 ea. C at design consumptionBatch size 1.35 m³ C net volume

Addition Points and Consumptions

15 g/t P of concentrate· Concentrate Thickener

A B C D E F G H I J K L

1

2

3456789

173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790

1791

17921793

Page 33: M400000-110-DC-001 Concentrator

document.xls Page 33 of 70

DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001Project Cerro Casale Feasibility Data SourcesProject No M40000 O Owner’s (CMC) Input V Vendor-supplied dataClient Compañía Minera Casale C Calculated T TestworkDate 17-Jun-11 P AMEC – Process input M Mass balanceRevision 1 D AMEC – Other disciplines input R Regulatory/permitting requirement

Design Criteria - Concentrator Value Unit Source Comments Rev. Ref

B.8.11 Quicklime - CaORole pH modifier PConsumption P @100% available CaO basisFlotation circuit 0.351 kg/t T per tonne of plant feedCleaner tails leach circuit 1.30 kg/t T per tonne of flotation tailsCyanide destruction 3.0 kg/t P of CIL cleaner tails BHeap Leach 2.28 kg/t P of oxide ore BSART circuit 1.01 kg/t P of oxide ore

Consumption – per ton of sulphide ore, operated basis per tonne of plant feed equivalentFlotation circuit 351 g/t TCleaner tails leach circuit 71 g/t B,C 10% of plant tonnage, 95% plant utilization. BCyanide destruction 163 g/t B,C 5% bleed VS. daily irrigation volume, 95% utilization BHeap Leach 1,882 g/t 150 kt/d of oxide ore placement, 100 ktpd irrigation rate. BSART circuit 631 g/t 100 kt/d of oxide ore treatment rate, 95% utilization rate B

total 3097 g/t C on a plant operated basis B

Available CaO provided 76 % CaO OConsumption at quicklime supply quality 686.4 t/d C Based on 160,000 tpd, 95% utilizationDesign factor 1.2 PDesign Usage 823.6 t/d CMix solution strength 15 % w/w PMix solution strength for HL trucks 25 % w/w P

Form of supply V 27 t bulk carrier c/w pneumatic discharge systemReagent SG 3.25 t/m³ VHydrated lime solids SG 2.23 t/m³ C

Lime slaking circuit availability 75 % PSlaker type elevated temperature PSlaker capacity 46 t/h CSolution SG 1.09 t/m³ C

Slurry viscosity 45 to 700 cP P 0

Slurry Density, % w/w Viscosity, cP 011.00 7.1 to 7.9 V

Coloma, Guillermo of INA-Antofagasta0

16.00 26 to 29 V 022.00 30 to 42 V 015.00 24.45 C 025.00 33.94 C 0

Design 25.00 50.00 P 0Solution consumption 5037 m³/d C

Bulk quicklime SG 1.44 t/m³ CLime storage silo capacity 3 d P B

2471 t C1716 m³ C net volume

Distribution tank capacity – at plant 12 hours P2518 m³ C net volume

Plant lime distribution pumped volume 1049 m3/h P,C 5 times volume at peak consumption

Addition Points in ConcentratorLime to Ball Mill #1 320 g/t T per tonne of plant feedLime to Ball Mill #2 320 g/t T per tonne of plant feedLime to Ball Mill #3 320 g/t T per tonne of plant feedLime to Ball Mill #4 320 g/t T per tonne of plant feedLime to Ball Mill #5 320 g/t T per tonne of plant feedLime to Ball Mill #6 320 g/t T per tonne of plant feedLime to Regrind Mill Cyclone Pump box 274 g/t T per tonne of rougher concentrateLime to Cleaner Tailings Leach Circuit 2000 g/t T per tonne of flotation cleaner tails (Year 1 to 5 consumption)Lime to Cyanide Destruction 150 g/t P per tonne of flotation cleaner tails (CIL tails)

Grinding Media Consumption 140 g/t lime P 1Grinding Media Usage 96.1 k/d C 1

B.8.14 AntiscalantRole scale inhibitor P

Generic chemical formulation polycarboxylate / polyacrylate P

Consumption 0.5 P of process water1.5 g/t C of plant feed264 kg/d C at design throughput

Design factor 1.2 PDesign consumption 317 kg/d C

Form of supply 1 m³ O tote bins of liquid 11200 kg C 1

Supply solution strength 100 % w/w V

Solution SG 1.2 t/m³ VViscosity 5 cP P 0Design solution consumption 0.26 m³/d C

B.9 Air SystemsAir density at mine site 0.671 PAtmospheric pressure at mine site 60 kPa O M40000-0000-131-SPC-0001 BDesign temperature at mine site 20 ºC PAir density at port site 1.22 PAtmospheric pressure at port site 101.3 kPa O M40000-0000-131-SPC-0001 BDesign temperature at port site 30 ºC P

100% - 19 mm granulated powder

An Overview Of Lime Slaking And Factors That Affect The Process By: Mohamad Hassibi Chemco Systems, L.P. February 2009

g/m3

g/m3

g/m3

A B C D E F G H I J K L

1

2

3456789

17941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825

1826

18271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861

1862

1863

18641865186618671868186918701871187218731874187518761877

1878

18791880

1881

188218831884

Page 34: M400000-110-DC-001 Concentrator

document.xls Page 34 of 70

DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001Project Cerro Casale Feasibility Data SourcesProject No M40000 O Owner’s (CMC) Input V Vendor-supplied dataClient Compañía Minera Casale C Calculated T TestworkDate 17-Jun-11 P AMEC – Process input M Mass balanceRevision 1 D AMEC – Other disciplines input R Regulatory/permitting requirement

Design Criteria - Concentrator Value Unit Source Comments Rev. Ref

B.9.1 Gyratory CrushersInstalled capacity, per crusher 850 V packaged with crusher supplyDischarge air pressure 800 kPa VPower efficiency 78 % PNumber of unit, per crusher 1 P 2 units in totalPeak flow design factor 1.2 PIndicated motor size 81 kW CMotor size retained 90 kW P 160Receiver capacity 5 P 2 units, one per crusher

B.9.2 Ore Reclaim Tunnels PInstalled capacity 850 P for pneumatic toolsDischarge air pressure 700 kPa PPower efficiency 78 % PNumber of units, per area 1 P 3 units, one per coarse ore reclaim tunnel, one for fine ore stockpilePeak flow design factor 1.2 PIndicated motor size 76 kW CMotor size retained 90 kW PReceiver capacity 2 P 3 units, one per coarse ore reclaim tunnel, one for fine ore stockpile

B.9.4 Plant AirConsumption pointscarbon fines filter 190 Pgeneral purpose plant air 850 Ptotal 1,040 CPeak flow design factor 1.2 PInstalled capacity 1,248 C

Discharge air pressure 700 kPag PPower efficiency 78 % PNumber of operated units 1 ea P one operated, one stand-byIndicated motor power 93 kW CMotor size retained 112 kW PReceiver capacity 5 P

B.9.5 Flotation AirRougher cells 87,336 V 60 kPa atm, 20 C temp, 7 m Diameter cells 01st Cleaner cells 14,981 V 60 kPa atm, 20 C temp, 7 m Diameter cells 01st Cleaner Scavenger cells 9,557 V 60 kPa atm, 20 C temp, 7 m Diameter cells 02nd Cleaner cells 5,117 V 60 kPa atm, 20 C temp, 5.6 m Diameter cells 03rd Cleaner cells 1,842 V 60 kPa atm, 20 C temp, 3 m Diameter cells 0 total 118,833 C 0Peak flow design factor 1.2 PIndicated capacity 142,600 C

Discharge air pressure 138 kPa C 116 kPa minimum requirementPower efficiency 71.25 % V 0Number of operated units 5 ea. V 0Number of spares 1 ea. VInstalled capacity, per unit 30,000 P 70 kPa, 570 Im3/min airflow 0Indicated motor power 891 kW CMotor size retained 800 kW/unit V 0

4000 kW total CReceiver capacity nr P

B.9.6 Filtration Air System at PortCake drying

Instantaneous flowrate required 6,800 V

Peak flow design factor 1.0 PIndicated capacity 6,800 VDischarge air pressure 800 kPag VPower efficiency 78 % PNumber of operated units 2 ea P 2 operated, one stand-byInstalled capacity, per unit 3,400 CIndicated power requirements 388 kW CIndicated motor power 400 kW PReceiver capacity 85 V each of 2 receivers

