m3000 series master controller operating manual operating... · operating manual m3000 series...

92
Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

Upload: trandiep

Post on 14-May-2018

233 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

Operating Manual M3000 Series On-Street Master

Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

Page 2: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221
Page 3: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

M3000 Series On-Street Master

Operating Manual

Page 4: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

Document: M3000 Series On-Street Master Operating Manual p/n 5928 Revision 4

Copyright © 2010 Peek Traffic, Inc. All rights reserved. Information furnished by Peek is believed to be accurate and reliable, however Peek does not warranty the accuracy, completeness, or fitness for use of any of the information furnished. No license is granted by implication or otherwise under any intellectual property. Peek reserves the right to alter any of the Company's products or published technical data relating thereto at any time without notice. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or via any electronic or mechanical means for any purpose other than the purchaser’s personal use without the expressed, written permission of Peek Corporation. Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221 U.S.A. Trademarks The M3000, 3000, 3000E, 3000 Series, SafeWays, and CL-MATS are trademarks or registered trademarks of Peek Corporation in the USA and other countries. Microsoft and Windows are trademarks or registered trademarks of Microsoft Corporation. Other brands and their products are trademarks or registered trademarks of their respective holders and should be noted as such.

Page 5: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

M3000 Series On-Street Master Features • i

Table of Contents

TABLE OF CONTENTS i

GENERAL INFORMATION 1

FEATURES 1 COS PATTERN SELECTION 3

PROGRAMMING INSTRUCTIONS 13

INTRODUCTION 13 DISPLAY 13 KEYBOARD DESCRIPTION 13

MASTER CONTROL 15 GENERAL CONTROL INFORMATION 15 CENTRAL TELEPHONE NUMBERS 16 MASTER LINKING PARAMETERS 17

MASTER TO LOCAL CONTROL 19 INTERSECTION PARAMETERS 19

TIME OF DAY FUNCTIONS 21 CYCLE/OFFSET/SPLIT SOURCE (MIXED MODE) 21 EVENT PROGRAMMING 21 WEEK PLANS 23 YEAR PLAN 23 EXCEPTION DAYS 23 DAYLIGHT SAVINGS 24 CYCLE REFERENCE/ TIME RESET 24 SETTING DATE AND TIME 24

SENSOR CONFIGURATION 27 SENSOR ASSIGNMENTS 27 START/STOP ABSENCE MONITORING 27 ERROR DATA 28 WEIGHTING AND LOOP CALIBRATION FACTORS 28 LOGGING SENSORS 29

COMPUTATIONAL CHANNEL CONFIGURATION 31 COMPUTATIONAL CHANNEL PARAMETERS 31 CYCLE, SPLIT AND OFFSET CHANNELS 31 SPECIAL AND OCCUPANCY CHANNELS 33 QUEUE CHANNELS 34 MASTER LINK CHANNELS 35 ZONAL LINK CHANNELS 35

Page 6: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

ii Table of Contents

PATTERN FUNCTIONS 37 TRANSFER THRESHOLDS 37 CYCLE LENGTHS 41 VALID PATTERN MATRIX 41 MASTER LINK PATTERNS 43

UTILITIES 45 DEFAULT DATA LOAD 45 CLEAR LOGS 45 EEPROM - RAM COPY 45 RESTART MASTER 46 PRINTER FUNCTIONS 46 REQUEST DOWNLOAD 47 TEST VOLUME & OCCUPANCY 47

SPECIAL OPERATIONS 49 SECURITY CODES 49 EE USED/ AUDIO ADJ 49 COMMUNICATIONS SETUP 50

MANUAL OVERRIDE 53

DYNAMIC DISPLAYS 55

SYSTEM OPERATION MENU 55 ZONE OPERATION 55 INTERSECTION DATA 55 SENSOR STATUS 56

COMPUTATIONAL CHANNEL DATA 57 CYCLE CHANNELS (1-2) 57 OFFSET & SPLIT CHANNELS (1-2) 57 OCCUPANCY CHANNELS (1-4) 58 SPECIAL CHANNELS (1-4) 58 MASTER LINK CHANNELS (1-2) 59 ZONAL LINK CHANNELS (1-2) 59

PROGRAM LEVEL & REVISION INFORMATION 61 VOLTAGE INFORMATION 61 TIME OF DAY 63 CHECKSUM DATA 65 INPUT/OUTPUT DATA 67 LOG INFORMATION 69

PATTERN CHANGES 69 EVENTS 69 SENSOR FAILURES 70 KEYBOARD LOG 70 VOLUME & OCCUPANCY COUNTS 70

APPENDIX A 73

TOD CIRCUIT DESCRIPTIONS 73

Page 7: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

M3000 Series On-Street Master Features • iii

APPENDIX B 75

CONNECTOR PIN LISTS 75 MS-A CONNECTOR 75 MS-D MODULE 76 RS-232 DIRECT-CONNECT ASSEMBLY 77 RS-232 MODEM CONNECTOR 77

INDEX 79

Page 8: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

iv Table of Contents

Page 9: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

M3000 Series On-Street Master Features • 1

General Information

Features The Series M3000 On-Street Master is a state-of-the-art master controller that is designed to handle the needs of the traffic industry in the 21st century.

Ease of programming is a major priority in the M3000, which includes a large 8 row by 40 column LCD and a 24 key keypad with tactile and audible feedback. Help screens are included to guide the user through data entry. Also a SHIFT key is provided to modify the operation of the other keys.

Every M3000 controller includes a 99 year battery-backed real-time clock to provide complete time keeping functions, including daylight savings time adjustment and leap year corrections.

Database portability is provided by the optional EEPROM module that contains 32Kbytes of EEPROM. If so programmed, data in the EEPROM is automatically updated when the main database is changed. Also, CRC checksum calculations are performed on both the EEPROM and main memory to insure that no corrupt data is used. If a checksum failure occurs, all assigned intersections are instructed to run their individual Time-of-Day patterns .

The power supply in the M3000 is a state-of-the-art line powered switch mode type, which provides very cool and efficient operation with over one second of storage capacity. The incoming line voltage is rectified and directly down converted to all the necessary voltages, none more than 30 VDC. In this application, the switch mode supply usually operates at least 15°C. cooler than an equivalent linear supply, thus contributing to longer life for all surrounding components. The power supply includes an A/D converter that the M3000 uses to monitor supply voltages, currents and the temperature inside the unit.

An RS-232C serial port is included standard with each master for connecting to a printer, personal computer or modem. The baud rate is programmable from 1200 to 19200 baud.

The optional System Interface permits FSK TDM 1200 baud communications, typical of UTCS and closed loop applications, and provides compatibility with NEMA TS-2 Port 3. The transceiver is compatible with the BELL-202 modem standard. Also available instead of the FSK Transceiver is a Fiber Optic Transceiver capable of baud rates of 19200 bits per second. This transceiver module can accommodate a variety of emitters and sensors including 1300nm and 850nm multi-mode, and 1300nm single-mode. Other wavelengths may be available on special request.

The heart of the system is a Motorola 32 bit 68302 Integrated Multiprotocol Processor running at 16.667MHz. The processor addresses 512Kbytes of ROM and 256Kbytes of battery-backed RAM with no wait states.

NEMA control inputs in the M3000 do not use capacitors, RC networks or any other analog filtering. All NEMA control inputs use digital sampling and filtering techniques to reject frequencies outside the required specification.

The M3000 is designed to effectively act as 4 masters in one. Up to 64 intersections can be divided among 4 ‘zones’. Each zone consists of a maximum of 30 intersections and can run its own independently selected C-O-S pattern.

The M3000 applies a very flexible approach to C-O-S pattern selection. The master processes up to 16 sensors from each intersection controller. These sensors are assigned by the user to a variety of computational channels. A total of 22 computational channels can be

Page 10: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

2 • General Information

configured to process up to 128 sensors. The M3000 calculates output percentages of volume, occupancy, density, speed or concentration for these channels and compares the outputs with operator-defined thresholds to determine the appropriate C-O-S Traffic Responsive Pattern. The accumulated volume and presence counts from the sensors are processed on a minute by minute or cycle by cycle basis as selected by the operator. The operator can program a pattern change timer to suppress traffic responsive pattern changes due to a brief shift in traffic flow. Smoothing factors are also available to control how quickly the M3000 should respond to drastic traffic changes.

Sensor tests for absence, locked, erratic and minimum and maximum volume failures prevent erroneous data from selecting a traffic responsive pattern. Bad sensors are automatically removed from the calculation process and the Local TOD pattern will be used if the minimum number of good sensors for that computational channel is not met. If a previously failed sensor begins to function correctly, the master will log it as “recovered” and incorporate its data into the traffic responsive calculations.

The M3000 also provides manual and central overrides, cabinet inputs and time clock circuits for each zone. These determine C-O-S patterns which can override traffic responsive selections.

The M3000 provides two separate LINKING modes: zone to zone and master to master. Zonal linking occurs when one zone uses the C-O-S pattern selected by another zone. This allows zones with intersecting or contiguous traffic flows to run the same pattern. A master link allows one master to direct another master to use a specific C-O-S pattern.

The Time-of-Day scheduler allows the selection of operating patterns and special conditions on a calendar basis. Patterns and conditions are known as events, and may be selected by time of day, day of week, day of month and day of year. The master keeps track of the week of year so that cyclic functions most typical of traffic control may use repeating weeks. The M3000 may be programmed to respond to up to 300 different events and run a pattern from a selection of 15 week plans or from one of the 50 exception days. In addition, the time clock may be reset to a specified time by an external input. Each event time may select a timing pattern (cycle, offset and split) and control conditions through the use of time clock circuits.

The M3000 Master includes a number of dynamic displays. These allow the operator to view zonal pattern selection, intersection data and sensor status on a real-time basis. All computational channel output calculations and their parameters are also displayed so the operator can analyze the traffic behavior as it relates to the channel assignments.

The M3000 provides one “supervisor” level of security. Supervisor access allows the user to change any programmable data. If a security code has been previously programmed, then an operator will have only READ ONLY privileges until the correct code is entered. A security code of 0 will disable the security function. Only an operator(s) with supervisor access can disable this function. If there is no keyboard activity for 5 minutes, then the user must reenter the security code to gain access to the data programming screen if the security is enabled.

Page 11: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

M3000 Series On-Street Master COS Pattern Selection • 3

COS Pattern Selection The M3000 Master is designed to select the optimum cycle, offset and split pattern for each of its assigned intersection controllers. In most cases, the master uses traffic responsive data, collected via sensors, to determine this pattern. However, special circumstances, such as manual input, time clock circuits or Master to Master Cross Linking can supersede traffic responsive selections. It is important for the operator to understand how each of these patterns is selected before attempting to program the M3000 Master. The following describes the various modes and how they are used to select a viable C-O-S pattern.

General Operation

The M3000 is capable of controlling up to 4 independent zones. Each zone consists of a maximum of 30 intersection controllers and is capable of running its own unique pattern. The master retrieves volume and presence information from up to 16 sensors from each local controller up to a maximum of 48 sensors per zone. The M3000 processes this data through various computational channels to determine the desired C-O-S pattern. Each computational channel consists of a set of up to 12 sensor inputs.

The M3000 has a total of 22 computational channels per zone:

• 2 Cycle, 2 Offset, 2 Split

• 4 Special

• 4 Occupancy

• 4 Queue

• 2 Zonal Link

• 2 Master Link

Each of these channels (with the exception of Queue) can process a maximum of 12 sensors. The data accumulated from these sensors is used for volume, occupancy, concentration, density and speed calculations. The Queue channels are assigned only 1 sensor each and are monitored to detect 100% occupancy for a specified period of time.

Traffic Responsive calculations from the computational channels have the lowest priority when selecting a C-O-S pattern. Manual, Cabinet, Central and Time-of-Day patterns supersede Traffic Responsive selections. Master and Zonal linking also have a greater priority than that of Traffic Responsive calculations.

Pattern changes due to traffic responsive calculations may be limited by a operator selected pattern change timer. This timer sets a minimum amount of time (0 - 30 minutes or cycles) that a traffic responsive pattern must be in use before another one is chosen. Manual, Cabinet, Central, Master Linking and Time-of-Day patterns are not affected by this timer.

Pattern Selection Priorities

The final pattern selection of the M3000 may come from a variety of sources. Since different sources may ultimately choose more than one viable C-O-S pattern, the M3000 assigns those selections priorities:

Highest: Master Failure: Local TOD

Keyboard entry: Manual Pattern

Cabinet switch: Cabinet Pattern

Override Command from Central: Central Pattern

Page 12: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

4 • General Information

Active TOD circuits: Master TOD via DAYPLAN, Local TOD via DAYPLAN

Master to Master Link: Master Link Pattern

M3000 Power-up Timer : Local TOD

Zone to Zone Link: Zonal Link Pattern

Lowest: Computational channels: Traffic Responsive Pattern (Cyc, Off, Spl, Occ, Spec & Queue)

In addition, the M3000 assigns priorities to the various computational channels when making a Traffic Responsive pattern selection.

Highest: Queue channels : Queue Pattern: 1 of 4 selections

Occupancy channels: Occupancy Pattern: 1 of 4 selections

Special channels: Special Pattern: 1 of 4 selections

Lowest Cyc/Off/Spl channels: Individual Cyc, Off, and Spl selections: C-O-S pattern

Percentage Calculations

All pattern selections based on computational channel outputs rely on percentage calculations performed by the M3000. Every minute (or cycle) the master software calculates the following parameters for all assigned sensors:

• %volume

• %occupancy

• %volume+%occupancy

• %concentration

• %density

• %speed

This data is then used as input to the computational channels which ultimately select a traffic responsive C-O-S pattern. The operator must supply maximum volume, density and speed values for use in percentage calculations.

Percentage Equations: All calculations are based on either volume and/or presence data accumulated for each sensor. The “100%” values for volume, speed and density are operator defined. (Please note that in the calculations below, 4800 is the maximum presence count for 1 minute and the ‘sensor cal factor’ is the average vehicle length as entered by the operator.)

%volume (per minute)= (vol count * (60 min/hour) * 100)/(100% Vol/hour)

%volume (per cycle) = (vol count * (60 min/hour) * 100)/((100% Vol/hour) * (cyc length/60))

%occupancy(per minute)=(pres count * 100)/4800

%occupancy(per cycle)= (pres count * 100)/(4800 * (cyc length/60))

%concentration = the greater of %volume and %occupancy

speed = (cal factor * (sensor cal factor))/(pres count/vol count) - NOTE: ‘cal_factor’ is a constant which converts units to miles or km per hour: 544 for mph, 876 for kph.