Diaphragm pressing V per filter vendor packageInstantaneous flowrate required 1,000 VDischarge air pressure 1,500 kPag VNumber of operated units 2 ea V one per filterInstalled capacity, per unit 500 CMotor power installed 75 kW VReceiver capacity 7 V each of 2 receivers

B.9.7 Port Air SystemInstalled capacity 500 P intermittent useDischarge air pressure 700 kPa PMotor size retained nr kW P provided by filter compressorsReceiver capacity 10 P

Nm3/h

m3

Nm3/h

m3

Nm3/hNm3/hNm3/h

Nm3/h

m3

Nm3/hNm3/hNm3/hNm3/hNm3/hNm3/h

Nm3/h

Nm3/h

Nm3/h

Nm3/h

Nm3/h

m3

Nm3/h

Nm3/h

m3

Nm3/h

m3

A B C D E F G H I J K L

1

2

3456789

1885

1886

188718881889189018911892

1893

18941895

1896

189718981899190019011902

1903

190419051906

1907

1908

1909

1910

1911

191219131914191519161917

1918

19191920

1921

1922

1923

1924

1925

1926

1927

1928

19291930193119321933

1934

1935

193619371938

1939

19401941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

195219531954

19551956

19571958

1959

19601961

1962

19631964

1965

1966

Page 35: M400000-110-DC-001 Concentrator

DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001-1Project Cerro Casale Feasibility Data SourcesProject No M40000 O Owner’s Client Compañía Minera Casale C CalculatDate 40711 P AMEC – PRevision 1 D AMEC – Ot

Design Criteria - Concentrator Value Unit Source CommentsNominal 1,244 t/d MDesign 1,800 t/d M

average ore type mix & feed grade b

To Copper Concentrate 89.4 % MTo Flotation Scavenger Tailings 4.5 % M

To First Cleaner Scavenger Tailings 6.1 % M CIL circuit feed

To CIL Tailings Solids 4.0 % MTo CIL Tailings Solution - total 1.4 % MTo CIL Tailings Solution – to tails 0.9 % MTo CIL Tailings Solution – to SART 0.6 % MTo Combined Tailings 8.0 % MTotal Copper Recovered 92.0 % C c/w 85% SART recovery

Cu concentrate grade – average 31.3 %CuT TCu concentrate productionNominal 1,279 t/d M

average ore type mix & feed grade b

To Copper Concentrate 92.9 % MTo Flotation Scavenger Tailings 2.4 % M

To First Cleaner Scavenger Tailings 4.7 % M CIL circuit feed

To CIL Tailings Solids 3.0 % MTo CIL Tailings Solution - total 1.4 % MTo CIL Tailings Solution – to tails 0.8 % MTo CIL Tailings Solution – to SART 0.5 % MTo Combined Tailings 5.0 % MTotal Copper Recovered 95.0 % C c/w 85% SART recovery

Cu concentrate grade – average 33.3 %CuT TCu concentrate productionNominal 1,212 t/d M

Units Units Source

Years 8 - 12 Summary Copper Distribution - % by mass

Years 13+ Summary Copper Distribution - % by mass

VO Sul Ore Summary Copper Distribution - % by mass

Mine Life

Page 36: M400000-110-DC-001 Concentrator

To Copper Concentrate % 0.0 % MTo Flotation Scavenger Tailings % Mine Life % M

To First Cleaner Scavenger Tailings % 93.0 % M

To CIL Tailings Solids % 60.5 % MTo CIL Tailings Solution - total % 6.0 % MTo CIL Tailings Solution – to tails % 3.9 % MTo CIL Tailings Solution – to SART % 1.4 % MTo Combined Tailings % 66.2 % MTotal Copper Recovered % 33.8 % M

Cu concentrate grade – average %CuT 27.3 %CuT M

average ore type mix & feed grade b

To Copper Concentrate 63.6 % MTo Flotation Scavenger Tailings 24.7 % M

To First Cleaner Scavenger Tailings 11.7 % M CIL circuit feed

To CIL Tailings Solids 0.7 % MTo CIL Carbon 7.0 % MTo CIL Tailings Solution – to tails - % MTo Combined Tailings 29.5 % MTo Dore 7.0 % MTotal Gold Recovered 70.6 % C

average ore type mix & feed grade b

To Copper Concentrate 67.3 % MTo Flotation Scavenger Tailings 23.0 % M

To First Cleaner Scavenger Tailings 9.6 % M CIL circuit feed

To CIL Tailings Solids 0.7 % MTo CIL Carbon 7.6 % MTo CIL Tailings Solution – to tails - % MTo Combined Tailings 25.1 % MTo Dore 7.6 % MTotal Gold Recovered 74.9 % C

Units Source

To Copper Concentrate 67.6 % MTo Flotation Scavenger Tailings 22.1 % M

To First Cleaner Scavenger Tailings 10.3 % M

To CIL Tailings Solids 1.3 % MTo CIL Carbon 7.4 % MTo CIL Tailings Solution – to tails - % M

Years 8-12 Summary Gold Distribution - % by mass

Years 11+ Summary Gold Distribution - % by mass

VO Sul Ore Summary Gold Distribution - % by mass

Mine Life

Page 37: M400000-110-DC-001 Concentrator

To Combined Tailings 25.1 % MTo Dore 7.4 % MTotal Gold Recovered 74.9 % M

Rougher concentrate solids nominal 5130 t/h Cdesign 822 t/h P,C Maximum at peak tonnage

1st Cleaner Feed solids 1218.6 t/h M% solids 24.9 % O, P, M at design throughput.

solids SG 2.85 M at design throughput. Function of Cu grade1st Cleaner Scavenger Feed solids 1029.2 t/h M at nominal throughput + 10%2nd Cleaner Feed solids 190.4 t/h M at design throughput3rd Cleaner Feed solids 71.3 t/h M at design throughputCyclone overflow pulp density 24 % solids PCyclone overflow P80 25 μm T,OBall mill discharge density 57 % solids PWater addition (total) to each wet screen #DIV/0! C Into chute for repulping and to spray

total flow, per screen ### CMaximum throughput required per screen #REF! tph C To match maximum throughput capab% of ore to cleaner scav tails %HL deposition rate 150000 tpdHL leach rate 100000 tpdHL Irrigation System Utilization 95 %Proportion of lime to trucks 80 %

Rougher Concentrate + 1st Cleaner Scavenger Concentrate + 2nd Cleaner Tails (design)

t/m3

m3/hm3/h

Page 38: M400000-110-DC-001 Concentrator

DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001-1

V Vendor-supplied dataT TestworkM Mass balanceR Regulatory/permitting requirement

Comments Rev. Ref

average ore type mix & feed grade b

CIL circuit feed

c/w 85% SART recovery

average ore type mix & feed grade b

CIL circuit feed

c/w 85% SART recovery

Page 39: M400000-110-DC-001 Concentrator

average ore type mix & feed grade b

CIL circuit feed

average ore type mix & feed grade b

CIL circuit feed

Page 40: M400000-110-DC-001 Concentrator

Maximum at peak tonnage

at design throughput.at design throughput. Function of Cu gradeat nominal throughput + 10%at design throughput Aat design throughput A

Into chute for repulping and to spray A

To match maximum throughput capab

Rougher Concentrate + 1st Cleaner Scavenger Concentrate + 2nd Cleaner Tails (design)

Page 41: M400000-110-DC-001 Concentrator

document.xls Page 41 of 70

DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001-1Project Cerro Casale Feasibility Data SourcesProject No M40000 O Owner’s (CMC) Input V Vendor-supplied dataClient Compañía Minera Casale C Calculated T TestworkDate 24-Oct-10 P AMEC – Process input M Mass balanceRevision A D AMEC – Other disciplines input R Regulatory/permitting requirement

Design Criteria - Concentrator Value Unit Source Comments Rev. Ref

4.3 Ore Reserves CharacteristicsPredominant MineralogyCopper Minerals Distribution T Year 1-5 CompositeChalcopyrite 61.5 % TBornite 11.3 % TChalcocite 3.2 % TDigenite 23.7 % TCovellite 0.4 % TNative copper na % TTotal proportion of Cu-bearing minerals 0.91 % T

Gangue Minerals Year 1-5 CompositeSilica 27.98 % TK-feldspars 33.83 % TAmphiboles 0.92 % TPyrite 1.83 % TMolybdenite 0.09 % TSphalerite 0.05 % TFe/Mn oxides 4.06 % TSulphates 1.18 % TCarbonates 0.55 % TApatite 0.35 % TZircon 0.35 % TMicas 20.83 % TChlorite 3.27 % TTi oxides 1.05 % TClays 2.73 % T

Design Clay Content 3.2 % T

Principal Sulphide Lithologies

Diorite Porphyry sulphide 29.5 % D

Granodiorite porphyry sulphide 16.6 % D rock code: GRDMicrodiorite breccia 12.9 % D rock code: MDBXVolcanic conglomerate sulphide 19.6 % D rock code: VCGLOther volcanics 21.4 % D rock code: VO

total 100.0 % CMicrodiorite breccia split as: sulphide ore 12.6 % D rock code: MDBX sul

mixed ore 0.3 % D rock code: MDBX mix

Mine Plan Tonnage - Lithological Distribution

Year 3 to Year 7 A (%) B (%)

Porphyry sulphide 81.1 75.1 O/DGranodiorite porphyry sulphide 3.2 6.7 O/DVolcanic conglomerate sulphide + others 2.7 17.6 O/DMicrodiorite breccia - mixed 6.5 0.6 O/DMicrodiorite breccia - sulphide 6.5 0.0 O/D

100.0 100.0

Year 8 to Year 12 A (%) B (%)

Porphyry sulphide 50.4 32.1 O/DGranodiorite porphyry sulphide 11.9 17.6 O/DVolcanic conglomerate sulphide + others 21.7 21.6 O/DMicrodiorite breccia - mixed 8.0 25.7 O/DMicrodiorite breccia - sulphide 8.0 3.0 O/D

100.0 100.0

Year 13 to EOM A (%) B (%)

Porphyry sulphide 3.4 8.1 O/DGranodiorite porphyry sulphide 25.8 20.3 O/DVolcanic conglomerate sulphide + others 64.8 6.1 O/DMicrodiorite breccia - mixed 3.0 24.5 O/DMicrodiorite breccia - sulphide 3.0 41.0 O/D

100.0 100.0

SGS Report "Gold Deportment Study in Cyclone O/F, 1st Cl. Scav. Tail and Ro Tail Samples from Cerro Casale Project" January 22, 2009; on Year 1-5 composite sample

proportions in FSU mine plan V_2 c/w stockpile - by reserves tonnagerock code: DP (rock type was divided between upper (DSU) and lower (DSL) in 2000 FS report)

A: per composite samples prepared for testwork B: per FSU mine plan V_2 wSP (Year 3 is first year of plant feed)

A: per composite samples prepared for testwork B: per FSU mine plan V_2 wSP

A: per composite samples prepared for testwork B: per FSU mine plan V_2 wSP

Page 42: M400000-110-DC-001 Concentrator

document.xls Page 42 of 70

DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001-1Project Cerro Casale Feasibility Data SourcesProject No M40000 O Owner’s (CMC) Input V Vendor-supplied dataClient Compañía Minera Casale C Calculated T TestworkDate 24-Oct-10 P AMEC – Process input M Mass balanceRevision A D AMEC – Other disciplines input R Regulatory/permitting requirement

Design Criteria - Concentrator Value Unit Source Comments Rev. Ref

4.4 Ore Physical Characteristics

Ore moisture content - average 2.5 % w/w O

Run-of-Mine ore top size 1,800 mm DROM % passing sieve of: indicated by Mining group, per Orica simulations1,200 mm 100 % D1,000 mm 99.5 % D 800 mm 99 % D 750 mm 98 % D 600 mm 94 % D 380 mm 81 % D 200 mm 55 % D 100 mm 30 % D 50 mm 15 % D 6 mm 3.5 % DP20 64 mm

Average specific gravity for DP 2.62 TAverage specific gravity for MDBX 2.59 TAverage specific gravity for GRD 2.66 TAverage specific gravity for VCGL 2.76 T assumed equal for the VO component of the volcanic rocks

average 2.65 C For comminution circuits.Solids Specific Gravity Estimate 5.32 * %Cu/100 + 2.77 C Linear regression with testwork data. For flotation circuits.

Ore abrasion index for DP 0.34 g TOre abrasion index for MDBX 0.47 g TOre abrasion index for GRD 0.41 g TOre abrasion index for VCGL 0.30 g T

average 0.38 g C

4.5 Ore Chemical Characteristics4.5.1 Average Head Grades

Gold (Au) 0.613 g/t D Mine Plan FSU V2 wSPCopper (Cu) 0.242 % D Mine Plan FSU V2 wSP

na % not available in geological block modelSilver (Ag) 1.48 g/t D Mine Plan FSU V2 wSPSulphur (S) 2.57 % O 2004 FS ore composites

Average Gold Head Grade per Lithology Mine Plan FSU V2 wSPDiorite sulphide 0.557 g/t OMicrodiorite breccia - Mixed 0.734 g/t OMicrodiorite breccia - Sulphide 0.740 g/t OGranodiorite sulphide 0.708 g/t OVolcanic sulphide 0.575 g/t O

Average Copper Head Grade per Lithology Mine Plan FSU V2 wSPDiorite sulphide 0.20 % OMicrodiorite breccia - Mixed 0.20 % OMicrodiorite breccia - Sulphide 0.29 % OGranodiorite sulphide 0.30 % OVolcanic sulphide 0.23 % O

Average Silver Head Grade per Lithology Mine Plan FSU V2 wSPDiorite sulphide 1.32 g/t OMicrodiorite breccia - Mixed 2.45 g/t OMicrodiorite breccia - Sulphide 2.06 g/t OGranodiorite sulphide 1.73 g/t OVolcanic sulphide 1.30 g/t O

Average Gold Head Grade per Periods Mine Plan FSU V2 wSPYear 3-7 0.648 g/t DYear 8-12 0.668 g/t DYear 13+ 0.567 g/t D

Mine Plan FSU V2 wSPYear 3-7 0.246 % DYear 8-12 0.255 % DYear 13+ 0.233 % D

Average Silver Head Grade per Periods Mine Plan FSU V2 wSPYear 3-7 1.37 g/t DYear 8-12 1.71 g/t DYear 13+ 1.39 g/t D

t/m3

t/m3

t/m3

t/m3

t/m3

Cyanide-Soluble Copper (CuCN)

Average CuT Head Grade per Periods

Page 43: M400000-110-DC-001 Concentrator

document.xls Page 43 of 70

DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001-1Project Cerro Casale Feasibility Data SourcesProject No M40000 O Owner’s (CMC) Input V Vendor-supplied dataClient Compañía Minera Casale C Calculated T TestworkDate 24-Oct-10 P AMEC – Process input M Mass balanceRevision A D AMEC – Other disciplines input R Regulatory/permitting requirement

Design Criteria - Concentrator Value Unit Source Comments Rev. Ref

4.5.2 Design Head Grades

Goldper FS mine plan V_8 0.97 g/t Au D,C 20% above peak year grade of 0.812 g/t in Year 8

0.96 g/t Au D,C marginal grade of tonnage fraction to cover 85% of reserves tonnage

Retained design grade 0.96 g/t Au PTotal Copperper FS mine plan V_8 0.40 D,C 20% above peak year grade of 0.33 % in Year 11

0.39 D,C marginal grade of tonnage fraction covering 85% of reserves tonnage

retained design grade 0.39 PSilverper FS mine plan V_8 2.28 g/t Ag D,C 20% above peak year grade of 1.903 g/t in Year 11retained design grade 2.28 g/t Ag P

4.6 General Plant Operating RequirementsDesign Life 19 years D Projected mine life (partial operations in first and last years)Operation Schedule 360 d/y P For weather-related interruptions to ore supplyOperating hours per day 24 h P

Plant CapacityAverage 160,000 t/d O nominalDesign 176,000 t/d P 10% above averageHourly - average 7,018 t/h C nominal, operated basis AHourly – design 7,719 t/h C AYearly 57.6 Mt/a C nominal

h/week h/y hours weighing based on 100% plant capacity

Maintenance shutdowns 1.5 78 P A

Full plant shutdowns 0.9 48.75 P A

Total 2.4 126.8 C

Grinding/Flotation Availability 8,513 h/y C98.5 % C

hours weighing based on 100% plant capacity

Operational delays 156 h/y P Accounts for material handling issuesOperational Utilization 96.7 % C Based on operational hours divided by total hours per yearExternal Interruptions 149 h/y C for lack of ore, power supply, concentrate or water pipeline issuesOverall Grinding/Flotation/CIL Circuits Utilization 95.0 % O A