%speed= (speed * 100)/(100% speed in mph or kph)

Page 13: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

M3000 Series On-Street Master COS Pattern Selection • 5

density (per minute) = (vol count * (60 min/hour))/speed

density (per cycle) = ((vol count * 60)/(cyc length/60))/speed = ((vol count * 60 * 60)/(cyc length))/speed

%density = (density * 100)/ (100% Density/hour)

Traffic Responsive Pattern Selection

The M3000 uses the volume and presence data accumulated by its assigned intersection controllers to determine a Traffic Responsive C-O-S Pattern. This data is input via “Computational Channels” and then analyzed in the form of volume, occupancy, concentration, density or speed percentages. The volume and presence totals are accumulated on a minute-by-minute or a cycle-by-cycle basis as selected by the operator.

Cycle, Offset & Split Channels: The M3000 Master uses 2 Cycle, 2 Offset and 2 Split computational channels to determine a possible Traffic Responsive C-O-S pattern. Each channel has a maximum of 12 user-assignable sensors and may be configured as shown below:

User selectable weighting factors are applied to occupancy and speed calculations only. Any sensor found to be bad (i.e. Min or Max volume, erratic, absence, locked failure is removed from the calculations. If the number of good sensors is less than the minimum allowed for a valid calculation, then the Master TOD C-O-S pattern is used. (This is true for all computational channels except Queue.)

The M3000 selects the average, highest, second highest or total of the sensor calculations for each channel and then applies exponential smoothing to the results. The “second highest” algorithm truely selects the second highest value in that if all the

calculations are equal, then the result will be zero. In other words, if the highest number occurs multiple times, the second highest must be a value less that that. For example, given 30, 30, 30, 20 and 5, the result would be 20, NOT 30.

The smoothed data is stored in six 30-element buffers (one for each of the channels, CYC1 & 2, OFF1 & 2, SPL1 & 2). These buffers hold the calculated data for the last 30 minutes (or cycles). The smoothing factor is user selectable and ranges from .1 to 1. This allows the operator to control how quickly the master should respond to sudden changes. The formula for smoothed data is as follows:

SensorInputs

(12 max)

%Volume, %Occupancy,

%Concentration, Speed%Vol. + %Occ.,

calculations

ComputationalChannel

or %Densityfor each sensor

sensorcalculations(vol, occ,density, etc.)

Avg, Highest, Second Highestor Total Selector

30 element rotatingbuffer

exponentialsmoothing

Page 14: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

6 • General Information

smoothed data = (previous data * (1 - smoothing factor)) + (new data * smoothing factor)

For example a smoothing factor of .1 would cause a sudden shift from 30% to 80% to be recorded as 35% while a factor of .8 would result in a value of 70% as shown below.

smoothing factor of .1 = 30%(.9) + 80%(.1) = 35% smoothing factor of .8 = 30%(.2) + 80%(.8) = 70%

The operator may also enter a forecast predictor value which would inhibit smoothing if the newly calculated data was greater. (NOTE: if the user elects not to use this option and the forecast predictor remains at 0, then smoothing will always be applied.) Both the forecast predictor and the smoothing factor have primary and alternate selections based on the time-of-day circuit and external inputs per zone. A smoothing factor of 1 is always used during the first 6 minutes of power-up.

After the smoothed data has been recorded in its appropriate buffer, the master selects the average, highest or total of the last n entries (where n is the sampling period as selected by the operator.) If the operator has selected a “second highest” calculation then, at this point, the master selects the highest of the last n entries. Please note that if a computational channel fails due to an unacceptable number of sensor failures, then invalid data is generated. This data is NOT used in any of the traffic responsive pattern calculations. While the number of good sensors for any given channel is less than the minimum number allowed, the M3000 selects the Master TOD pattern. However, if enough sensors “recover” to allow traffic responsive calculations, the traffic responsive C-O-S pattern is selected. The selected pattern is based on valid data only. It is important for the operator to realize that if the sample period is, for example, set to 5 (min/cyc) and the computational channel fails for more than 5 minutes/cycles then the traffic responsive pattern will be based only on the single calculation at the time of recovery. The last four calculations will not be used since they occured during a channel failure. The next minute/cycle will use 2 data calculations, and then 3 and so on until, after 5 minutes/cycles, the full sample of period of 5 will essentially be in effect.

The operator may choose different sampling periods for each of the three types of channels. Sampling periods have primary and alternate selections and are also chosen according to time-of-day circuits and external inputs per zone.

At this point each of the 6 channels has some type of percentage calculation associated with it: CYC1, CYC2, OFF1, OFF2, SPL1, SPL2 as shown in the figure above. This data has a range of 0 to 255%. It is important that Offset Channels 1 and 2 be configured as OUTBOUND and INBOUND traffic respectively, since the difference in their values determines the traffic responsive offset number. Split channel configuration requires that channel 1 represent the side street and channel 2 the main street.

The final cycle, offset and split data is determined as follows:

Avg, Highest,or Total Selector

30 element rotatingbuffer

n

last n calculationsas determined by

Avg, Highest or Total of the last n calculationsfor this channel

the sample period

(i.e. CYC1,CYC2, OFF1,OFF2, SPL1, SPL2)

Page 15: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

M3000 Series On-Street Master COS Pattern Selection • 7

CYCLE: The algorithm selects the average, highest or total of the CYC1 and CYC2 data. This data has a range of 0 - 255% and is now what the program considers the final cycle channel value.

OFFSET: The algorithm calculates (OFF1-OFF2) and determines a signed percentage whose range is -255 to +255. OFF1 represents OUTBOUND traffic and OFF2 the INBOUND. Offset number 1 will be selected for heavy inbound traffic; Offset number 2 will be selected for average inbound traffic. Offset 3 represents average traffic flow and numbers 4 and 5 are selected for average and heavy outbound traffic, respectively. (The program will select offset# 1, 2 or 3 if the result is negative or offset# 3, 4 or 5 if it is positive.)

SPLIT: The calculation is similar to that of the Offset channel. If (SPL2 - SPL1) is less than 0 then the sidestreet has more traffic and Split number 1 will be selected. Split number 2 represents average traffic flow, splits 3 and 4 indicate average and heavy main street traffic, respectively.

Each cycle, offset and split number is selected individually by comparing the above results to operator selected thresholds. These thresholds are structured as follows:

CYCLE: Maximum Thresholds

typical value

CYCLE: Minimum Thresholds

typical value

FREE -> Cycle #1 20% Cycle #1 -> FREE 15%

Cycle #1 -> Cycle #2 40% Cycle #2 -> Cycle #1 35%

Cycle #2 -> Cycle #3 60% Cycle #3 -> Cycle #2 50%

Cycle #3 -> Cycle #4 80% Cycle #4 -> Cycle #3 75%

Cycle #4 -> Cycle #5 100% Cycle #5 -> Cycle #4 95%

Cycle #5 -> Cycle #6 110% Cycle #6 -> Cycle #5 105%

OFFSET: Maximum Thresholds

typical value

OFFSET: Minimum Thresholds

typical value

Offset #3 -> Offset #2 (-)20% Offset #2 -> Offset #3 (-)15%

Offset #2 -> Offset #1 (-)40% Offset #1 -> Offset #2 (-)35%

Offset #3 -> Offset #4 (+)30% Offset #4 -> Offset #3 (+)20%

Offset #4 -> Offset #5 (+)50% Offset #5 -> Offset #4 (+)45%

SPLIT: Maximum thresholds

typical value

SPLIT: Minimum thresholds

typical value

Split #2 -> Split #1 (-)20% Split #1 -> Split #2 (-)15%

Split #2 -> Split #3 (+)40% Split #3 -> Split #2 (+)35%

Split #3 -> Split #4 (+)60% Split #4 -> Split #3 (+)55%

The above tables include typical threshold values. Please note that the minimum thresholds are at least 5% lower than their corresponding maximum thresholds. This

Page 16: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

8 • General Information

assignment provides a buffer zone to prevent “flip-flopping” between 2 selections. For example, the cycle number will change from 2 to 3 if the final output calculation for the CYCLE channel is greater than or equal to 60%. However, the M3000 will NOT change back to cycle number 2 unless the output drops below 50%. This way the CYCLE percentage can flucuate slightly without causing frequent changes to the C-O-S pattern.

The diagram below dipicts the basic functional flow of the selection of a CYCLE# via the two Cycle computational channels. The diagrams for Offset and Split would be identical except for the last Average,Highest and Total selector which would, instead, calculate the difference between the two channels outputs. (i.e. OFFSET1 - OFFSET2, SPLIT2 - SPLIT1)

12sensors

Avg,Highest,

Total

30 elementrotating buffer

last n calculationsas determined by the sample period

n

Avg, Highest, or Total of last ncalculations

CYCLE Channel #1

Percentage calculationsfor each sensor

12sensors

Avg,Highest,

Total

n

CYCLE Channel #2

Percentage calculationsfor each sensor

Avg,Highest,Total

Compare

User defined Threshold for CYCLE channels

C-O-SPattern

OFFSET Chan: OFF1-OFF2; SPLIT Chan: SPL2- SPL1)

NOTE:2nd High,

2nd High,

Avg,Highest,

Total2nd High,

Avg,Highest,

Total2nd High,

The traffic response pattern defaults to a 1-3-2 on power-up. As data is accumulated the pattern will change to meet the requirements set up in the thresholds. It is important to note that although the M3000 sets the traffic responsive pattern to 1-3-2 on power-up, the master will NOT select traffic responsive until after the power-up timer has expired. Until then the master instructs its intersection controllers to run their local TOD patterns.

Special & Occupancy Computational Channels: The M3000 Master also has 4 ‘Special’ and 4 ‘Occupancy’ computational channels. Each has a maximum of 12 sensor inputs. The Special channels can be configured for %volume, %occupancy, %volume+%occupancy, %concentration, %density or %speed while the Occupancy channels are always configured as %occupancy. The percentages are calculated in the same manner as those for the Cycle, Offset and Split channels.

After the Master selects the average, highest, second highest or total of the sensor inputs and then chooses the average, highest or total of the last n minutes or cycles, the results for each of the channels are compared to user selected thresholds. (The smoothing factor and forecast predictor apply just as in the Cycle, Offset and Split channels.) A functional diagram for SPECIAL Channel 1 is shown below. The data flow is identical for SPECIAL Channels 2 through 4 and all four OCCUPANCY Channels.

Page 17: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

M3000 Series On-Street Master COS Pattern Selection • 9

12sensors

Avg,Highest,

Total

30 elementrotating buffer

Avg,Highest,Total

CompareC-O-S Pattern

last n calculationsas determined by the sample period

n

Avg, Highest, or Total of last ncalculations

User-defined Threshold for

Special Channel #1

SPECIAL Channel #1

Percentage calculationsfor each sensor

2nd High,

Each channel has its own ‘transfer to’ and ‘transfer from’ threshold. Since each set of thresholds is unique, it is possible for more than one special (or occupancy) pattern to be selected. Therefore, Channel 1 always has the HIGHEST priority and Channel 4 has the LOWEST. When a channel exceeds its ‘transfer to’ threshold, the Master selects the C-O-S pattern entered by the user for that channel. Conversely, when the percentage data for any channel drops below the ‘transfer from’ limit then the Special (or Occupancy) Pattern is ‘de-selected’ and the C-O-S pattern selected via the Cycle, Offset and Split channels is restored.

The Occupancy channels have priority over the Special channels so if a special channel and an occupancy channel meet their pattern selection thresholds, the occupancy pattern will be selected.

Queue Computational Channels: A Traffic Responsive pattern can also be selected via one of four Queue channels. The Queue channels are assigned only one sensor each and are monitored to detect 100% occupancy for a specified period of time. Each channel has its own ‘transfer to’ and ‘transfer from’ thresholds. Unlike the other channels whose limits are in percent, the queue thresholds are entered in minutes. For example, if the ‘transfer to’ threshold for a given channel is 20, then the Queue pattern for that channel will be implemented if its %occupancy remains greater than or equal to 100 for at least 20 minutes. A Queue channel will be ‘un-selected’ if its %occupancy drops below 100 for the ‘transfer from’ limit. The operator may only enter a threshold up to 30 minutes. Just as with the Special and Occupancy channels, Queue channel 1 has the HIGHEST priority and channel 4 has the LOWEST.

Pattern Matrix: After a Traffic Responsive pattern has been calculated, that pattern is passed through a cross reference table (matrix) where that same pattern or a substitute pattern may be stored. This table provides a means of substituting a pattern with any other pattern and allows any pattern to be voided by its omission from the table. Any table position containing zero for each function (cycle-offset-split) when indexed causes no change to the present pattern. It is also possible to enter a ‘0’ for one or two of the C-O-S possibliites such that the zeroed entry will remain as previously selected. For example, if the current Traffic Responsive Pattern is 4-2-4 but its corresponding entry in the pattern matrix is 301, then the resulting pattern will be 3-2-1.

Zonal Linking

Zonal Linking occurs when one or more zones of a particular master uses the C-O-S pattern calculated by another zone of that same master. Each of the four zones have two computational channels to determine when and where linking should occur. Each channel has a maximum of 12 sensors and may be configured for %volume, %occupancy, %volume+%occupancy, %concentration, %density or %speed. Like the majority of the other computational channels, the Zonal Link channels are processed by selecting the average, highest, second highest or total of their sensor inputs and then choosing the

Page 18: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

10 • General Information

average, highest or total of the last n minutes or cycles. Smoothing factors, forecast predictors and sampling period selections apply as described for the cycle, offset and split computational channels. However, the operator must set the zonal link enable in the current day plan for zonal linking to occur. (See Time-of-Day Functions: Event Programming.)

The zonal thresholds divide into 4 distinct groups, one for each zone:

Zone 1:

Zone 1 pattern to Zone 2 unlink Zone 1 pattern from Zone 2

Zone 1 pattern to Zone 3 unlink Zone 1 pattern from Zone 3

Zone 1 pattern to Zone 4 unlink Zone 1 pattern from Zone 4

Zone 2:

Zone 2 pattern to Zone 1 unlink Zone 2 pattern from Zone 1

Zone 2 pattern to Zone 3 unlink Zone 2 pattern from Zone 3

Zone 2 pattern to Zone 4 unlink Zone 2 pattern from Zone 4

Zone 3:

Zone 3 pattern to Zone 1 unlink Zone 3 pattern from Zone 1

Zone 3 pattern to Zone 2 unlink Zone 3 pattern from Zone 2

Zone 3 pattern to Zone 4 unlink Zone 3 pattern from Zone 4

Zone 4:

Zone 4 pattern to Zone 1 unlink Zone 4 pattern from Zone 1

Zone 4 pattern to Zone 2 unlink Zone 4 pattern from Zone 2

Zone 4 pattern to Zone 3 unlink Zone 4 pattern from Zone 3

It is possible for more than one zone to share the same zonal link. For example, zones 2 and 3 could both be using the C-O-S pattern calculated by zone 1. However, a zone may only accept a zonal link if its current pattern selection is from Traffic Responsive calculations. Patterns selected via manual input, cabinet switches, TOD circuits etc. can not be superseded by a zonal link.