8,208 h/y C A

Per PFS ore reserves grade vs. tonnage

%CuT

per PFS ore reserves grade vs. tonnage %CuT

%CuT

 Grinding/Flotation Planned Shutdown - Weighted

18 hours per grinding line, each line down once per 12 weeks for cyclone feed pump maintenance. Six lines.24 hours per 24 weeks. Combined with individual grinding line shutdown

 Grinding/Flotation/CIL Circuits Unplanned Shutdown - Weighted

Page 44: M400000-110-DC-001 Concentrator

document.xls Page 44 of 70

DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001-1Project Cerro Casale Feasibility Data SourcesProject No M40000 O Owner’s (CMC) Input V Vendor-supplied dataClient Compañía Minera Casale C Calculated T TestworkDate 24-Oct-10 P AMEC – Process input M Mass balanceRevision A D AMEC – Other disciplines input R Regulatory/permitting requirement

Design Criteria - Concentrator Value Unit Source Comments Rev. Ref

4.7 Primary Crushing

Bond impact work index MacPherson testwork report; Dec. 1998Diorite sulphide 10.4 kWh/t TMicrodiorite breccia 9.8 kWh/t TGranodiorite sulphide 14.6 kWh/t TVolcanic breccia 10.5 kWh/t T

average 11.4 kWh/t C weightedDesign impact work index 13.0 kWh/t P Based on a mix of 60% GRD and 40% Volcanic Breccia

Design factor for impact work index 20 % P Accounting for variability and higher hardness of recirculated material

Modified design impact work index 15.6 kWh/t P Based on mix of GRD and Volcanics and 20% design factor

Number of primary crushers 2 PType of Primary crusher gyratory P

Primary crusher design availability 19 h/d P A79 % C A

Indicated life of crusher mantle 6 mo P AIndicated life of crusher concave liners 12 mo P AIndicated life of crusher spider liners 12 mo P APrimary crusher design utilization 75 % P Accounting for lost availability for truck waiting time, inspections ANominal throughput 4,444 t/h C per crusher ADesign throughput 4,889 t/h C per crusher A

Indicated volumetric capacity at OSS = 181 mm 5,230 t/h V Per Bruno software, for this OSS and fine ROM feed (F80 = 380 mm)

Indicated volumetric capacity at OSS = 220 mm 7,020 t/h V Per Bruno software, for this OSS and fine ROM feed (F80 = 380 mm)

Ore haul truck capacity 360 t DDump hopper capacity 600 t D per volume fixed at PFS

1.7 Trucks CSurge hopper capacity 750 t D per volume fixed at PFS

2.1 Trucks C

ROM top size 1,800 mm D800 mm D

Crusher cavity feed top size 1,220 mm P Indicated top size for the MK-II gyratoryHydraulic rock breaker installed? Yes P one per crusher

Open side setting nominal 191 mm P per Bruno simulation AClosed side setting nominal 140 mm C per Bruno c/w 51-mm stroke for MK-II gyratory AOpen side setting design 203 mm P per Bruno simulation AClosed side setting design 152 mm C A

372 mm D Nominal. Estimated by Mine blasting consultant A372 mm A

152 mm C A

161 mm C Design, Bruno simulations A399 mm P Nominal. Bruno simulations A425 Design. Bruno simulations45 mm

Primary crusher discharge Cummulative Passing 6 mm 3.5 %

Calculated crushing duty power required 480 kW C At nominal throughput. A486 kW C At design throughput. A

No-load power, per crusher 150 kW V Indicated by BrunoCrusher drive losses 8 % PCalculated power draw per crusher - nominal 684 kW C At nominal throughput and with modified design work index A

- design 692 kW C A

Indicated crusher size 60” x 113” V FLSmidth VO model or Metso Superior MK-II or equiv.Indicated crusher motor power base 1,000 kW V

Ore Bulk Density – Crushed ROMUnpacked 1.60 P Wet basis, For volume calucations APacked 1.60 P Wet basis, For mechanical/power calcuations A

Dust control system baghouse O A

Wet scrubber for crusher dump pocket No O A Foggers for transfer points No R

Dust generation rate at transfer points in Primary Crushing 0.02 % D

ROM d99

Primary crusher ROM feed F80

Design primary crusher ROM feed F80

Primary crusher discharge P80Nominal. Range between 131 and 200 mm for ROM feeds with variable PSDs. Bruno Simulations

Primary crusher discharge P80

Primary crusher discharge P99

Primary crusher discharge P20

t/m3

t/m3

Collected dust from dump pocket, feeder discharge and transfer point to stockpile feed conveyor discharged onto sacrificial conveyors

US EPA AP 42 Fifth edition http://www.epa.gov/ttn/chief/ap42/ch11/final/c11s24.pdf

Page 45: M400000-110-DC-001 Concentrator

document.xls Page 45 of 70

DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001-1Project Cerro Casale Feasibility Data SourcesProject No M40000 O Owner’s (CMC) Input V Vendor-supplied dataClient Compañía Minera Casale C Calculated T TestworkDate 24-Oct-10 P AMEC – Process input M Mass balanceRevision A D AMEC – Other disciplines input R Regulatory/permitting requirement

Design Criteria - Concentrator Value Unit Source Comments Rev. Ref

4.8 Coarse Ore Stockpiling and Reclaiming

Stockpile live capacity 80,000 t P A

10.2 h P at nominal throughput A

Crushed ore angle of repose – design 40 º P,T J&J Testwork ADraw down angle – design 65 º P,T J&J Testwork A

Number of reclaim lines 2 each PReclaim feeder type apron A

Number of feeders 6 each P

Design number of operating feeders 4 each PThroughput capacity per feeder 2,157 tph C At design throughput with 4 feeders operating. ADust control system baghouse O A

4.9 Comminution Circuits

Peak throughput design factor 110 % P 10% above normal tonnage for soft oreDesign throughput for design ore 7,719 t/h C A

Dust control system baghouse O A Foggers for transfer points No R

Dust generation rate at transfer points 0.02 P A

4.9.1 Secondary Crushing Circuit

Scheduled shutdown frequency 3 wk O Boddington benchmarking - full line down at once AScheduled shutdown duration 16 hr P Boddington benchmarking c/w 12 hr at low altitude and no winter ADuration of shutdown for bowl/mantle liner replacement 16 hr P drop-in complete spare bowl and mantle assemblies providedCrushing Section Availability 96.9 % P AIndicated life of crusher bowl 6 wk V, P Metso estimate and benchmarking AIndicated life of crusher mantle liners 6 wk V, P Metso estimate and benchmarking AIndicated life of crusher spider liners 24 wk P ASecondary crushing circuit utilization 85 % PModified design crushing work index 15.6 kWh/t P Based on a 60% granodiorite, 40% volcanics mining mixOre abrasive wear 1.5 kg/t T A

Jenike and Johanson analysis indicates live capacity = 72,000 tonnes

3 per line; 2 operated, one stand-by for design capacity. Normal operation will be 3 operating.

dust collected from transfer points between reclaim feeders and reclaim conveyors; dust dropped onto reclaim conveyors

% of feed stream

US EPA AP 42 Fifth edition http://www.epa.gov/ttn/chief/ap42/ch11/final/c11s24.pdf

Page 46: M400000-110-DC-001 Concentrator

document.xls Page 46 of 70

DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001-1Project Cerro Casale Feasibility Data SourcesProject No M40000 O Owner’s (CMC) Input V Vendor-supplied dataClient Compañía Minera Casale C Calculated T TestworkDate 24-Oct-10 P AMEC – Process input M Mass balanceRevision A D AMEC – Other disciplines input R Regulatory/permitting requirement

Design Criteria - Concentrator Value Unit Source Comments Rev. Ref

4.9.1.1 Cone Crushers

Number of secondary crushers to be installed 8 ea. PNumber of crushers provided for in layout plans 8 ea. P No future expansion requiredNumber of Lines 2 ea. PNumber of Operating Crushers 6 ea. P, O 3 operating and 1 standby per line. ACrusher model (indicated) MP1250 series O Standard head cone crusher or equivalent ANominal Feed Size F80 148 mm P,C Bruno simulation result. Confirmed with JKSimMet. ANominal Feed Size F99 (Top Size) 399 mm P,C Bruno simulation result ADesign Feed Size F80 154 mm P,C Bruno simulation result. Confirmed with JKSimMet. ADesign Feed Size F99 (Top Size) 425 mm P,C Bruno simulation result ADesign Feed Size F20 47 mm P,C Bruno simulation result. Confirmed with JKSimMet. ADesign Feed Cummulative % Passing 6 mm 0 mm P,C Bruno simulation result. Confirmed with JKSimMet. ACrusher feed moisture content 2.5 % O

Crusher Closed Side Setting (CSS) - nominal feed conditions 35 mm P

45 mm P Boddington benchmarking. A

Liner profile medium P To be confirmed

537 kW C Bruno indicated 558 kW for same conditions.

625 kW C

No-load power, per crusher 100 kW V Indicated by BrunoCrusher drive losses 8 % P

Indicated power draw (per crusher) 693 kW T,V At average throughput but for design mining mix of 60% granodiorite A

Indicated power draw (per crusher) 789 kW T,V At design throughput A

Installed motor power (per crusher) 932 kW VContingency on power draw average throughput 34.5 % C Relative to available powerContingency on power draw design throughput 18.2 % C Relative to available power

Crusher circuit throughput (fresh feed basis) Average 7,843 tph C Design 8,627 tph C peak 10% above average value - soft oreThroughput per crusher (total crusher feed c/w circulating load) Average 1,477 tph M A Design 1,682 tph C A

1,765 tph V Mean of vendor published range for MP1000 x 1.25 for MP1250. A

Contingency on nominal throughput 19.5 % C Relative to average throughput at nominal CSS of 35mm

2,225 tph V Mean of vendor published range for MP1000 x 1.25 for MP1250. A

Contingency on nominal throughput 50.6 % C Relative to average throughput at maximum CSS of 45mm

Crusher Product Size P80 @ nominal feed size 41 mm C Bruno simulation result. A

Crusher Product Size P99 (Top Size) @ nominal feed size 68 mm C Bruno result

Crusher Product Size P99 (Top Size) @ design feed size 41 mm C Bruno simulation result. A

Crusher Product Size P99 (Top Size) @ design feed size 68 mm C Bruno result A

Crusher Product Size P20 7 mm C Bruno simulation result. ACrusher Product cummulative % passing 6 mm 17 % C Bruno simulation result. A

Type of crusher feeder Belt feeder PNumber of crusher feeders 8 ea. P One per crusherSecondary Crusher Feed BinsDesign bulk ore SG - volume requirement P Wet Basis. A

Unpacked 1.68 t/m3 For volume calculations AMechanical (Packed) 1.68 t/m3 For mechanical/power calcualtions A

Crusher Feed Surge Bin residence time 20 min PCone Crusher Feed Surge Bin 334 C Live volume, per crusher, 6 operating crushers ATotal Surge Bin Capacity 2670 C Live Volume, 8 crushers ACrushed ore angle of repose – design 35 º Jenike and Johanson Testing A

Draw down angle – design 60 º Jenike and Johanson Testing A

Cone Crusher Feed Hopper 4.5 V Live volume, per crusher A

Cone Crusher Feed Hopper residence time 16.2 sec C, V M40000-3100-110-CAL-0004 Based on sullpier design of feed chute. A

0.06 % D A

Crusher Closed Side Setting (CSS) - design feed size conditions @ nominal tonnage

Theoretical crushing power required at nominal throughput (per crusher)Theoretical crushing power required at design throughput (per crusher)

Maximum capacity at 35 mm CSS (per crusher) @ nominal feed size

Maximum capacity at 45 mm CSS (per crusher) @ design feed size

m3

m3

m3

Dust generation rate at transfer points in Secondary Crushing

US EPA AP 42 Fifth edition http://www.epa.gov/ttn/chief/ap42/ch11/final/c11s24.pdf

D354
pierre.lacombe: 0.27 from where? 0.27 minutes from Bin retention time calucation.
Page 47: M400000-110-DC-001 Concentrator

document.xls Page 47 of 70

DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001-1Project Cerro Casale Feasibility Data SourcesProject No M40000 O Owner’s (CMC) Input V Vendor-supplied dataClient Compañía Minera Casale C Calculated T TestworkDate 24-Oct-10 P AMEC – Process input M Mass balanceRevision A D AMEC – Other disciplines input R Regulatory/permitting requirement

Design Criteria - Concentrator Value Unit Source Comments Rev. Ref

4.9.1.2 Primary Vibrating Dry Screens

Recycle ratio (screen vs. fresh feed tonnage) Average 1.13 C Bruno simulations indicated circulating load A Design 1.17 C Bruno simulations indicated circulating load ATotal design processing rate 11,471 tph C 25% allowance for instantaneous peaks, at design circulating load ADesign screen undersize at max rate 9,804 tph C 25% allowance for peaks ADesign screen oversize at max rate 1,667 tph C 25% allowance for instantaneous peaks, at design circulating load A

Dry Screen Feed BinsDesign bulk ore SG - volume requirement P Wet Basis, unpacked. A

1.68 For volume calcuations A1.68 For mechancial/power calucations A

Dry Screening Feed Surge Bin residence time 15 min PDry Screening Surge Bin Capacity 2,924 C Live Volume ACrushed ore angle of repose – design 40.0 º Jenike and Johanson Testing ADraw down angle – design 75.0 º Jenike and Johanson Testing AScreen feeder type Vibrating pan feeder P

Number of vibrating dry screens 6 ea. V Schenck indicated. ADesign processing rate per dry screen 3,120 tph CType of screen Multi-slope P,V aka Banana screenScreen deck width (indicated) 4.3 m P,V Schenck indicated. AScreen deck length (indicated) 8.5 m P,V Schenck indicated. ANumber of decks per screen 2 ea. V APeak capacity per screen 3,450 tph V Schenck indicated.Screen motor rating 75 kW V Schenck indicated.Screening efficiency 90 % PUnit screen capacity (at average throughput) 78 C Based on vendor indicated deck dimensions and design tonnage

Screen panels square aperture 45 mm PScreen cut point 38 mm C Bruno indication for nominal throughputBed depth at discharge 41 mm V Bruno indication at nominal throughput. Confirmed by vendor.

Dry screen undersize P80 30 mm O,C Bruno indicationDry screen undersize P20 30 mm O,C Bruno indicationDry screen undersize Cummulative % Passing 6 mm 17 % O,C Bruno indicationAverage undersize stream flow rate (per screen) 1,307 tph C Fresh feed to crushing circuit rate

m3

t/h/m2

Page 48: M400000-110-DC-001 Concentrator

document.xls Page 48 of 70

DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001-1Project Cerro Casale Feasibility Data SourcesProject No M40000 O Owner’s (CMC) Input V Vendor-supplied dataClient Compañía Minera Casale C Calculated T TestworkDate 24-Oct-10 P AMEC – Process input M Mass balanceRevision A D AMEC – Other disciplines input R Regulatory/permitting requirement

Design Criteria - Concentrator Value Unit Source Comments Rev. Ref

4.9.2 Tertiary Crushing Circuit

Scheduled shutdown frequency 3 wk O Boddington benchmarking - full line down at once A

Scheduled shutdown duration 16 hr P Boddington benchmarking c/w 12 hr at low altitude and no winter A

Duration of shutdown for roll replacement 30 hr P, V drop-in complete spare bowl and mantle assemblies provided ACumulative daily shutdown for roll/edge block checks 2 hr P Boddington benchmarking, per crusher ATertiary crusher availability 88.6 % P AIndicated roll life per testwork conditions 6,000 op. hours T, V based on 150 kt/d, 1.55 circulating load A

per design conditions 5,600 op. hours C adjusted for actual throughput and circulating load A39,298 kt C A

Tertiary crushing circuit utilization 85 % O ARecycle ratio (per Polysius testwork scale-up) 1.85 V For 6 mm tested close-out sizeRecycle ratio (crusher throughput vs fresh feed) 2.00 V Based on Cerro Verde experience at 6 mm close-out sizeWet screen close-out size 10.0 mm PRecycle ratio (at 10 mm close-out size) 1.51 P For design purpose. From benchmarking against Cerro Verde A

Expected recycle ratio at maximum throughput 2.10 P For design purpose - coarser product expected at larger floating gap A