Master Cross Linking Master Linking occurs when one master directs another master to use a specified pattern for one or more of its zones. This setup requires one M3000 to act as a ‘primary’ master while the receiving unit responds as a ‘secondary’. The primary and secondary masters each have specific tasks and requirements to fulfill in order for a successful cross link to occur.

Primary Master: The primary master must determine when a cross link should occur. The primary master uses two Master Link computational channels (per zone) for cross-linking selection. Each channel has a maximum of 12 inputs and may be configured for %volume, %occupancy, %volume+%occupancy, %concentration, %density or %speed. Like the majority of the other computational channels, the Master Link channels are processed by selecting the average, highest, second highest or total of their sensor inputs and then choosing the average, highest or total of the last n minutes or cycles. (Smoothing factors and forecast predictors apply just as in the Cycle, Offset and Split channels.)

Page 19: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

M3000 Series On-Street Master COS Pattern Selection • 11

The final channel outputs are then compared to operator defined thresholds for each of the four possible secondary masters. Each zone has its own set of threshold values which range from 0 to 255%.

Master Link to Secondary #1 Unlink from Secondary #1

Master Link to Secondary #2 Unlink from Secondary #2

Master Link to Secondary #3 Unlink from Secondary #3

Master Link to Secondary #4 Unlink from Secondary #4

Lookup tables contain corresponding telephone numbers, link pattern numbers and zone assignments for each of the four secondary masters. A link pattern number corresponds to one of four possible C-O-S patterns stored in the secondary master. The link patterns are defined by the operator and are the only possible pattern selections for master linking activity. The zone assignments tell the secondary which zone (or zones) should run the designated link pattern.

An M3000 will send a link command when the following conditions are true:

1. its traffic responsive computational thresholds indicate a cross link, and,

2. it is NOT currently responding to a link from another master with higher priority. (This priority is based on the requested link number: Link number 1 has the greatest and number 4 the lowest.)

3. Master Linking is enabled via the current day plan. (See Time-of-Day Functions: Event Programming)

The command must include zone, link pattern number, time and master ID information.

Secondary Master: A secondary master has two principle responsibilities. First, it must decide whether or not to accept a cross link command from a primary master. Then it must determine if and when it should terminate the cross link. The M3000 will accept the command if

1. it is not already a primary master that has greater priority than that of the requesting master, and,

2. it is not already a secondary master with greater priority than that of the requesting master.

3. it is currently running a traffic responsive or zonal link pattern. (NOTE: a master link will NOT occur if the specified zone is running a selection with a greater priority such as a manual, cabinet, central or TOD pattern)

Priorities are established by the link pattern requested by the primary. Link pattern 1 always has the highest priority while link pattern 4 always has the lowest regardless of the zone(s) affected.

A secondary master will terminate a cross link if any one of the following occurs:

1. an UNLINK command is received, or,

2. the sustain link timer has timed out, or,

3. a LINK command is received with a higher priority, or,

Page 20: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

12 • General Information

4. the secondary’s master link thresholds indicate that it should command a higher priority link to another master.

The sustain link time is user-selectable from 0 to 255 minutes and establishes the maximum amount of time that a master may be under the control of another master. (NOTE: The secondary uses the value entered into its own database. This parameter is not transmitted in the link command.)

Time of Day Patterns

The operator may program the M3000 to run a particular C-O-S pattern based on its Time-of-Day. The M3000 includes a time of day scheduler with a 300 event capacity, 32 day programs, 15 week programs, 50 exception days and daylight savings time capability. When the master is in Master TOD mode and a TOD circuit is activated, the master immediately selects the pattern indicated by the time of day scheduler. Time-of-Day programming selects the zone, C-O-S pattern, alternate sampling period and smoothing factors, and free and remote flash operation. Master and Zonal linking are also enabled via the TOD programming.

Time of day patterns have precedence over traffic responsive and linking pattern selections.

Manual, Cabinet and Central Patterns

Manual, cabinet and central patterns always override Traffic Responsive and Linking selections. A manual pattern is activated through the front panel keyboard. Cabinet patterns are selected by setting switches located inside the cabinet assembly. At present, separate cabinet switches are NOT available for all four zones. When the operator selects a cabinet pattern (Free, Flash, TOD or C-O-S), that pattern will affect all four zones. A central pattern is generated by a command from Central Communications instructing a particular zone (or zones) to run a specific C-O-S combination. Central may also instruct the M3000 to run TOD, Flash or Free. Of the three types of selections, the manual pattern always has the highest priority, followed by cabinet and central, respectively.

Master Failure/Power-up Pattern Selection Power-up mode and Master Failure detection both cause the M3000 to instruct the intersection controllers to run their local TOD patterns. When the M3000 is first powered-up, the intersection controllers will run their local TOD patterns until the power-up timer reaches 0. The power-up timer is user programmable from 1 to 30 minutes. The Master will continue to calculate Traffic Responsive patterns but they will not be implemented until after the timer has reached 0. However, Manual, Cabinet, Central and Time-of-Day patterns will be selected regardless of the power-up timer. Power-up mode only has precedence over Traffic Responsive patterns. Master Failure mode occurs when the M3000 detects a CHECKSUM failure and, therefore, must assume that the master is no longer capable of selecting a viable C-O-S pattern. Master Failure detection has the highest pattern selection priority in the M3000 Master.

Page 21: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

M3000 Series On-Street Master Introduction • 13

Programming Instructions

Introduction The M3000 master user interface is organized in a hierarchy of menus, data entry screens and dynamic displays. A data entry screen is used to enter or edit data that will affect the way that the master operates. A dynamic display is an informational screen that presents real-time data to the user to indicate the way in which the machine is operating. Menus are the means of traversing through the hierarchy. Each menu presents a set of options to the user. Selecting one of the options will take the user to the next level. The user continues to navigate through the menus until arriving at the destination screen.

The top level menu is called the MAIN MENU and contains 4 options: 1) go to the dynamic screens, 2) view the controller database, 3) edit the controller database, or 4) access the main help screen.

Display The display is an 8 row by 40 column ‘super-twist’ LCD with graphics capability. The LCD includes an electro-luminescent backlight for night or low light viewing. The backlight is automatically activated by any keypress and if no keys are pressed for 5 minutes, it automatically turns off.

Keyboard Description Manual data entry is accomplished with a 24 key silicone rubber tactile feedback keypad. Audible feedback is also provided with an adjustable volume. Erroneous entries are signaled with a special tone regardless of the audible feedback volume. A list of the keys and their associated functions is given below.

1-9 The number keys are used to enter numerical data such as timing values and modes of operation. They are also used to navigate through the menu structure of the M3000 master. Each item in a menu is numbered, so to activate a menu selection, the user simply presses the number key corresponding to that selection.

0 (Y/N) The 0 key is also used for numerical data, but has the additional feature of toggling yes/no data entry fields.

ENTER This key is used to load previously entered data into memory. SHIFT plus ENTER displays the main master dynamic screen regardless of which screen is currently displayed.

CLEAR Used to clear previously entered data and prevent it from being stored in memory in case a mistake was made during data entry.

HOME This key returns the cursor to the beginning of the line. Together with the SHIFT key it moves the cursor to the first data entry field on the current page.

END The opposite of HOME, END moves the cursor to the end of a line, and when used in conjunction with the SHIFT key, it moves the cursor to the last data entry field on the screen.

Page 22: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

14 • Programming Instructions

PGUP In a multi-page data entry screen, this key displays the page immediately prior to the currently displayed page, if one exists. If the current page is the first page, the master will display a message to this effect.

PGDN Displays the next page in a multi-page data entry screen, if there is one. If the current page is the last page, the master will display a message to this effect.

The cursor control keys move the cursor up, down, left and right, respectively. The cursor controls which field will be edited. In general, the cursor must first be moved to a field in order to change data that is stored there. Also, in most data entry screens, pressing any cursor key will load data that has been entered or changed into the master’s memory.

MENU The menu key returns the user to the previous menu, i.e., the one from which the current screen was entered. As an example, if the user starts at the MAIN MENU, and presses 3, the CHANGE DATA menu will be displayed. If the user then presses the MENU key, control will return to the MAIN MENU. By pressing the SHIFT and MENU keys simultaneously, the user can return to the MAIN MENU from any menu, data entry screen or dynamic display.

SHIFT This key performs no function on its own, rather it modifies the function of another key that is pressed together with it.

DISP ADJ This key adjusts the contrast of the liquid crystal display to improve the readability of the display. Pressing the DISP ADJ key by itself darkens the display and pressing it along with the SHIFT key lightens it.

HELP This key, when pressed, activates the master's help system to display one or more pages of help related to the screen that is currently being programmed. Some help screens are several pages long. In this case use the PGUP & PGDN to view more pages of help data. Pressing HELP again returns the user to the data screen or menu.

To enter a value into memory, first move the cursor to the field containing the value to be edited and enter the new data. As you enter the data, the field will change to ‘reverse video’ (white text on a black background) to indicate that a change has been made. At this point, the data is stored in a temporary buffer and has not been loaded into the database yet. Pressing the CLEAR key will restore the original value. To permanently store the data, press any cursor key or the ENTER, HOME or END key. Pressing MENU, PGUP, or PGDN will cause the master to beep rapidly indicating that an error has been made. Once the data is loaded (stored in memory), the display will return to normal (no reverse video) and the original data will be lost.

To assist with repetitive data entry, the M3000 Master implements a ‘typematic’ keyboard mode. To use this feature, hold a key down (for example, a cursor key) and after a short delay, the key will be reentered over and over as if it had been pressed several times. This makes it easier to move the cursor through a large number of data entry fields. All keys except the SHIFT key behave this way, but it is especially useful when using the cursor keys. Also, there is an automatic entry mode that simplifies the task of entering the same data again and again. By pressing the ENTER key and a cursor key simultaneously, the user can reenter the last value that was programmed. Then, the user would hold down the ENTER key and the key at the same time.

Page 23: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

M3000 Series On-Street Master Master Control • 15

Master Control General Control Information

The M3000 requires control information to enable Central communications, select sampling and pattern change periods and specify the units of the loop calibration factor used in speed calculations. The operator also has the option to report pattern change information and/or the first sensor failure.

For the master to initiate communications with the central computer the user must enable the DIAL CENTRAL option on the first master control screen. Central can call the master and request log information but the master will not dial Central to transmit data unless the DIAL CENTRAL option is enabled. (If this option is disabled in a ‘direct connection’ system where no actual telephone call is necessary, the master will not transmit information unless specifically requested to do so by the central computer.)

If pattern changes and/or the first sensor failure need to be reported then these options must also be enabled by positioning the cursor over the corresponding ‘N’ and pressing the Y/N key.

The Master I.D Number is used to identify the M3000 to the central computer as well as other masters within its system. The default screen for this information is shown below.

It is important to note that when running a MATS System, ‘REVERT TO MASTER IF CENTRAL OFF-LINE’ must be programmed ‘Y’ since this affects the type of poll sent to the local controllers. If a closed-loop system is being used then this parameter should be programmed ‘N’.

Sampling periods for computational channel calculations and pattern changes may be calculated by minute or by cycle. Each zone is configured independently as shown in the screen below. Please note that all sampling periods default to minutes.

The actual number of minutes (or cycles) between pattern changes is entered on the third screen of Master Control. The operator also selects the amount of time (in minutes) before the M3000 selects the first traffic responsive pattern after power-up. In the example screen below, zone 1 will wait 5 minutes before a traffic responsive pattern will be implemented. Manual, cabinet and time clock patterns are not affected. It is important to note that regardless of the power up time, the alternate sample period and a

MASTER CONTROL DATA MASTER I.D. NUMBER: 0 ALLOW MASTER TO DIAL CENTRAL N REPORT FIRST SENSOR FAILURE: N REPORT PATTERN CHANGES N LOOP CALIBRATION FACTOR IN METERS: IF (Y) ELSE IN FEET (N) N REVERT TO MASTER IF CENTRAL OFF-LINE N

MASTER CONTROL DATA SAMPLING PERIOD IN CYCLES IF (Y) ELSE IN MINUTES ZONES 1 2 3 4 COMP. CHANNEL SAMPLING PERIOD: N N N N PATTERN CHANGE PERIOD: N N N N CENTRAL OVERRIDE ENABLE: N N N N

Page 24: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

16 • Programming Instructions

smoothing factor of 1.0 will be used for the first 6 minutes after power-up. The CENTRAL OVERRIDE ENABLE allows the M3000 to implement a pattern selected by a Central Override command for a particular zone. In other words, a zone will only run a Central Override Pattern if its appropriate enable is set.

The PATTERN CHANGE PERIOD only applies to traffic responsive patterns calculated using any one of the computational channels: CYC, OFF, SPL, SPECIAL, OCC, QUEUE and ZONAL. The master will not change traffic responsive patterns until this time has elapsed. Manual, cabinet, time clock and master link patterns are immediately implemented. For more detailed explanations on sample periods, smoothing factors and C-O-S pattern selection, refer to C-O-S Pattern Selection in the General Information section.

Central Telephone Numbers Master Control Screens 4 and 5 allow the user to define a maximum of 4 central telephone numbers and corresponding calling times. Each number may be up to 25 digits and contain special characters such as ‘#’ or a space. The operator enters these characters by pressing the SHIFT key with one of the number keys 0-6: SHIFT (0)= wait, (1)= ‘,’, (2)= ‘;’, (3)=‘#’, (4)= space, (5)= tone(T), (6)=pulse (P). Phone number 1 has the highest priority and phone number 4 the lowest.

Starting with phone number 1, the M3000 will call the first phone number with a valid dialing time. If the master cannot establish communications, it will check the rest of the dialing times for an alternate phone number. The master will continue to cycle through the list until central communications has been established.