Expected recycle ratio at maximum circuit feed size 2.10 C Boddington Benchmarking AAverage processing rate (at crushers) 14,510 tph C Based on benchmarked recycle ratioMaximum processing rate (at crushers) 18,818 tph P At maximum allowable rolls speed Dust generation rate at transfer points in Tertiary Crushing 0.003 % D A

4.9.2.1 HPGR Crushing

Specific grinding force (indicated) 3.5 T From testworkSpecific throughput rate (m-dot) (indicated) 227 T From test work resultsScaled-up specific throughput rate (m-dot) 300 T Benchmarking ASpecific energy input (indicated) 1.80 kWh/t T From testworkScaled-up specific energy input 1.44 kWh/t T Benchmarking AATWAL Abrasion Test (indicated) 16 g/t T From Polysius testwork

Number of High Pressure Rolls Crushers 6 ea. VNumber of lines 2 ea. P 2 lines, each with 3 operating HPGRs ARequired throughput rate (per crusher, fresh feed) 2,418 tph C Average instantaneous rate ARequired throughput rate (per crusher, fresh feed) 3,136 tph Design ANumber of HPGRs provided for in layout 8 ea. P For future expansion

Rolls diameter (indicated) 2.40 m V From Polysius reportRolls width (indicated) 1.65 m V From Polysius reportMaximum allowable rotational speed 21.0 RPM V Calculated from vendor simulation reportMaximum allowable rolls speed (mechanical) 2.64 m/s C At maximum RPM allowed to limit potential mechanical damageMax rolls speed (slippage rule of thumb) 2.40 m/s P Process limit at which slippage becomes a problemNominal rolls speed for required throughput 2.40 m/s C At indicated m-dot and recycle ratio ADesign rolls speed for design throughput 2.55 m/s C At Boddington benchmarking m-dot and recylce rate. AContingency on throughput (Mechanical limit) 10.0 % C At nominal rolls speed required for average throughputContingency on throughput (Process limit) 0.0 % C At nominal rolls speed required for average throughput

Installed power - per crusher 5,500 kW V 2 x 2,750 kW motorsPower consumed per crusher 3,666 kW C Including 95% electrical drive efficiency Contingency on power 50.0 % C At average throughput rate

Type of feeder Belt feeder PNumber of crusher feeders 6 ea. P One per rolls crusher

HPGR ore Bin Design bulk HPGR feed SG - volume requirements T, C Wet basis, packed A

Unpacked 1.42 T, C For volume calcuations AMechanical 1.68 T, C For mechanical/power calcuations A

HPGR Surge Bin residence time required 15 min P at design throughput i.e. 10% above averageHPGR Surge Bin capacity 4,704 t C Live tonnage at design throughput rates A

3,650 C Live volume at design throughput rates ACrushed ore angle of repose – design 40 º Jenike and Johanson Testing ADraw down angle – design 75 º Jenike and Johanson Testing AAverage % moisture (w/w) of HPGR feed 4.7 % C

HPGR Feed Hopper surge residence time 20 sec P, V One per crusher AHPGR Feed Hopper live surge capacity 25 t C at design throughput rate AHPGR feed size P80 26 mm P,V,C Polysius simulations AHPGR feed size P20 9 mm P,V,C Polysius simulations AHPGR feed cummulative % passing 6 mm 15 % P,V,C Polysius simulations AHPGR feed size P99 (top size) 45 mm P,VHPGR product P80 14.7 mm V,T,C AHPGR product P20 1.4 mm V,T,C AHPGR product cummulative % passing 6 mm 46 % V,T,C A

Philosophy for design grinding production rate when 1 line of HPGR is bypassed.

Nominal tonnage ball mill tonnage with high circulating

load.

Process requirement for maintaning production and inventory in fine ore silos.

US EPA AP 42 Fifth edition http://www.epa.gov/ttn/chief/ap42/ch11/final/c11s24.pdf

N/mm2

ts/(m3h)ts/(m3h)

m3

Used in simulations at 10 mm cut size. Tests indicated 9 mm for 6 mm screen cut size.Used in simulations at 10 mm cut size. Tests indicated 9 mm for 6 mm screen cut size.Used in simulations at 10 mm cut size. Tests indicated 9 mm for 6 mm screen cut size.

Page 49: M400000-110-DC-001 Concentrator

document.xls Page 49 of 70

DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001-1Project Cerro Casale Feasibility Data SourcesProject No M40000 O Owner’s (CMC) Input V Vendor-supplied dataClient Compañía Minera Casale C Calculated T TestworkDate 24-Oct-10 P AMEC – Process input M Mass balanceRevision A D AMEC – Other disciplines input R Regulatory/permitting requirement

Design Criteria - Concentrator Value Unit Source Comments Rev. Ref

4.9.2.2 Fine Ore Bins

Capacity of twin HPGR product conveyors 9,607 tph C Each. At design throughput rate

Fine Ore Storage AStorage live capacity 60,000 tonnes O A

c/w half of HPGR down 19.4 hrs C AType of storage SilosNumber of silos 6.0Bulk density of HPGR product C Wet basis, packed A

Unpacked 1.37 For volume calculations AMechanical 1.68 For mechanical/power calucations A

Bin feed moisture content (% w/w) 4.7 % CCrushed ore angle of repose – design 40.0 º Jenike and Johanson Testing ADraw down angle – design 75.0 º Jenike and Johanson Testing A

4.9.2.3 Secondary Wet Vibrating Screens

Number of units 12 ea. PType of screen Multi-slope P,V aka Banana screenMax throughput per screen (indicated) 1,300 tph V Vendor indicated maximum rangeAverage processing rate per screen 1,209 tph C At nominal circuit throughput rateFeed arrangement Belt feeder - Repulper P Forward-reverse re-pulping dead boxes in chute

Deck panels aperture 10.0 mm PUnit screen capacity (average throughput) 43 C Calculated based on vendor indicated deck dimensionsEstimated Max unit screen capacity 46 C Based on Vendor indicated range and areaScreening area required CSelected screen deck width 3.6 m P,VLength to width minimum ratio 2:1 P for dewatering efficiency AScreen deck length (indicated) 7.9 m P,V AScreen deck length (retained) 8.5 m P,V Schenck indicated. ANumber of decks per screen 1 ea. P Single deck screens with spray barsWet screening efficiency (used in simulations) 88 % V Used in Polysius simulationsWet screening efficiency (expected) 92 % PScreen motor rating 55 kW V Schenck indicated.Expected bed depth at discharge 69 mm C Schenck indicated.Screen Sprays A

type duck bills P Anumber of bars per screen 3 ea. P A

number of sprays per bar 5 P spacing of about 0.75 m Aflowrate per spray 4 m3/hr P, V 15 Usgpm @ 50 psi A

type of water used fresh P to minimize wear of sprays with entrained solids in process water A

Wet screen undersize product P80 7.6 mm V,T JKSimMet simulations AWet screen oversize product moisture content 8.0 % w/w P AssumedWet screen feed repulping box overflow solids content 55.0 % w/w P Large volume water required for complete disagglomeration of flakes AWet screen undersize product solids content 40.0 % w/w PPulp to individual ball mill pumpbox from wet screens 3,016 C

ton/m3

t/h/m2

t/h/m2

m2

Additional water addition to prevent sanding of low-angle discharge chute

m3/h

Page 50: M400000-110-DC-001 Concentrator

Post-leach ThickenerCIL tailings density 39.5 % solidsThickener feed screen spray water rate 25Target underflow density 50 % solidsThickener dilution feed box retention time 60 sFlow to dilution feed box 1763Post-leach thickener distributor volume #VALUE!Diluted feed slurry density 38.6 % solidsInternal feed dilution slurry density 18 % solidsEquivalent settling rate 0.2 t/h/m²

Indicated thickener diameter 8.0 mSelected thickener diameter 70 mActual rise rate 0.00 m³/h/m²Flocculant addition 25-30 g/t

Dilution Water to Post-Leach Thickener 20Flocculant Addition 24.1Lined Tailings Reclaim Water 157.1Post-leach thickener overflow flowrate 207Overflow standpipe retention time 3 minStandpipe volume 10

B.5 Carbon-In-Leach CircuitDesign throughput 10 t/hDesign gold head grade 0.76 g/tFeed slurry density 40 % solidsDry Solids SG 2.78Gold lock-up on carbon - Years 3 to 7 138 kgGold lock-up on carbon - Years 8 to 12 122 kgGold lock-up on carbon - Years 13+ 114 kgDesign slurry flowrate 19

Indicated silver head grade 2.0 g/tIndicated silver leach extraction 60 %Indicated copper head grade 0.14 %Indicated copper leach extraction 35 %

Leach circuit feed distributor retention time 1 minDistributor volume 0

m3/h

m3/hm3

m3/hm3/hm3/hm3/h

m3

m3/h

m3

Page 51: M400000-110-DC-001 Concentrator

Trash screen aperture 24 meshCarbon sizing screen aperture 20 meshCarbon size 6 x 12 mesh

B.5.1 Leach Circuit Trash ScreenScreen type linear, staticSafety screen aperture 28 meshScreen feed flowrate design factor 1.2Estimated screen unit capacity 90Net screen area required 0Number of screen provided 1 ea.