MASTER CONTROL DATA ZONES PERIOD BETWEEN PATTERN 1 2 3 4 CHANGES : (0-30) 1 3 1 2 PERIOD TO FIRST PATTERN 5 6 1 2 AFTER POWER RESTORATION:

MASTER TO CENTRAL PHONE NUMBERS NUMBER 1: NUMBER 2: NUMBER 3: NUMBER 4: SHIFT and KEY[0=wait 1=, 2=; 3=# 4=space 5= tone (T) 6= pulse (P)]

MASTER TO CENTRAL DIALING TIME FROM HOUR TO HOUR CALL PHONE NUMBER 1: 0 0 CALL PHONE NUMBER 2: 0 0 CALL PHONE NUMBER 3: 0 0 CALL PHONE NUMBER 4: 0 0

Page 25: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

M3000 Series On-Street Master Master Control • 17

Master Linking Parameters Master Linking occurs when one master directs another master to use a specified pattern for one or more of its zones. This setup requires one M3000 to act as a ‘primary’ master while the receiving unit responds as a ‘secondary’. The operator must provide master to master phone numbers, valid dialing times, link pattern numbers and zonal assignments to implement this feature. When acting as a ‘secondary’, the master also needs the link sustain time which establishes the maximum amount of time that the link can be in effect.

Each of the four phone numbers correspond to a particular secondary master. Each number may be up to 25 digits long. The user may enter special characters by pressing the SHIFT key with one of the number keys 0 - 6: SHIFT (0)= wait, (1)=‘;’, (2)= ‘,’, (3)=‘#’, (4)= space, (5)= tone(T), (6)=pulse (P).

Each secondary master phone number has a corresponding dialing time. The M3000 will not send a link command if the time of day does not fall within the valid dialing period for that secondary master. The dialing time screen is shown below.

The following screen allows the operator to select the link pattern number (1-4) and the affected zone(s) for each secondary master. For example, the screen below indicates that if secondary master one is selected then its zones 2 and 4 will use link pattern 2. The zone selections and link pattern number are sent by the primary in its ‘Master Link’ command. The SUSTAIN LINK time tells the secondary the maximum amount of time that a particular link pattern may be in affect. According to the example screen below, link pattern 2 will run for a maximum of 30 minutes before the M3000 automatically terminates the link. Please note that the sustain link times are referenced by the link pattern number currently running in the secondary master. For more details on master linking, refer to C-O-S Pattern Selection in the General Information section.

MASTER TO MASTER PHONE NUMBERS NUMBER 1: NUMBER 2: NUMBER 3: NUMBER 4: SHIFT and KEY[0=wait 1=, 2=; 3=# 4=space 5= tone (T) 6= pulse (P)]

MASTER TO MASTER DIALING TIME FROM HOUR TO HOUR CALL PHONE NUMBER 1: 0 0 CALL PHONE NUMBER 2: 0 0 CALL PHONE NUMBER 3: 0 0 CALL PHONE NUMBER 4: 0 0

MASTER TO MASTER LINK DATA MASTERS: 1 2 3 4 ZONES: 1234 1234 1234 1234 LINK:Y/N Y Y Y PAT: (0-4) 2 4 3 1 SUSTAIN LINK: 30 15 0 60 (0-255 MINUTES)

Page 26: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

18 • Programming Instructions

This page intentionally left blank

Page 27: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

M3000 Series On-Street Master Master to Local Control • 19

Master to Local Control Intersection Parameters

The M3000 can control up to 64 intersections with a maximum of 30 intersections assigned to any given zone. The MASTER TO LOCAL CONTROL menu allows the operator to define active intersections and their corresponding zonal assignments. The user indicates that an intersection is ‘ACTIVE’ by entering a ‘Y’ under its identification number as displayed in the sample screen below.

Every active intersection must have a corresponding zone assignment (1-4). Each zone is allowed a maximum of 30 intersections. In the example above, intersections 2, 5 and 6 are assigned to zone 1 while 3,4 and 8 correspond to zone 2. Data screens for intersections 9 through 64 are displayed by pressing the PGDN key.

SPREAD SPECTRUM, NEXT XMT DELAY and RECeive HOLD OFF parameter work together to select the spread spectrum and timing options. NEXT XMT DELAY defines the maximum time between intersection polls and REC HOLD OFF selects the maximum time delay between the master’s poll and the intersection’s response. However, these three parameters are not implemented at this time.

MASTER TO LOCAL DATA INTERSECTION: 1 2 3 4 5 6 7 8 ACTIVE: N Y Y Y Y Y N Y ZONE: 0 1 2 2 1 1 0 2 SPREAD SPECTRUM:N N N N N N N N NEXT XMT DELAY: 0 0 0 0 0 0 0 0 REC. HOLD OFF: 0 0 0 0 0 0 0 0

Page 28: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

20 • Programming Instructions

This page intentionally left blank

Page 29: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

M3000 Series On-Street Master Time of Day Functions • 21

Time of Day Functions Time of day (TOD) functions allow the user to schedule a variety of events to occur at fixed times during the day. These events include changing patterns, enabling master or zonal linking functions, and selecting alternate sampling periods and smoothing factors.

A TOD program is composed of a hierarchy of plans from the year plan at the top to the day plan at the bottom. A year plan consists of 53 week plans, a week plan consists of 7 day plans and a day plan is made up of a set of change points which activate or deactivate individual functions at specific times during the day. In addition, there are up to 50 exception day plans for special ‘one time only’ days such as holidays.

Cycle/Offset/Split Source (MIXED MODE) The M3000 provides a ‘MIXED MODE’ pattern selection by substituting any combination of its traffic responsive cycle, offset and split with those designated by its Master TOD pattern. It is also possible to substitute the flash or free Master TOD selections for the traffic reponsive pattern. Please note that if the operator chooses to use the FREE or FLASH TOD programming for mixed mode then the free or flash selections must be enabled in the current TOD plan for the M3000 to report FREE or FLASH MIXED SOURCES.

For example, if the user always wants to use the flash programming when selected by the master TOD for zone 2, then the user would program the screen as shown below.

However, if a ‘Y’ is also programmed for zone 2-CYCLE, then the master TOD cycle would always be substituted for the Traffic Responsive cycle when FLASH is not enabled in the current TOD plan.

If the Master TOD pattern for zone 2 is 1-1-1 (C-O-S) and the traffic responsive algorithm calculated 3-2-3, then the resulting mixed mode pattern would be 1-2-3.

Event Programming Event Programming allows the operator to force specific actions to be taken such as pattern selection, linking, or flash operation, at specific times of the day, week, or year. These functions are accessed by entering a ‘2’ in the TIME OF DAY menu.

TIME OF DAY MENU 1.CYC/OFF/SPL SOURCE 5.EXCEPT DAYS 1-50 2.EVENTS 1-300 6.DAYLIGHT SAVINGS 3.WEEK PLANS 1-15 7.CYC REF/TIME RES 4.YEAR PLAN, 53 WEEK 8.SET DATE AND TIME

CYCLE/OFFSET/SPLIT SOURCES ZONE 1 ZONE 2 ZONE 3 ZONE 4 CYCLE _ _ _ _ OFFSET _ _ _ _ SPLIT _ _ _ _ FREE _ _ _ _ FLASH _ Y _ _ >> VALUE (YES/NO), YES = TIME OF DAY <<

Page 30: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

22 • Programming Instructions

The first page of this menu specifies the day plan and the action to be taken: view, change, or erase. To edit a day plan, enter the plan number at the top and press the ENTER key. To erase a day plan (clear all events for that plan), move the cursor down to the second row and enter the plan number to clear, followed by the ENTER key. The master will prompt the user to verify the action with the Y/N key. Pressing MENU will cancel the erase operation. To erase all of the day plans, move the cursor to the last row and enter 99. Once again the master will ask the user to confirm the operation as above.

The M3000 displays the second ‘event’ screen after a day plan has been selected for viewing or editing. The figure below shows the data screen for day plan 1 before any change points are programmed.

This screen allows the operator to force the master to select specific C-O-S patterns, free or flash operation, zonal and master linking, alternate traffic responsive parameters, and Local or Master time clock patterns at the time of day specified in HH:MM. A description of each of the entries is shown in the table below:

Parameter Entry Type Description

HH:MM 0-23: 0-59 the time of day at which the plan shall be executed

Z1 - Z4 X selects which zone(s) are affected

CY, OF, SL 1-6, 1-5, 1-4 selects specific C-O-S pattern to be executed

FREE X selects Free operation

RFL X selects Remote Flash operation

MLE, ZLE X enables master and zone linking, respectively

LTC X selects Local Time Clock pattern (Local TOD)

ASP, ASF X selects alternate sampling period or smoothing factor, respectively

MTC X select Master Time Clock pattern (Master TOD)

LM1-LM4 X forces a MASTER LINK with secondary masters 1-4, respectively

UD1, UD2 X User-defined outputs

All entries of ‘X’ are input by pressing the Y/N key. It is important to remember that at least one zone be selected (Z1-Z4) in addition to the other possible parameters. The Master can not implement a function if there is no zone assignment.

TO VIEW OR ENTER DAY PLAN CHANGE POINTS ENTER 1-32: __ TO ERASE ONE DAY PLAN ENTER 1-32: __ TO ERASE ALL DAY PLAN CHANGE POINTS ENTER 99: __

DAY PLAN 1 HOUR: HH = 99 TO ERASE EVENT HH:MM Z1 Z2 Z3 Z4 CY OF SL FREE RFL MLE ZLE LTC ASP ASF MTC LM1 LM2 LM3 LM4 N/U N/U N/U N/U N/U N/U N/U UD1 UD2

Page 31: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

M3000 Series On-Street Master Time of Day Functions • 23

Week Plans The M3000 master provides a maximum of 15 individual week plans. Each plan consists of 7 day plans, one for each day of the week, SUN through SAT. The data entry screen is accessed by pressing 3 from the TIME OF DAY menu. Note that it is not necessary to program all seven days in a given week plan. If a day plan is blank, day plan 1 will be used as a default. Entering a value of 0 will clear a day plan. The data screen for plans 1 through 5 is shown below. Pressing the PGDN key will display the remaining day plans, 6 - 10, and 11 - 15. Also, a week plan may be accessed directly by entering the plan number in the top location underneath the PLAN heading.

Year Plan The M3000 master programs 53 week plans for an entire year. There are 53 because there is a partial week at the beginning and end of the year. This screen is accessed by entering a 4 in the TIME OF DAY menu.

To enter a week plan, move the cursor to the week to be edited, and enter the number of the week plan (1-15). Pressing ENTER or a cursor key loads the data. The first 30 weeks are on the first page. To access weeks 31-53, press the PGDN key.

Exception Days The M3000 master provides a maximum of 50 exception days. To enter the exception day programming screen, enter a 5 at the TIME OF DAY menu.

There are 2 methods of programming an exception day. The first is by date and is illustrated by exception day 1 in the screen above. In this case the exception day is Independence Day, which always occurs on July 4th. The other method is by month, week-of-month and day-of-week, as shown in exception day 2 above. This exception

WEEK PLANS 1-15 VALUE: DAY PLANS 0-32 (0 & 1 = DP 1) PLAN SUN MON TUE WED THU FRI SAT 1 2 3 4 5

YEAR PLAN VALUE: WEEK PLANS 1-15 WEEK OF THE YEAR 1: 2: 3: 4: 5: 6: 7: 8: 9: 10: 11: 12: 13: 14: 15: 16: 17: 18: 19: 20: 21: 22: 23: 24: 25: 26: 27: 28: 29: 30:

EXCEPTION DAYS 1-50 WOM=5 IS LAST WEEK EXC (0-12) (0-31, 0-7) (0-5) (0-32) DAY MONTH DOM-DOW WOM DAY-PLAN 1 7 4 1 2 5 2 5 2 3 4 5

Page 32: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

24 • Programming Instructions

day is for Memorial Day, which is the last Monday of May. A value of 5 in the week-of-month field (WOM) always denotes the last week of the month. Note that if a value appears in the WOM column, the value in the DOM-DOW value is taken to be a day-of-week with Sunday = 1, Monday = 2, and so on.

PGUP and PGDN keys display plans above or below the current one. Also, by moving the cursor to the field directly below the EXC DAY heading, the user can enter a number and display the page containing that exception day plan.

Daylight Savings The M3000 Master automatically adjusts its internal clock for daylight savings time. Pressing key 6 of the TIME OF DAY menu displays the following screen.

Daylight savings time begins in the spring and ends in the fall. It starts and ends at 2:00am on Sunday of the programmed week in the programmed month. To program the daylight savings parameters, simply move the cursor to the appropriate field and enter the desired values. Press the ENTER key or a cursor key to load the data. Entering zeros in any or all of the data fields disables this function.

Cycle Reference/ Time Reset The operator can also input specific cycle reference times and a time reset value through the TIME OF DAY menu. A time clock reset input, External Time Reset, will force the master’s real time clock (RTC) to the time entered in the screen below. Some systems use this feature to insure that the M3000’s clock remains in sync with that of a ‘Master Clock’ maintained in the central computer.

This screen also allows the user to enter the reference point for the start of each of the 6 possible cycles. This is necessary since the M3000 can calculate traffic responsive parameters by cycle period as well as minutes.

This screen is displayed by selecting option 7 from the TIME OF DAY menu.

Setting Date and Time To set the date and time, select option 8 from the TIME OF DAY menu. Simply enter the correct values for the hour, minute and second in the HH, MM, and SS fields in 24 hour format, then load the data by pressing ENTER or a cursor key. To set the date, enter the values of month, day and year in the MM, DD and YYYY fields and load the data. When the date has been entered, the day-of-week and week-of-year are displayed

DAYLIGHT SAVINGS WOM = 5 IS LAST WK SPRING FALL (0-12) (0-5) (0-12) (0-5) MONTH WOM MONTH WOM 4 1 10 5 WOM = WEEK OF MONTH

CYCLE REFERENCE/EXT TIME RESET HH:MM TIME CLK RES: 00:00 CYCLE REFERENCES: HH:MM HH:MM HH:MM CYC 1: 00:00 CYC 2: 00:00 CYC 3: 00:00 CYC 4: 00:00 CYC 5: 00:00 CYC 6: 00:00

Page 33: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

M3000 Series On-Street Master Time of Day Functions • 25

at the bottom of the screen. There is no need to enter day-of-week or week-of-year; this information is calculated automatically.

A sample screen is shown below.

SET TIME AND DATE YEAR = 1993-2092 TIME DATE HH:MM:SS MM/DD/YYYY 14:20:54 07/15/1993 DAY OF WEEK= THURSDAY WEEK OF YEAR=29

Page 34: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

26 • Programming Instructions

This page intentionally left blank

Page 35: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

M3000 Series On-Street Master Sensor Configuration • 27

Sensor Configuration The M3000 processes up to 128 system sensors. These sensors must be assigned to the appropriate intersections and their respective local sensors. The master uses their volume and presence data to calculate volume, occupancy, density and speed for each of the configured computational channels.

Before any final calculations are made, the M3000 checks all assigned sensors for minimum and maximum volume counts, erratic behavior, and absence and locked conditions. If a sensor fails any one of these tests, it is removed from the traffic responsive calculations. Each sensor requires absence and locked times and upper and lower volume limits for these tests. The operator must also provide absence test monitoring start and stop times.

The traffic responsive calculations require 100% volume, occupancy and speed value information, weighting factors and a loop calibration factor used in speed calculations. The volume and speed values must be expressed in vehicles per hour and miles per hour respectively. The weighting factor for each sensor is used for occupancy or speed calculations only.

Sensor Assignments The M3000 has 128 system sensors available for processing. The operator must assign an intersection and its local sensor number to the desired master sensor . The intersection assignments range from 1 to 64 and each intersection may have up to 16 local sensors. The master sensor volume and presence data are inputs to the computational channels used in the traffic responsive calculations (see General Information- C-O-S Pattern Selection). An example of page 1 of the assignment menu is shown below. Note that only intersections 1 and 2 are assigned sensors and that both intersections are using their local sensors 1 through 4. A zero indicates that entry is not used. Pages 2 - 8 contain the assignments for sensors 17-128.

Start/Stop Absence Monitoring The M3000 checks all assigned sensors before making any traffic responsive calculations. The master detects an absence failure by checking presence and volume data during the specified monitoring period. If both parameters remain at 0 for a user-defined period of time, then a failure is reported and that sensor is eliminated from the traffic responsive calculations. (The absence time duration is defined in the ‘ERROR DATA’ screen discussed in the next section).

An absence monitoring time is available so the M3000 can be directed to test for no sensor activity during periods when activity is consistently expected. This would eliminate faulty failure reports during light traffic times (i.e. early morning hours) when no activity on volume or presence counts would be likely. In order for the master to check for an absence failure the END time must be greater than the START time. This would indicate that absence monitoring could never be enabled starting before midnight and ending after midnight. However, since traffic flow across 12am is never likely to be heavy, absence monitoring at this time should not be necessary. (NOTE: If the operator

SENSOR ASSIGNMENTS 1-128 MAS SEN: 1 2 3 4 5 6 7 8 LOC INT: 1 1 2 1 1 2 2 2 LOC SEN 1 2 1 3 4 2 3 4 MAS SEN: 9 10 11 12 13 14 15 16 LOC INT: 0 0 0 0 0 0 0 0 LOC SEN 0 0 0 0 0 0 0 0

Page 36: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

28 • Programming Instructions

requires constant absence monitoring, he would enter 00:00 STARTand 23:59 for END.) In the default case shown below, absence monitoring is essentially disabled.

Error Data Each master sensor (1-128) requires error data parameters to be used by the M3000 to determine absence, lock and minimum and maximum volume failures. The error data screen for system sensor 1 is shown below. The values displayed indicate the default entries for the given parameters. Identical screens exist for each of the 128 sensors.

‘ABSENCE TIME’ defines the amount of time that both volume and presence counts must be at 0 for a failure to be detected. A ‘locked’ failure occurs when volume is 0 and presence is 4800 for the amount of time defined by ‘LOCK CALL TIME’. The M3000 also checks the volume counts for the last 5 minutes (or cycles) and compares these to values entered by the operator. If the volume counts exceed the upper limit volume or drop below the lower limit then the appropriate error is recorded. However, the lower limit may be automatically reduced to 0 via a hardware input, LT0, (see Dynamic Displays/Input Data) to eliminate minimum volume failures during expected periods of very little traffic (i.e. early morning hours). It is also possible to force the lowe limit volume to 0 by routing one of the user-defined TOD circuits to the LT0 hardware input. This would allow the operator to control LT0 via TOD programming. NOTE: the operator need only enter appropriate values for those sensors which have been assigned to intersections.

Weighting and Loop Calibration Factors The Traffic Response algorithm requires several constants to make accurate percent volume, occupancy, speed and density calculations. The operator must enter 100% volume, density and speed values for each of the configured sensors. In addition, an optional weighting factor can be defined for occupancy and speed calculations only. This value ranges from 1.0 to 4.0. The percent calculation for each sensor is determined as follows:

Final % Occupancy for a given sensor = % Occupancy * WEIGHTING FACTOR

Final % Speed for a given sensor = % Speed * WEIGHTING FACTOR

If the operator does not enter a weighting factor, the program assumes a factor of 1.0.

ABSENCE MONITORING TIME HH:MM TIME TO START ABSENCE MONITORING: 00:00 TIME TO END ABSENCE MONITORING: 00:00

ERROR DATA FOR SYSTEM SENSOR: 1 ABSENCE TIME IN MINUTES: 0 LOCK CALL TIME IN MINUTES: 0 5 CYCLES-MINS UPPER LIMIT VOLUME: 500 5 CYCLES-MINS LOWER LIMIT VOLUME: 0 PAGE KEYS FOR NEXT SENSOR NUMBER

Page 37: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

M3000 Series On-Street Master Sensor Configuration • 29

The 100% volume, density and speed values define what the operator considers to be the 100% operating capacity for each parameter. Since it is possible for a traffic system to operate above these values, the traffic response calculations can produce a greater than 100% value for volume, density and speed. These percentages, however, can not exceed 255%. It is the responsibility of the operator to determine viable entries for these parameters.

Each sensor has a loop calibration factor used for speed calculations only. This value should be the length of the loop plus the average length of a vehicle. The units are in meters or feet as selected in screen 1 of the Master Control Menu.

The default data entry screen for sensor 1 is shown below. (NOTE: Upon loading default data, the values shown below are entered for sensors 1-16) Screens for sensors 2-128 are found on subsequent pages by pressing the PGDN key.

Logging Sensors The operator has the option to select a maximum of 48 out of the 128 system sensors to log presence and volume counts. This information is logged every 15 minutes for a maximum of 4 days. ‘Day 0’ is considered the current day; ‘day -1’ is yesterday; ‘day -2’ is the day before yesterday and so on. These logs are transferred to the central computer via a upload request from central or through an automatic transfer enabled by the ‘auto transmit’ function. Please note that the user can view these logs in the Log Information section of the Dynamic Menu. A sample screen is shown below. Only sensors 5, 10, 15 and 20 will be logged.

WEIGHTING FACTORS SENSOR: 1 VEHICLES PER HOUR FOR 100 % VOLUME: 1200 VEHICLES PER MILE FOR 100 % DENSITY: 220 MILES PER HOUR FOR 100 % SPEED: 30 OCCUPANCY OR SPEED (0.0 - 4.0) 1.0 LOOP CALIBRATION FACTOR (0.0-40.0) 22.0 PAGE KEYS FOR NEXT SENSOR NUMBER

48 SENSORS TO LOG VALUE (0=NONE,1-128) 1 2 3 4 5 6 7 8 5 10 15 20 0 0 0 0 9 10 11 12 13 14 15 16 0 0 0 0 0 0 0 0 >> PGDN FOR MORE <<

Page 38: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

30 • Programming Instructions

This page intentionally left blank

Page 39: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

M3000 Series On-Street Master Computational Channel Configuration • 31

Computational Channel Configuration Computational Channel Parameters The M3000 uses a number of computational channels to gather sensor information from each of the system’s intersections. The traffic responsive algorithm processes this data and selects the most appropriate C-O-S pattern by comparing its calculations with operator defined thresholds. The cycle, offset, split, special, and linking channels can be configured for any one of six parameters: 1) volume, 2) occupancy, 3) concentration, 4) volume plus occupancy, 5) density or 6) speed calculations. Each of the 4 zones has 2 cycle, 2 offset, 2 split, 4 special, 2 zonal link and 2 master link computational channels. All configurations are done on a per channel and per zone basis as shown in the screens below:

For more information on the traffic responsive properties of each channel, refer to ‘C-O-S Pattern Selection’ in the General Information Section of this manual.

Cycle, Split and Offset Channels The M3000 uses 2 cycle, 2 offset and 2 split computational channels to select a traffic responsive C-O-S pattern. Each channel has a maximum of 12 user-assignable sensors. The minimum number of good sensors, forecast predictor, smoothing factors, sampling periods and sensor and channel average, highest, second highest or total data are entered for channels 1 and 2 for each type of channel on a per zone basis.

SELECT TRAFFIC PARAMETERS FOR CHANNEL CALCULATIONS WHERE:0 =VOLUME 1=OCCUPANCY 2 =CONCENTRATION 3=(VOL+OCC) 4 = DENSITY 5 = SPEED CHANNEL 1: ZONE: 1 2 3 4 CYCLE: 0 0 0 0 OFFSET:0 0 0 0 SPLIT: 0 0 0 0

SELECT TRAFFIC PARAMETERS FOR CHANNEL CALCULATIONS WHERE:0 =VOLUME 1=OCCUPANCY 2 =CONCENTRATION 3= (VOL+OCC) 4=DENSITY 5 = SPEED ZONE: 1 2 3 4 SPECIAL 1: 0 0 0 0 SPECIAL 2: 0 0 0 0 SPECIAL 3: 0 0 0 0 SPECIAL 4: 0 0 0 0

SELECT TRAFFIC PARAMETERS FOR CHANNEL CALCULATIONS WHERE:0=VOLUME 1= OCCUPANCY 2=CONCENTRATION 3=(VOL+OCC) 4 =DENSITY 5 = SPEED ZONE: 1 2 3 4 MASTER TO MASTER LINK 1: 0 0 0 0 LINK 2: 0 0 0 0 ZONE TO ZONE LINK 1: 0 0 0 0 LINK 2: 0 0 0 0

Page 40: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

32 • Programming Instructions

The minimum number of good sensors tells the traffic responsive algorithm the minimum number of sensors to use in a channel calculation. If the number of good sensors for any one of the 3 types of channels falls below this limit, then no calculation is done and the traffic responsive algorithm reverts to the current Master TOD pattern. The M3000 tracks when invalid data is generated during one of these failures and prevents its use in traffic responsive calculations. When a failed channel recovers, data generated during the failure will not be used to select the next traffic responsive pattern. For example, if the operator selects a sample period of 5 and the failure lasts 20 minutes then the only valid calculation will be at the time of recovery. Instead of using the last 5 data points, the algorithm will count only the one valid calculation during the first minute/cycle after the recovery. The next minute 2 data points will be used, the next minute 3 data points and so on until a true sample period of five is achieved.

The SENSOR average, highest, second highest or total entry selects the output type of each group of 12 sensors for each channel. The CHANNEL average, highest, or total selects the output type of only Cycle Channel 1 and Cycle Channel 2. (i.e. if highest is entered then the traffic responsive algorithm will select the greater of the two outputs of Cycle Channel 1 and Cycle Channel 2.) CHANNEL average, highest or total entries do not apply to the offset and split channels. The outputs of these channels are calculated by taking the signed delta of their two respective channels. (i.e. Offset Channel 1 - Offset Channel 2, Split Channel 2 - Split Channel 1). The above discussed parameters for Cycle Channel 1, Zone 1 are entered on the screen shown below. Please note that ‘SENSOR AVE(0): HIGHEST (1): TOTAL(2): SECOND HIGHEST(3)’ and ‘CHANNEL AVE(0): GREATER(1): SUM(2)’ will be the same for both Cycle channels. (ie. if you select SENSOR TOTAL and CHANNEL GREATER as shown below, then Cycle Channel 2 will automatically reflect the same data.)

After the M3000 selects the average, highest, second hightest or total of the sensor inputs for each channel, a user-selectable smoothing factor between 0.1 and 1.0 is applied to the results. The smoothing factor allows the operator to control how quickly the master responds to sudden changes. The formula for smoothed data is as follows:

smoothed data = (previous data * (1-smoothing factor)) + (new data * smoothing factor)

The operator has the option to enter a forecast predictor value which would inhibit smoothing if the newly calculated data was greater. The value entered must be between 1 and 255 and is considered a percentage. If the user does not enter a value, then smoothing will always be applied. The smoothing factor has a primary and an alternate selection. Time of day circuits or external inputs select the alternate values. A smoothing factor of 1 is always used during the first 6 minutes of power-up regardless of the power-up timer value. (The power-up timer value is entered through the Master Control Menu. See Pattern Selection Parameters section for details.) After the smoothed data has been recorded, the traffic responsive algorithm selects the average, highest or total (SENSOR AVE, HIGHEST, TOTAL) of the last n periods where n is the sampling period selected by the operator. The sampling period also has a primary and alternate selection and is chosen according to time-of-day and external inputs. The screen below shows the default data for Cycle Channel 1, Zone 1. (NOTE: it is recommended that the operator select sampling periods of at least 5 minutes (or cycles) to help prevent sudden pattern changes based on frequently changing detector counts. Using a smoothing factor of .7 or less may also help.)

CYCLE CHANNEL:1 ZONE:1 MINIMUM NUMBER OF GOOD SENSORS(1-12) 0 SENSOR AVE(0):HIGHEST (1):TOTAL (2): 2 SECOND HIGHEST (3): FORECAST (PREDICTOR) VALUE: 0 CHANNEL AVE (0):GREATER (1):SUM (2): 1 (AHT & AGS SAME FOR ZONE-CHANNELS)

Page 41: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

M3000 Series On-Street Master Computational Channel Configuration • 33

Each of the channels has a maximum of 12 assignable sensor inputs. The operator must

specify which master sensors (1-128) correspond to the various computational channels. One particular sensor may be assigned to more than one channel. (i.e. Cycle Channel 1 and Occupancy Channel 2 may both use sensor number 25 as an input.) The sensor screen for Cycle Channel 1, Zone 1 is shown below.

Pressing the PGDN key will access the rest of the data screens for the cycle, offset and split channels, zones 2 through 4.

The M3000 traffic responsive algorithm determines the C-O-S pattern by comparing the final CYCLE, OFFSET and SPLIT calculations with user-defined thresholds. The M3000 may select free operation or a cycle number between 1 and 6. Offset and split numbers range from 1 to 5 and 1 to 4, respectively. Details on how these are selected can be found in ‘C-O-S Pattern Selection’ and ‘Pattern Functions- Transfer Thresholds’.