B.5.2 Leach TanksLeaching retention time 20 hAeration volume allowance 5 %Effective tank volume 94.5 %Gross leach tank volume requirement 414

Tank aspect ratio (H:L) 1:1Tank freeboard 0.25 mRetained tank diameter 16.3 mTank height 16.3 mTank freeboard 0.9 mNumber of stages 10 eaLeach tank volume provided 33,492Actual retention time provided 1620.8 h

Final gold residue 0.050 g/tNominal effluent dissolved gold tenor 0.006 mg/l

Agitator type axial turbinesAeration gas airAeration rate 0.3

Slurry pH 11.0Carbon concentration in CIL slurry 18 g/lCarbon inventory 603 t

Carbon advance method vertical interstage pump

Daily nominal carbon forwarding duration 6 h

Carbon advance pumping rate 185Carbon advance rate through CIL section 20 tpd

- design 24 tpd

Peak interstage slurry advance rate 204

m3/h/m2

m2

m3

m3

Nm3/h/m3

m3/h

m3/h

Page 52: M400000-110-DC-001 Concentrator

Carbon interstage screen type Kemix swept screen

Interstage screen aperture 20 mesh

Indicated screen capacity 85Screen area required, per leach tank 2.4Selected area per screen 10Number of screens per tank 0 eachNumber of screen positions per tank 1 each

B.5.3 Loaded Carbon ScreenScreen type high-frequencyScreen aperture 20 meshTransfer flowrate 185Screen feed flowrate design factor 1.2Estimated screen unit capacity 180Net screen area required 2.47Selected screen net area 2.88Screen wash water 2.5Loaded carbon max gold loading 1,000 g/tPeak carbon loading 600 g/tExpected nominal carbon gold loading 581 g/t

Wet carbon SG 1.5 t/m3Loaded carbon holding tank capacity 2 batch

32

Barren carbon holding tank capacity 4 batches64.0

B.5.4 Carbon Safety ScreenScreen type high-frequencySafety screen aperture 28 meshScreen feed flowrate design factor 1Estimated screen unit capacity 130Net screen area required 0.1Number of screens provided 2 ea.Selected screen size 1820 3600Net screen area provided 13.1Screen spray water flowrate 12.5 m3/h

Leach reagents Years 6 to 18 Years1 to 5NaCN addition 1.6 3.1NaCN consumed 1.5 3.0NaCN in tailings 0.1 0.1Lime addition (100% CaO basis) 0.1 1.3

m3/h/m2

m2

m2

m3/h

m3/h/m2

m2

m2

m3/h

m3

m3

m3/h/m2

m2

m2

Page 53: M400000-110-DC-001 Concentrator

B.6.12 Sodium Cyanide - NaCN (CIL Facility)Role gold leaching agentConsumption 4 kg/t

at design throughput 350.3 t/dPeak design factor 1.2Design Consumption 420.4 t/d

Form of supplyMixed solution strength 20 % w/wSolids SG 1.6 t/m³Solution SG 1.06 t/m³

Design solution consumption 1982.9 m³/d

Mixing tank capacity 15 h1239 m³

Distribution tank capacity 1.2 batches1487 m³

B.6.13 Activated CarbonRole gold adsorptionUsage rate, per tonne of CIL feed 20 g/tAverage consumption 1752 kg/dForm of supply loose granules

B.7.3 CIL Leach AirFlotation tails leach 10,048

Peak flow design factor 1.2

Installed capacity 12,057Discharge air pressure 320 kPagPower efficiency 78 %Number of operated units 1 eaIndicated motor power #DIV/0! kWMotor size retained 597 kWReceiver capacity nr

briquettes c/w alkaline buffer

Nm3/h

Nm3/h

Page 54: M400000-110-DC-001 Concentrator

M nominal feedP equivalent to heap leach requirementsP at design feed ratePMCC nominal feedTT

CPC per volume of supernatant crossing through solids bedP anionic, 15% charge density

MMMM design, to SART Recovery CircuitPC

M For leach tank volume calculationsP For carbon circuit sizing

T,P Low density due to viscosity constraintsMCCCC

T SGS leaching testwork 2009T SGS leaching testwork 2009C Mass balance resultT G&T testwork

PC

Page 55: M400000-110-DC-001 Concentrator

PPP

PPPPCP

PPP net of air, screens, agitatorC

PPPC Based on H:D ratio of 1:1P APCC At Design Throughput

P Indicated, from leach optimisation testwork resultsP Indicated by modeling results

P pairedPP

PPC

P

C

P nominalC Expected nominal for years 11 to 19

P

C

Increased from 8 g/l to compensate for dilution of leach feed pulp

design based on nominal head grade and design tonnage scenario

Page 56: M400000-110-DC-001 Concentrator

P

P

P,VCPPP

PPM 6 hours operated per dayPPCP 1200 mm x2400 mmP instantaneousP Short-term peak loadingP At design tonnage and nominal gradeP At average CIL feed tonnage and grade

PP daily carbon transfer batchC for transfer to pneumatic truck

P daily carbon transfer batchC

PPPPC Assuming leach tails flow = leach feed flowPP L X W (mm)

P,VP per screen

kg/t Pkg/t Tkg/t Ckg/t T

Includes cyanide credit recycled from SART

Page 57: M400000-110-DC-001 Concentrator

PT per SGS Lakefield cyanidation testworkC Based on design tonnage for the CILPC operated basis c/w 92% utilization

P Isotainers – size to confirmPVV

C

PC net volume

PC net volume

gold adsorptionOC Based on design tonnage to CILV 900-kg tote bags

C

P

CPVP plus one stand-by unitCPP

Page 58: M400000-110-DC-001 Concentrator

INPUTSInformation value units comment

Reagent form of supply 700 kg free-flowing powderNumber of Mixing Tanks 2Mixing system utilization 85 %

Filling Time of Mixing tank 40 minBatch preparation duration 50 min/batch

Time to transfer from mixing to distribution tank 35 minDistribution tank capacity 8 h

Solution SG 1Concentrate Thickener Feed 53.4 mt/h nominal

Cleaner Tailings (Pre-Leach Thickener) 0.0 mt/h nominalCleaner Tailings (Post-Leach Thickener) 743.1 mt/h nominal

Rougher tailings to thickener #1 0.0 mt/h nominalRougher tailings to thickener #2 1036.8 mt/h nominal

Time to mix, minutes 125Mix tank volume, m3 85Number of mix tanks 2Daily volume used, m3 256Number of mixes per day required 3.012275Number of mixes per day per mix tank 1.506138Mixing time per day per tank, minutes 188.2672Mix System Utilization, % 13.07411

Page 59: M400000-110-DC-001 Concentrator

INPUTSsource

Design CriteriaPierre LacombePierre LacombeAssumptionDesign CriteriaAssumptionDesign CriteriaAssumptionMass BalanceMass BalanceMass BalanceMass BalanceMass Balance

743723734726729727

742A724A742B724B

723 = 743726 = 734727 = 729

724A = 742A724B = 742B

723726727

724A724B

Stream Number

Page 60: M400000-110-DC-001 Concentrator

733733733

789(868)

868

742,729,734,743

743

867

734

871

729

872

742A

869

742B

870

743734729

742A742B

873

Page 61: M400000-110-DC-001 Concentrator

CALCULATIONS

Solution strenght from package 0.5 %Flocc. to Concentrate Thickener 0.001 mt/h

0.214 mt/hFlocc. to Pre-leach Flotation Tails Thickener 0.000 mt/h

Solution from package to flotation tails thickener 0.000 mt/hFlocc. to Post-leach Flotation Tails Thickener 0.019 mt/h

3.715 mt/hFlocc. to Rougher Tailings Thickener #1 0.000 mt/h

0.000 mt/hFlocc. to Rougher Tailings Thickener #2 0.034 mt/h

6.739 mt/hTotal flocculant consumption 0.053 mt/h

TotalSolution needed 10.67 mt/hSolution needed 10.67 m3/h

256.0 m3/dLive volume capacity 85 m3

Flocc. from package to concentrate thickener 0.001 mt/hFlocc. from package to flotation tails thickener 0.000 mt/h

Flocc. from package to post-leach flotation tails thickener 0.019 mt/hFlocc. from package to rougher tailings thickener #1 0.000 mt/hFlocc. from package to rougher tailings thickener #2 0.034 mt/h

Water in Solution from package to concentrate thickener 0.212 mt/hWater in Solution from package to flotation tails thickener 0.000 mt/h

Water in Solution from package to post-leach flotation tails thickener 3.697 mt/hWater in Solution from package to rougher tailings thickener #1 0.000 mt/hWater in Solution from package to rougher tailings thickener #2 6.706 mt/h

PACKAGE

Solution strenght 0.5 %Total time per batch 2.1 hReal batch per day 9.8 batch/d

DISTRIBUTION TANK4172-TNK-035

Solution from package to concentrate thickener

Solution from package to post-leach flotation tails thickener

Solution from package to rougher tailings thickener #1

Solution from package to rougher tailings thickener #2

MIXING TANK considering 80 m3 of live volume

WATER

789

paulina.carrasco:Hay 2 estanques de mezcla, pero no operan simultaneamente.

paulina.carrasco:se debe redondear manualmente

Page 62: M400000-110-DC-001 Concentrator

9 batch/dTonelaje por Batch Requerido 0.142 mt/batch

Tonelaje de Estanque Requerido 28 mt/batchVolumen vivo requerido 28 m3/batch

Cantidad de estanuqes requeridos 2Volumen por estanque 14 m3

Capacidad másica del estanque 14 mtCarried flow 24.385 m3/h

6.8 L/sSolution from Mixing to Distribution Tank 24 mt/h

Flocc. from Mixing to Distribution Tank 0.1 mt/hWater in Solution from Mixing to Distribution Tank 24.3 mt/h

Flocculant consumption 0.07 mt/bacthFlocculant consumption 0.11 mt/h

Water consumption 14.15 m3/bacthWater flow rate 21.23027 m3/h

FLOW PER LINE DISTRIBUTIONSolution strenght 0.05 %

Solution to Concentrate Thickener 2.14 mt/hSolution to Concentrate Thickener 2.14 m3/h

Water added in this line 1.92 mt/hWater added in this line 1.92 m3/h

Solution to Pre-leach Flotation Tails Thickener 0.00 mt/hSolution to Pre-leach Flotation Tails Thickener 0.00 m3/h

Water added in this line 0.00 mt/hWater added in this line 0.00 m3/h

Solution to Post-leach Flotation Tails Thickener 37.15 mt/hSolution to Post-leach Flotation Tails Thickener 37.15 m3/h

Water added in this line 33.44 mt/hWater added in this line 33.44 m3/h

Solution to Rougher Tailings Thickener #1 0.00 mt/hSolution to Rougher Tailings Thickener #1 0.00 m3/h

Water added in this line 0.00 mt/hWater added in this line 0.00 m3/h

Solution to Rougher Tailings Thickener #2 67.39 mt/hSolution to Rougher Tailings Thickener #2 67.39 m3/h

Total solution consumption at 0.05% 2560.43 m3/dWater added in this line 60.66 mt/hWater added in this line 60.66 m3/h

Total water added 96.02 m3/h

Water in solution. to Concentrate Thickener 2.13 mt/hWater in solution to Pre-leach Flotation Tails Thickener 0.00 mt/h

Water in solution to Post-leach Flotation Tails Thickener 37.14 mt/hWater in solution to Rougher Tailings Thickener #1 0.00 mt/hWater in solution to Rougher Tailings Thickener #2 67.36 mt/h

Total water consumption 117.25 mt/h

paulina.carrasco:se debe redondear manualmente

paulina.carrasco:considera 2 estanques de 85 m3 c/u

I55
paulina.carrasco: se debe redondear manualmente
I58
paulina.carrasco: considera 2 estanques de 85 m3 c/u
Page 63: M400000-110-DC-001 Concentrator

0.053 0.800 0.06710.615 0.500 10.61510.668 0.999 10.682

117.25 mt/h 96.02 mt/h1.92

14.15 mt/batch21.23027 m3/h 0.00 mt/h

Flocc0.07 mt/batch 33.44 mt/h0.11 mt/h

9 batch/day 0.00 mt/h

60.66 mt/h

24.4 m3/h Sol24.4 mt/h Sol

85 m3 0.5 %0.1 mt/h Flocc

0.00 mt/h Sol67.39 mt/h Sol 0.05 %

0.05 % 0.000 mt/h Flocc0.034 mt/h Flocc

4172-TNK-035

MIXING tANKBATCH

WATER

742B742A

867

871

872

869870

868

873

789

paulina.carrasco:Hay 2 estanques de mezcla, pero no operan simultaneamente.

paulina.carrasco:se debe redondear manualmente

M33
paulina.carrasco: Hay 2 estanques de mezcla, pero no operan simultaneamente.
Page 64: M400000-110-DC-001 Concentrator

paulina.carrasco:se debe redondear manualmente

paulina.carrasco:considera 2 estanques de 85 m3 c/u

Page 65: M400000-110-DC-001 Concentrator

mt/h

2.14 mt/h Sol0.05 %

0.0011 mt/h Flocc

0.00 mt/h Sol37.15 mt/h Sol 0.05 %

0.05 % 0.0000 mt/h Flocc0.019 mt/h Flocc

729734

743

867

Page 66: M400000-110-DC-001 Concentrator

Floc Viscosity

Strength, Viscosity, cP1 600

0.5 1000.25 50

0.1 250.05 22

0.2 37.38577

LimeSlurry Density, % Min Max Average

11.00 7.1 to 7.9 7.1 7.9 7.516.00 26 to 29 26 29 27.522.00 30 to 42 30 42 3615.00 25.5195 24.45225.00 43.4395 33.942

y = 18,699e3,4641x

0 0.2 0.4 0.6 0.8 1 1.20

100

200

300

400

500

600

700

f(x) = 18.6989560359082 exp( 3.46405402533264 x )R² = 0.997223662411035

Chart Title

Viscosity, cP

Exponential (Viscosity, cP)

10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.000

5

10

15

20

25

30

35

40

45

f(x) = − 0.234848484848486 x² + 10.3409090909091 x − 77.8333333333336R² = 1

f(x) = − 0.186666666666668 x² + 9.26000000000003 x − 71.3733333333336

Min

Max

Polynomial (Max)

Average

Polynomial (Av-erage)

Slurry Density, %

Visc

osity

, cP

Page 67: M400000-110-DC-001 Concentrator

0 0.2 0.4 0.6 0.8 1 1.20

100

200

300

400

500

600

700

f(x) = 18.6989560359082 exp( 3.46405402533264 x )R² = 0.997223662411035

Chart Title

Viscosity, cP

Exponential (Viscosity, cP)

10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.000

5

10

15

20

25

30

35

40

45

f(x) = − 0.234848484848486 x² + 10.3409090909091 x − 77.8333333333336R² = 1

f(x) = − 0.186666666666668 x² + 9.26000000000003 x − 71.3733333333336

Min

Max

Polynomial (Max)

Average

Polynomial (Av-erage)

Slurry Density, %

Visc

osity

, cP

Page 68: M400000-110-DC-001 Concentrator

Calculation of pond area

Pond: Process Water

Width, m Length, m60 50

10.75

4.3 m

78.5 m

Level, % Width, m Length, m0 38.5 78.5

25 43.875 83.87550 49.25 89.2575 54.625 94.625

100 60 100

~38.5m

63.5m

Page 69: M400000-110-DC-001 Concentrator

Area, m23000

m

60226680739681699000

Area, m2

Page 70: M400000-110-DC-001 Concentrator

1st cleaner 0.002nd cleaner #DIV/0!3rd cleaner 1.23

Cleaner cct 234.21st clnr 0.02nd clnr 61.03rc clnr 89.8