Special and Occupancy Channels The M3000 has a total of 4 Special and 4 Occupancy channels for traffic responsive calculations for each zone. These are configured much in the same way as the cycle, offset and split channels. The only difference is that neither one requires a CHANNEL average, highest or total entry since each channel output is processed independently. The screens for Special Channel 1, Zone 1 are shown below. Please note that they are almost identical to those for cycle, offset and split.

CYCLE CHANNEL: 1 ZONE:1 EXPONENTIAL SMOOTHING FACTOR(0.0-1.0): PRIMARY: 1.0 ALTERNATE: 1.0 SAMPLING PERIODS (1-30): PRIMARY: 1 ALTERNATE: 1

CYCLE CHANNEL:1 ZONE:1 ASSIGN UP TO 12 SENSORS(0-128) 0=OFF CHAN SENSOR: 1 2 3 4 5 6 SENSOR: 0 0 0 0 0 0 CHAN SENSOR: 7 8 9 10 11 12 SENSOR: 0 0 0 0 0 0

SPECIAL CHANNEL:1 ZONE:1 MINIMUM NUMBER OF GOOD SENSORS(1-12) 0 SENSOR AVE(0):HIGHEST (1):TOTAL (2): 0 SECOND HIGHEST (3): FORECAST (PREDICTOR) VALUE: 0 USES CHANNEL OUTPUT

Page 42: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

34 • Programming Instructions

Unlike the cycle, offset and split channels, the special and occupancy channel outputs are processed independently. (In other words, the master does NOT take the average, highest or total of the four channels.) Each channel (1 to 4) has its own ‘transfer to’ and ‘transfer from’ threshold. Since each set of thresholds is unique, it is possible for more than one special or occupancy pattern to be selected. Therefore, channel 1 always has the highest priority and channel 4 the lowest. When a channel exceeds its ‘transfer to’ threshold, the master selects the C-O-S pattern entered by the operator for that channel. (These Special Patterns are entered in the Transfer Threshold screens in the Pattern Menu.) Conversely, when the percentage data for any channel drops below the ‘transfer from’ limit then the special (or occupancy) pattern is ‘de-selected’. It is important to note that the occupancy channels have priority over the special channels. Therefore, if a special channel and an occupancy channel both meet their pattern selection thresholds, the occupancy pattern will be selected.

Queue Channels The configuration of the 4 Queue channels is completely different from that of any of the other computational channels. The Queue channels are assigned only one sensor each and are monitored to detect 100% occupancy for a user-defined period of time. Each channel has its own ‘transfer to’ and ‘transfer from’ thresholds. Unlike the other channels whose limits are in percent, the queue thresholds are expressed in minutes. Just as with the special and occupancy channels, Queue channel 1 has the highest priority and channel 4 the lowest. Patterns selected via the queue channels have priority over cycle, offset, split, special and occupancy channels. The data entry screen for queue channels is shown below. All that is required are the single sensor number assignments (1-128) for each channel per zone.

SPECIAL CHANNEL: 1 ZONE:1 EXPONENTIAL SMOOTHING FACTOR(0.0-1.0): PRIMARY: 1.0 ALTERNATE: 1.0 SAMPLING PERIODS (1-30): PRIMARY: 1 ALTERNATE: 1

SPECIAL CHANNEL:1 ZONE:1 ASSIGN UP TO 12 SENSORS(0-128) 0=OFF CHAN SENSOR: 1 2 3 4 5 6 SENSOR: 0 0 0 0 0 0 CHAN SENSOR: 7 8 9 10 11 12 SENSOR: 0 0 0 0 0 0

QUEUE SENSOR SELECTION PROGRAM SENSOR NUMBER (0-128) 0=OFF ZONE: 1 2 3 4 CHANNEL 1: 0 0 0 0 CHANNEL 2: 0 0 0 0 CHANNEL 3: 0 0 0 0 CHANNEL 4: 0 0 0 0

Page 43: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

M3000 Series On-Street Master Computational Channel Configuration • 35

Master Link Channels The Master Link channel screens require the same information as those for special and occupancy channels. All of the input parameters, forecast predictor value, smoothing factors, sampling periods etc., are implemented in the same ways as in the other computational channels. The Master Link channels, however, are not designed to select a C-O-S pattern for any particular zone of the controlling master. Rather, these channels determine when the current master should take control of another master. The M3000 compares the outputs of each of the 2 Master Link channels to operator-defined thresholds for each of the four possible secondary masters. Each secondary master number has a corresponding phone number, link pattern number and zonal assignment to execute a master link operation.

Zonal Link Channels Zonal linking occurs when one or more zones uses the C-O-S pattern calculated by another zone in the same master. Each of the four zones have two computational channels to determine when and where linking should occur. These channels require the same information as that of special, occupancy or master linking channels. The outputs for each channel are compared to user-defined thresholds to determine which zone(s) should be affected. It is possible for one zone to control any number of the other 3 zones at any given time. The data entry screens for zonal linking channels are identical to those of special, occupancy and master linking.

Page 44: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

36 • Programming Instructions

This page intentionally left blank

Page 45: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

M3000 Series On-Street Master Pattern Functions • 37

Pattern Functions Transfer Thresholds All of the computational channels rely on transfer thresholds to determine the traffic responsive Cycle-Offset-Split pattern selection. The pattern selection varies from channel to channel. The Special, Occupancy and Linking channels work a little differently than the Cycle, Offset and Split channels and the Queue channel is unlike any of the others. All types, however, require some kind of threshold matrix to select a viable C-O-S pattern. The pattern threshold menu is shown below:

Cycle, Offset and Split Thresholds

The cycle, offset and split computational channels select their respective cycle, offset and split numbers independently. The cycle channel can choose a cycle number from 1 to 6 or select Free operation. The cycle calculations rely on taking the average, highest or total of the 2 channel outputs and comparing the results to the cycle transfer thresholds to determine a cycle number of 1 to 6 or Free operation. The offset and split channels calculate the signed delta of their respective channels and compare those results to user-defined offset and split thresholds.

The cycle number is selected by comparing the average, highest or total of the 2 final channel outputs to the cycle threshold matrix. On power-up, all limits are 0 and the defaulted C-O-S pattern is 1-3-2. The cycle number will not be affected by the cycle computational channel until the operator enters at least one non-zero value in the threshold matrix. However, the Default Data Load sets the values shown below for all four zones.

Using these thresholds as an example, a cycle number of 2 would increase to 4 if the computational results were greater than or equal to 80% but less than 100%. The cycle number would not decrease to 1 unless the channel result was less than 35% but more than 15. In this example, if the calculation is less than 15%, then the traffic responsive algorithm will select a free running pattern. (The master would still calculate offset and split numbers but these would be irrelevant until the pattern came out of free operation.)

The offset number is selected by subtracting the offset channel 2 results from offset channel 1 results. It is important to note that the calculation of (OFFSET1 - OFFSET2) is a signed delta and therefore the assignment of sensors does represent the direction of traffic flow. The algorithm will select offset number 1, 2 or 3 if the result is NEGATIVE or 3, 4 or 5 if it is POSITIVE. The Defaulted Data is shown below.

PATTERN THRESHOLD TRANSFER MENU 1, CYCLE 5. QUEUE 2. OFFSET 6. SPECIAL 3. SPLIT 7. LINK MASTERS 4, OCCUPANCY 8. LINK ZONES

CYCLE TRANSFER THRESHOLDS ZONE: 1 >>DATA IN PERCENT<< FREE>CYC 1: 20 CYC>FREE : 15 CYC 1>CYC 2: 40 CYC 2>CYC 1: 35 CYC 2>CYC 3: 60 CYC 3>CYC 4: 55 CYC 3>CYC 4: 80 CYC 4>CYC 3: 75 CYC 4>CYC 5:100 CYC 5>CYC 4: 95 CYC 5>CYC 6:120 CYC 6>CYC 5: 115

Page 46: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

38 • Programming Instructions

In this example, an offset number of 3 would drop to 2 if the signed delta of OFFSET 1 - OFFSET 2 is less than or equal to -30% but greater than -60. The number would increase to 4 if the result is greater than or equal to 30% but less than 25% and the offset number would remain at 3 as long as the calculations are between -30 and +30%. The M3000 defaults to an offset number of 3 at power-up.

The M3000 also selects a split number by calculating the signed delta of the two computational channels. However, in this case the algorithm subtracts Split Channel 1 from Split Channel 2: (SPLIT 2 - SPLIT 1). Once again it is important to note that the assignment of sensors does represent traffic flow. The algorithm will select split numbers 2, 3, or 4 if the result is POSITIVE or split numbers 2 or 1 if it is NEGATIVE.

In the example above, the split number would drop from 2 to 1 if SPLIT 2 - SPLIT 1 is less than or equal to -15%. It would increase to 3 only if the result is greater than or equal to 40% and less than 60%. The split number would remain at 2 if SPLIT 2 - SPLIT 1 is between -15% and +40%.

It is important to assign the maximum thresholds greater than their corresponding minimum thresholds by at least 5% to avoid flip-flopping between two values or worse yet, never leaving a selection. Frequent switching between two selections often occurs when the upper and lower thresholds are nearly equal. For example, if the user specifies a value of 50% to switch from cycle 2 to 3 but only enters 48% to transition from 3 to 2 then the channel output can only flucuate by 2% before a change could occur. NOTE: The operator should never set a minimum threshold greater than a maximum. This will cause a particular selection to be made and never changed.

Special and Occupancy Thresholds

Special and Occupancy computational channels select a pattern by comparing the results of each of their 4 outputs to user-defined thresholds. Each channel has its own unique ‘transfer to’ and ‘transfer from’ conditions and associated C-O-S pattern. Channel 1 of each set always has the highest priority and channel 4 the lowest. When a channel exceeds its ‘transfer to’ limit, the M3000 selects the C-O-S pattern entered by the user for that channel. Conversely, when the percentage data for any channel drops below the ‘transfer from’ threshold then the special or occupancy pattern is deselected.

Valid entries for the thresholds range from 0 to 255%. On power-up, all limits default to 0. Special and Occupancy channel results will not be processed unless one or both contain a non-zero value. This allows the operator to easily eliminate any or all of these channels from the pattern selection process.

OFFSET TRANSFER THRESHOLDS ZONE: 1 >>DATA IN PERCENT<< OFF 3>OFF 2: 30 OFF 2>OFF 3: 25 OFF 2>OFF 1: 60 OFF 1>OFF 2: 55 OFF 3>OFF 4: 30 OFF 4>OFF 3: 25 OFF 4>OFF 5: 60 OFF 5>OFF 4: 55

SPLIT TRANSFER THRESHOLDS ZONE: 1 >>DATA IN PERCENT<< SPL 2>SPL 1: 20 SPL 1>SPL 2: 15 SPL 2>SPL 3: 40 SPL 3>SPL 2 35 SPL 3>SPL 4: 80 SPL 4>SPL 3: 75

Page 47: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

M3000 Series On-Street Master Pattern Functions • 39

The operator enters the desired special pattern for each channel in Cycle-Offset-Split format. The cycle, offset and split numbers can not exceed 6, 5 and 4, respectively. Zero is not a valid entry for any of the three parameters. If the user enters thresholds but does not designate a corresponding pattern, then the algorithm will ignore the thresholds and that channel will be removed from the pattern selection process.

The data entry screen for Occupancy channel 1, zone 1 is shown below.

In the above example, the C-O-S pattern of cycle 4, offset 3 and split 1 will be selected if the output of Occupancy channel 1, zone 1, is greater than or equal to 60%. This pattern will not be deselected until that output falls below 50%. Please note that if more than 1 occupancy (or special) channel meets its pattern selection thresholds, then the M3000 will select the pattern whose channel has the highest priority.

There are a total of 16 screens for each of the two types of channels: 4 channels by 4 zones. The displays for the remaining channels and zones may be accessed by pressing the PGDN key.

Queue Thresholds

The Queue channel thresholds are expressed in minutes rather than in percent. The upper threshold tells the M3000 how long a particular queue channel must remain at 100% occupancy before its special queue pattern is selected. Conversely, when the %occupancy drops below 100% for the amount of time specified in the lower limit, the pattern is deselected. The ‘minutes to’ and ‘minutes from’ thresholds can not exceed 30 minutes and the operator defined pattern follows the same rules as described for Special and Occupancy channels. Once again, if both limits are zero, then that particular channel will not be included in the traffic responsive pattern selection. The data entry screen for Queue channel 1, zone 1 is shown below.

In the example above, the pattern 1-1-2 will be selected if channel 1 remains at 100% occupancy for 10 minutes. Then the pattern will stay in effect until the %occupancy drops below 100% for at least 7 minutes.

There are a total of 16 queue channel screens: 4 channels by 4 zones. The displays for the remaining channels and zones may be accessed by pressing the PGDN key.

Master Link Thresholds

The M3000 compares the results of the Master Link computational channels to user defined thresholds to determine Master to Master Linking. Each channel has its own set

OCCUPANCY THRESHOLDS CHANNEL 1: ZONE: 1 cos SPECIAL PATTERN: 431 % OCCUPANCY TO ENTER SPECIAL PATTERN: 60 % OCCUPANCY TO EXIT SPECIAL PATTERN: 50

QUEUE THRESHOLDS CHANNEL 1: ZONE: 1 NUMBER OF MINUTES(0-30) OF 100 OCCUPANCY cos SPECIAL PATTERN: 112 MINUTES TO SPECIAL PATTERN: 10 MINUTES FROM SPECIAL PATTERN: 7

Page 48: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

40 • Programming Instructions

of thresholds which correspond to the four possible secondary masters. In the example screen below, the M3000 will link with secondary master 1 if channel 1 of zone 1 exceeds 30%. Secondary master 3 will be linked if channel 1 of zone 1 exceeds 50%. Each secondary master has a corresponding telephone number, link pattern number and zonal assignment. (These parameters are entered in the Master Control screens of the CHANGE DATA Menu.). At power-up all values default to zero which disables master linking selection for each of the 4 secondary masters. However, once a non-zero value is entered, the M3000 will include that channel in its calculations. In the example below, linking to masters 2 and 4 is disabled.

The operator can access the threshold screens for the master link channels of zones 2 through 4 by pressing the PGDN key or by typing the desired channel or zone in appropriate field (CHANNEL, ZONE) of the screen.

Zonal Link Thresholds

The zonal thresholds determine when one or more zones should use the pattern calculated by another zone. These thresholds divide into 4 distinct groups, one for each zone as shown in the screens below. Both channels have their own set of thresholds. (These are accessed by the PGDN key or by typing the desired values in the CHANNEL and ZONE fields.) As mentioned for master linking, zero thresholds remove that zone from the pattern selection process. For example, in the first screen below, zones 2 and 3 could link with zone 1 if the output of Zonal Link Channel 1 exceeded 40 or 25%, respectively. However, zone 4 would never use the zone 1 pattern regardless of the channel 1 output. For more information on zonal linking, refer to C-O-S Pattern Selection in the General Information section of this manual.

LINKING THRESHOLDS CHANNEL:1 ZONE:1 MASTER TO MASTER >>DATA IN PERCENT<< TO LINK 1: 30 FROM LINK 1: 20 TO LINK 2: 0 FROM LINK 2: 0 TO LINK 3: 50 FROM LINK 3: 45 TO LINK 4: 0 FROM LINK 4: 0

LINKING THRESHOLDS CHANNEL:1 ZONE:1 >>DATA IN PERCENT<< ZONE TO ZONE LINK UNLINK ZONE 1>ZONE 2: 40 ZONE 2>ZONE 1: 30 ZONE 1>ZONE 3: 25 ZONE 3>ZONE 1: 20 ZONE 1>ZONE 4: 0 ZONE 4>ZONE 1: 0

LINKING THRESHOLDS CHANNEL:1 ZONE:2 >>DATA IN PERCENT<< ZONE TO ZONE LINK UNLINK ZONE 2>ZONE 1: 0 ZONE 1>ZONE 2: 0 ZONE 2>ZONE 3: 0 ZONE 3>ZONE 2: 0 ZONE 2>ZONE 4: 0 ZONE 4>ZONE 2: 0

Page 49: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

M3000 Series On-Street Master Pattern Functions • 41

Cycle Lengths If the operator requires traffic responsive calculations by cycle, the operator must define cycle lengths for all 6 possible cycles. These cycle lengths must be expressed in seconds and cannot exceed 255. Default entries are 0. NOTE: if the operator designates calculations by cycle but does not enter cycle lengths for that zone, then the master will always place that zone in FREE operation.

To avoid frequent pattern changes when using per CYCLE calculation, the user should select a sample period of at least 3-5 times the largest cycle length entered - See Computational Channels for sample period entry..

An example screen is shown below.

Valid Pattern Matrix After a traffic responsive pattern has been calculated, that pattern is passed through a cross reference table (matrix) where that same pattern or a substitute pattern may be stored. This table provides a means of substituting a pattern with any other pattern and allows any pattern to be voided by its omission from the table. Any table position containing a zero for each function (cycle-offset-split) when indexed causes no change to the present pattern. If any one or two of the functions contain a zero, then those functions of the present pattern will be used. For example, if the traffic responsive calculations select pattern 4-2-4 and the table entry for that pattern is ‘033’ (or just ‘33’) then the final pattern would be 4-3-3.

The default pattern matrices for all four zones allow every selectable pattern as shown for zone 1 in the screens below.

LINKING THRESHOLDS CHANNEL:1 ZONE:3 >>DATA IN PERCENT<< ZONE TO ZONE LINK UNLINK ZONE 3>ZONE 1: 0 ZONE 1>ZONE 3: 0 ZONE 3>ZONE 2: 0 ZONE 2>ZONE 3: 0 ZONE 3>ZONE 4: 0 ZONE 4>ZONE 3: 0

LINKING THRESHOLDS CHANNEL:1 ZONE:4 >>DATA IN PERCENT<< ZONE TO ZONE LINK UNLINK ZONE 4>ZONE 1: 0 ZONE 1>ZONE 4: 0 ZONE 4>ZONE 2: 0 ZONE 2>ZONE 4: 0 ZONE 4>ZONE 3: 0 ZONE 3>ZONE 4: 0

CYCLE LENGTHS CYCLE 1 2 3 4 5 6 ZONE 1: 40 50 60 80 90 120 ZONE 2: 0 0 0 0 0 0 ZONE 3: 0 0 0 0 0 0 ZONE 4: 0 0 0 0 0 0

Page 50: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

42 • Programming Instructions

VALID PATTERN MATRIX CYCLE: 1 ZONE:1 ENTER cos RIGHT TO LEFT c THEN o THEN s O/S =cos O/S=cos O/S=cos O/S =cos 1 1 =111 1 2=112 1 3=113 1 4 =114 2 1 =121 2 2=122 2 3=123 2 4 =124 3 1 =131 3 2=132 3 3=133 3 4 =134 4 1 =141 4 2=142 4 3=143 4 4 =144 5 1 =151 5 2=152 5 3=153 5 4 =154

VALID PATTERN MATRIX CYCLE: 2 ZONE:1 ENTER cos RIGHT TO LEFT c THEN o THEN s O/S =cos O/S=cos O/S=cos O/S =cos 1 1 =211 1 2=212 1 3=213 1 4 =214 2 1 =221 2 2=222 2 3=223 2 4 =224 3 1 =231 3 2=232 3 3=233 3 4 =234 4 1 =241 4 2=242 4 3=243 4 4 =244 5 1 =251 5 2=252 5 3=253 5 4 =254

VALID PATTERN MATRIX CYCLE: 3 ZONE:1 ENTER cos RIGHT TO LEFT c THEN o THEN s O/S =cos O/S=cos O/S=cos O/S =cos 1 1 =311 1 2=312 1 3=313 1 4 =314 2 1 =321 2 2=322 2 3=323 2 4 =324 3 1 =331 3 2=332 3 3=333 3 4 =334 4 1 =341 4 2=342 4 3=343 4 4 =344 5 1 =351 5 2=352 5 3=353 5 4 =354

VALID PATTERN MATRIX CYCLE: 4 ZONE:1 ENTER cos RIGHT TO LEFT c THEN o THEN s O/S =cos O/S=cos O/S=cos O/S =cos 1 1 =411 1 2=412 1 3=413 1 4 =414 2 1 =421 2 2=422 2 3=423 2 4 =424 3 1 =431 3 2=432 3 3=433 3 4 =434 4 1 =441 4 2=442 4 3=443 4 4 =444 5 1 =451 5 2=452 5 3=453 5 4 =454

VALID PATTERN MATRIX CYCLE: 5 ZONE:1 ENTER cos RIGHT TO LEFT c THEN o THEN s O/S =cos O/S=cos O/S=cos O/S =cos 1 1 =511 1 2=512 1 3=513 1 4 =514 2 1 =521 2 2=522 2 3=523 2 4 =524 3 1 =531 3 2=532 3 3=533 3 4 =534 4 1 =541 4 2=542 4 3=543 4 4 =544 5 1 =551 5 2=552 5 3=553 5 4 =554

Page 51: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

M3000 Series On-Street Master Pattern Functions • 43

Master Link Patterns Master Linking occurs when one master directs another master to use a specified pattern for one or more of its zones. This setup requires an M3000 to act as a ‘primary’ master while the receiving unit responds as a ‘secondary’. The cross link command from the primary contains zone information, link pattern number, time and its Master ID. The zone information indicates which of the secondary’s zones shall run the designated link pattern.

When a master receives a cross link command, it selects the user-defined C-O-S pattern addressed by the command’s link pattern number. Each master has a total of 4 possible master link patterns. Link pattern 1 has the highest priority and link pattern 4 the lowest. These priorities are necessary to establish when a cross link to one master should be terminated so that secondary may accept a link from another master. Linking precedence is also needed to determine when a ‘secondary’ link should be terminated to allow that master to become a ‘primary’ to another master. (The link pattern numbers also reference the sustain link time in the secondary’s database. See Master Control: Master Linking Parameters)

The screen for defining linking patterns is shown below. These patterns are NOT passed through the pattern matrix since the operator is selecting them directly. (The M3000 assumes the user will not enter an unacceptable pattern.)

VALID PATTERN MATRIX CYCLE: 6 ZONE:1 ENTER cos RIGHT TO LEFT c THEN o THEN s O/S =cos O/S=cos O/S=cos O/S =cos 1 1 =611 1 2=612 1 3=613 1 4 =614 2 1 =621 2 2=622 2 3=623 2 4 =624 3 1 =631 3 2=632 3 3=633 3 4 =634 4 1 =641 4 2=642 4 3=643 4 4 =644 5 1 =651 5 2=652 5 3=653 5 4 =654

MASTER LINK PATTERNS LINK 1 LINK 2 LINK 3 LINK 4 C/O/S ___ ___ ___ ___ (CYCLE=1-6/ OFFSET=1-5 / SPLIT=1-4)

Page 52: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

44 • Programming Instructions

This page intentionally left blank

Page 53: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

M3000 Series On-Street Master Utilities • 45

Utilities The Utilities menu not only programs data but also allows the user to perform a variety of operations related to database maintenance.

Default Data Load This option allows the user to quickly load basic data into the master. Each of the 5 data areas (control, channel, time-of-day, pattern and communications) can be loaded separately or all at once by selecting the ALL option. The table below summarizes which data is affect by selecting the various options.

1. CONTROL: Master Control, Local Control & Sensors Menus

2. CHANNEL: Computational Channel Menu

3. TIME OF DAY: Time of Day Menu

4. PATTERN: Pattern Menu

5. COMMUNICATIONS: Special Operations- Communications Setup Menu, Utility Operations- Printer Functions Menu

6. OPTIONS: Not implemented at this time

7. ALL: All of the above

Clear Logs This option allows the user to selectively clear the master’s pattern change, event, sensor failure and keyboard logs. The volume and presence data recorded in the current and previous day’s logs can also be removed. To clear a log, move the cursor to the selected log and enter a ‘Y’ (Y/N key then ENTER).

EEPROM - RAM Copy This function allows the user to copy all data stored in the EEPROM module into main system RAM (loading stored data) or to copy main system RAM to the EEPROM module (backing up data). Enter a ‘Y’ by pressing the Y/N key then ENTER for the desired

DEFAULT LOAD MENU 1. CONTROL 4. PATTERN 2. CHANNEL 5. COMMUNICATIONS 3. TIME OF DAY 6. OPTIONS 7. ALL >>TO CANCEL, PRESS MENU<<

CLEAR LOGS (Y/N) PATTERN CHANGE: __ DETECTOR FAIL: __ EVENTS: __ KEYBOARD: __ TODAY VOL-PRES: __ TODAY-1 VOL-PRES:__ TODAY-2 VOL-PRES:__ TODAY-3 VOL_PRES:__

Page 54: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

46 • Programming Instructions

operation. The data transfer will occur immediately. If there is no EEPROM module installed in the master, an error tone will sound to indicate that no data transfer occurred.

This feature allows data to be transferred from one master to another by copying the data to EEPROM on the source machine and loading to RAM on the destination master.

Restart Master This function performs a ‘soft boot’ of the master. The master will restart its power up timer and select its master TOD pattern until the timer has reached 0. In the meantime, it will continue to process sensor data as previously programmed. No data settings are lost during a restart. This ‘internal’ restart is an alternative to a ‘hard’ power on/off restart.

To initiate a restart, press the Y/N key; to exit this screen without a reboot, press MENU.

Printer Functions This option allows some or all of the database or logs to be printed on a serial printer connected to the Port 2 RS-232 port.

PRINTER SETUP

The first option controls the protocol that is required by the printer. Please refer to your printer’s operating manual for the required information. Options are baud rate, parity, number of data bits per byte, and the number of stop bits per byte. The operator must also set the printer to use XON/XOFF handshaking to avoid data overrun.

NOTE: This print utilizes serial communications and will NOT work with a printer that uses a parallel interface (Centronics). Also, the printer must be capable of accommodating a minimum width of 40 characters.

The data screen for these options is shown below.

The operator also has the option to automatically print pattern selection and computational channel data every 5 to 60 minutes. Any combination of 5 minute increments and zones may be selected. In the sample screen shown below, zone 1 information will be printed every 30 minutes, zone 2 every 10 minutes and zone 4 every hour. No zone 3 data will be automatically printed.

COPY BETWEEN EE AND RAM VALUE(YES/NO) COPY FROM EEPROM TO RAM: ___ COPY FROM RAM TO EEPROM: ___

PRINTER SET-UP PORT 2 (RS-232) BAUD RATE: 0 (1200) (USE Y/N KEY TO CHANGE BAUD RATE) PARITY: __ (0= NONE, 1=ODD, 2= EVEN) DATA BITS: __ (0=7, 1=8) STOP BITS: __ (0=1, 1=2)

Page 55: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

M3000 Series On-Street Master Utilities • 47

PRINTING

Any of the various programming areas, logs or volume and occupancy counts may be printed individually by entering the appropriate number as shown on the screen below. The entire database can be printed by pressing option ‘8’.

Request Download This feature allows an operator to initiate a field-requested download. When a ‘Y’ is entered, the M3000 will attempt to contact Central and display the screen below.

Central must be in MONITOR MODE to respond to this request. The operator may terminate the function by pressing the ‘CLR’ key.

Test Volume & Occupancy This feature allows the operator to manually enter volume, occupancy, speed and/or density values for any of the assigned sensors to test how the current Master setup will select its Traffic Responsive C-O-S pattern. If only volume and %occupancy data is entered then the Master will substitute those values for the sensor information normally received from the controllers. Speed, density, concentration and volume+occupancy results will be calculated based on the numbers entered. However, if the operator enters specific speed and/or density values then the Master will skip its calculations and assign the selected sensor the inputed value.

The operator must enable the test data on a per zone basis. To initiate the volume and occupancy test, the user must enter ‘Y’ in at least one of the Zonal Test Enables. The STATUS line shows the zonal assignment of that particular sensor. A sample data screen is shown below.

PRINT-OPERATIONAL DATA PORT 2 (RS-232) ZONE: 1 2 3 4 TIME: 30 10 60 (VALUE: 0-60 MINUTE IN 5 MIN INCREMENTS)

1. PRINTER SET-UP 9. EVENT LOG 2. CONTROL 10. KEYBOARD LOG 3. TIME OF DAY 11. PATTERN CHANGE LOG 4. SENSORS 12. DETECTOR FAILURES 5. CHANNELS 13. TODAY VOL-OCCUPY 6. PATTERNS 14. TODAY-1 VOL-OCCUPY 7. COMMUNICATION 15. TODAY-2 VOL-OCCUPY 8. ALL DATABASE 16 TODAY-3 VOL-OCCUPY

FIELD REQUESTED DOWNLOAD VALUE(YES/NO) ENTER ‘Y’ FOR DOWNLOAD: ___ >>WAITING FOR DOWNLOAD<< >>USE CLEAR KEY TO TERMINATE REQUEST<<

Page 56: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

48 • Programming Instructions

In this example, sensors 1 and 2 are assigned to zone 1, sensor 3 to zone 3 and sensor 4 to zone 2. Only the test data for zones 1 and 2 are enabled. Please notice that sensor 1 has only volume and occupancy data entered. As noted above, this will cause the M3000 to calculate speed, density, concentration and volume+occupancy based on the test data. However, volume, occupancy, density and speed values are entered for sensor 2. Regardless of what values a 10 count volume and a 10% occupancy would yield for speed and density, those values will be forced to 30 (mph or kph) and 25 (veh/mi or veh/km), respectively. Sensor 3 data includes only speed and density data. When enabled, volume, occupancy, concentration and volume+occupancy calculations will be 0 but speed and density will have values of 45 and 6, respectively. This may be acceptable if sensor 3 is always assigned to a channel requiring speed or density calculations.

TEST ENABLES: Z1: Y Z2: Y Z3: N Z4: N SENSORS: 1 2 3 4 STATUS: 1 1 3 2 VOLUME: 20 10 0 0 %OCC: 30 10 0 0 SPEED: 0 30 45 0 DENSITY: 0 25 6 0

Page 57: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

M3000 Series On-Street Master Special Operations • 49

Special Operations The Special Menu option is used for miscellaneous routines and data entry not directly related to master operation. This menu option allows the user to enable keyboard security codes, enable the use of an EEPROM module, adjust the audio level of the masters internal speaker, setup communication parameters, and enable automatic log transmissions.

Security Codes The M3000 master has 1 level of security. The user can program a Supervisory numeric security code by entering a value between 1 and 9999. This code allows the operator to enter data from any of the CHANGE DATA screens. Entering a security code activates security for the master. Every time CHANGE DATA is accessed from the main menu, the user will be prompted for a security code.

The master has a built in security timer. If the master has been accessed with a security code and no key has been pressed within 5 minutes, the master will beep and return to the NORMAL STATUS dynamic display, requiring the user to re-enter the security code.

EE Used/ Audio Adj This option allows the user to program the master to write to the EEPROM every time data is entered through the keyboard and to adjust the master’s speaker audio level.

If the EEPROM feature is enabled (by entering a ‘Y’), data loaded through the keyboard will also be stored in the EEPROM module. This feature allows data to be kept in a non-volatile backup area in case of a failure in the M3000’s main memory. Also, data stored in an EEPROM module can be transported from one master to another. In addition, the entire contents of the EEPROM can be copied into main memory or vice versa (see the Utilities section for details on this procedure).

NOTE: If an EEPROM is not present or is inoperative when the operator tries to enable this feature, the master will sound an error tone indicating that this function is not available. If the EEPROM feature is enabled and the EEPROM is not present or inoperative, the master will simply ignore the request to write to the EEPROM. It is important that the user verify that an EEPROM is present on power-up, if he intends to take advantage of this feature.

The Audio Adjust value allows the user to control the level of audio feedback. The larger the number, the longer the tone will sound when a key is pressed. If the value is zero, the

SECURITY CODE: VALUE: (0 - 9999) SECURITY CODE: _____ >>ZERO DISABLES THE SECURITY<<

EE USED/AUDIO ADJUST VALUE (YES/NO) EEPROM LOADED WITH KEYBOARD ENTRY: __ (EEPROM COPIED TO RAM ON POWER-UP) AUDIO ADJUST (0-10): __

Page 58: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

50 • Programming Instructions

audio is disabled and no tone will sound. Erroneous keyboard entries will cause the error tone to sound regardless of the Audio Adjust value.

Communications Setup The M3000 master has two configurable ports. Port 3 connects to the various local controllers and Port 2 is used as a printer port or to communicate with the central computer via a dial up modem. In the 3000 series controller, port 1 provides RS-485 protocol communications but is NOT used by the M3000 master. An FSK or Fiber Optic Module may be used to exchange information with the intersection controllers in the system.

FSK Configuration FSK communication operates through Port 3 of the M3000 Master. This option requires a specific setup as shown below.

The baud rate must be set to 1200, the parity option to NONE and the number of data bits to 8.

Fiber Optic Module Configuration The operator can configure the M3000 Master to use one of three types of Fiber Optic Modules: 850nm or 1300nm multimode or 1300nm single mode applications. Both multimode configurations use a 62.5 micron fiber to transmit data to and from the master and local controllers. The single mode module, however, communicates via a 5 micron fiber which allows less signal distortion over greater distances. All three configurations are capable of operating at any of the baud rates currently supported by the master (1200, 2400, 9600, 14400 and 19200 bits per second. See also I/O Port Configuration.)

The master and its controllers are connected in series as shown below. (NOTE: The ‘E’ and ‘D’ designations represent EMITTER and DETECTOR, respectively)

The hardware is designed to allow each controller in the system to act as a ‘repeater’. As a controller accepts a transmission from the previous unit (either master or another controller), the fiber optic module retransmits the signal to the next unit in the series. (An additional ‘repeater’ may be installed to boost the range of a single length of fiber if the distance between two units causes excessive attenuation in the signal strength.) As shown in the diagram above, the Master always transmits data out to the controllers through fiber

PORT 3 SET-UP BAUD RATE: 0 (1200) USE Y/N KEY TO CHANGE BAUD RATE) PARITY:0 (0= NONE, 1= ODD, 2= EVEN) DATA BITS: 1 (0=7, 1=8)

D1

D2

E1

E2

D1

D2

E1

E2

D1

D2

E1

E2

CONTROLLER #2

D1

D2

E1

E2

CONTROLLER #3CONTROLLER #1 MASTER

Page 59: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

M3000 Series On-Street Master Special Operations • 51

optic connector E2 and receives data back on D2. The controllers receive the transmitted data on D1 and send that data on to the next unit in the series via E2. When a controller transmits information back to the master, that data is always sent out connector E1 and received on D2 of the next unit in the series. It is important to cap the unused fiber optic connectors (E1 & D1 of the master; E2 & D2 of the last controller in the series) to prevent the detectors from responding to ambient light sources. This could cause extraneous signals to be transmitted through the system.

The Fiber Optic modules are given one of three numbers to identify the wavelength and mode of each unit: 5043A, 5043B and 5043C. The ‘5043’ identifies the modules as an FSK/Fiber Optic and the letters A, B and C indicate 1300nm multimode, 1300nm single mode and 850nm multimode configurations, respectively. In addition, labels are installed in the upper left corner of the module identifying the fiber module type (i.e. 1300nm multimode). Each module has 2 jumpers which must be set to configure MASTER vs. CONTROLLER and FSK vs. FIBER OPTIC. These jumpers are labeled X7 and X8, respectively. A jumper to allow battery back-up operation is also available at X1. To ensure the integrity of the transmitted messages in the case of a power interruption, this jumper should be placed in the ‘ON’ position before installation.

I/O Port Configuration The screen shown below allows the user to change the communication setup for Port 2. The first item is the baud rate, or the rate at which data will be transmitted to the remote system. To change the baud rate, move the cursor to the appropriate line, and press the Y/N key to advance to the next higher data rate. When the maximum rate is reached it will ‘roll over’ to the minimum rate. At present, the following rates are supported: 1200, 2400, 9600, 14400 and 19200 bits per second.

The next line sets the parity of the transmitted data. In most applications, NO parity is used. The bottom line selects the number of data bits to be used in communications, 7 or 8. In a closed loop system, 8 data bits are used for communication with a controller or a central computer.

Press PGDN to access the communications parameters associated with Port 3. The programming is identical with Port 2.

Modem Setup String In systems requiring dial-up function, a setup string must be entered to allow the M3000 to communicate with the system’s modem. Since any number of different modems may be used, the user must consult their particular modem operator’s manual for the correct character sequence.

To enter a setup string, position the cursor (via the right/left arrows) and then select a character by arrowing down to the ‘character line’. A highlighted box will appear on the ‘string line’ and the cursor now be flashing below one of the possible characters. (ie ABCD....). Move the cursor to the desired element and press the up arrow. The selected character will appear in the position previously occupied by the solid box. Continue this process until the entire setup string has been entered.

PORT 2 SET-UP BAUD RATE: 0 (1200) USE Y/N KEY TO CHANGE BAUD RATE) PARITY: __ (0= NONE, 1= ODD, 2= EVEN) DATA BITS: __ (0=7, 1=8)

Page 60: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

52 • Programming Instructions

It is important to note that this set-up string will be periodically sent to the modem if “ALLOW MASTER TO DIAL CENTRAL” = Y and the master is connected to a modem. The user may send the string immediately by pressing SHIFT and ZERO at the same time.

.

MODEM SET-UP STRING 0-9 SELECTED # STRING: SHIFT-CLEAR ERASES STRING _ ABCDEFGHIJKLMNOPQRSTUVWXYZ #@=,!;%\& RIGHT & LEFT ARROW POSITIONS CURSOR. UP AND DOWN ARROW SELECTS CHARACTER. SHIFT & ZERO SENDS STRING TO MODEM

Page 61: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

M3000 Series On-Street Master Manual Override • 53

Manual Override The manual override function forces the master to implement an operator-selected pattern for any of the 4 zones. The operator may choose a basic C-O-S pattern (such as 3-4-1), or select free operation, flash or local time clock (LTC). The operator may enter any combination of selections but they will not be implemented until Manual Override is enabled by a ‘Y’ in the ACTIVE column. Generally, the user would select either a C-O-S pattern, free operation, flash mode or local TOD (LTC) mode. However, if more than one option is enabled then the Master uses priorities to decide which should be implemented. Local TOD has the most precedence followed by FLASH, FREE and the C-O-S pattern, respectively.

If any of the CYC, OFF or SPL entries do not contain values and the manual override feature is enabled then the C-O-S pattern selected by the master will default to 1-3-2. Selecting FREE, FLASH or LTC without a C-O-S pattern entered is valid. However, to avoid sending an invalid pattern of 0-0-0 to the controller, the master will send 1-3-2 along with the FREE, FLASH or LTC command.

A typical Manual Override screen is shown below. Zone 1 will run a 6-2-3 pattern, zone 2 will go to free operation, and zone 3 will select flash with a defaulted C-O-S of 1-3-2. Zone 4 will not run a manual pattern since ACTIVE is not set to ‘Y’.

It is important to note that Manual Override has the highest pattern selection priority followed by the cabinet switches and central overrides, respectively.

MANUAL OVERRIDE (1-6) (1-5) (1-4) ZONE CYC OFF SPL FREE FLSH LTC ACTIVE 1: 6 2 3 _ _ _ Y 2: 1 1 1 Y _ _ Y 3: _ _ _ _ Y _ Y 4: 3 3 3 _ _ _ _ >> USE Y/N FOR FREE,FLASH,LTC,ACTIVE <<

Page 62: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

54 • Programming Instructions

This page intentionally left blank

Page 63: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

M3000 Series On-Street Master System Operation Menu • 55

DYNAMIC DISPLAYS

System Operation Menu The Dynamic Displays allow the user to view the real-time operation of the master. The system menu displays pattern selection, intersection status and sensor calculations.

Zone Operation The zone operation screen displays pattern information for each of the four zones. A sample of zone 1 data is shown below. Pressing the PGDN key displays the screens for zones 2 through 4.

In this example, the first line, ZONE 1 PATTERN, indicates that zone 1 is currently running a C-O-S pattern of 6-3-2. The last line, MODE, indicates that this pattern is selected via the manual pattern function. TRAF RESP, TOD and MANUAL specify the patterns currently assigned to traffic response, time of day and manual selections, respectively. The traffic response pattern is, of course, based on the data received on the assigned computational channels. As these inputs change so will the traffic responsive pattern. The PATTERN CHANGE TIMER counts down the amount of time that a traffic responsive pattern must be selected before the M3000 may run a different traffic responsive pattern. This timer does NOT affect the selection of manual, cabinet, TOD, central overrides or master linking patterns. In fact, when any of these patterns are chosen, the M3000 resets this timer to 0. ASP and ASF denote the use of an alternate sampling period or an alternate smoothing factor, respectively.

Intersection Data The intersection dynamic screen indicates the active status and zone assignment for each of the 64 possible intersections. If the master loses communication with an assigned intersection then that intersection is flagged as lost (L) in the screen shown below. If an intersection does not respond to every poll the the master reports an ‘M’ for marginal communication. Otherwise, the active intersections are denoted by an A on their respective STATUS lines. This dynamic screen also reveals the zonal assignments for each of the 64 intersections; a zero indicates no zonal assignment. Pressing the PGDN key displays the dynamic screens for the remaining intersections, 17-64.

ZONE 1 PATTERN 6-3-2 TRAF RESP TOD MANUAL ASP ASF 4-2-1 1-3-1 6-3-2 X PATTERN CHANGE TIMER: 0 MODE: MANUAL PATTERN

Page 64: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

56 • DYNAMIC DISPLAYS

Sensor Status The dynamic sensor screen displays the status, volume counts, speed, density and various percentage calculations for each of the 128 sensors. If a particular sensor fails, whether by maximum or minimum volume counts, absence or locked testing or erratic behavior, the status line of the sensor screen will record an ‘F’ followed by the zonal assignment 1 through 4. For example, if sensor number 2 fails and it is assigned to zone 4, then an ‘F4’ will appear under sensor number 2. The volume counts, occupancy, concentration, and (volume+occupancy) percentage calculations are compiled by minute or by cycle as defined by the operator (See Master Control in the Programming section). The speed and density data is similarly compiled.

(A=ACTIVE,L =LOST, M= MARGINAL) INTERSECTION:1 2 3 4 5 6 7 8 STATUS: A M A L ZONE: 1 1 0 1 1 0 0 0 INTERSECTION:9 10 11 12 13 14 15 16 STATUS: A A A ZONE: 0 1 1 1 0 0 0 0

SENSORS 1 2 3 4 STATUS: F1 F4 1 1 VOLUME: 0 0 900 1200 % OCC: 0 20 30 40 SPEED: 0 0 12 12 DENSITY: 0 0 74 99 % CONC: 0 20 75 100 % VL + OC 0 20 105 140

Page 65: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

M3000 Series On-Street Master Computational Channel Data • 57

Computational Channel Data The Computational Channel Data screens allow the user to view the selected parameters and output percentage calculations for each of the computational channels. It may be helpful to review C-O-S Pattern Selection in the General Information section of this manual before attempting to interpret the data presented in the screens described below.

The CHANNEL DYNAMIC MENU contains 7 entries. Any one of the choices may be selected by pressing the corresponding number key, 1-4 or 6-8.

Cycle Channels (1-2) The Cycle Channel screen contains mode information (average, highest, second highest or total), calculation parameters (i.e. volume, speed, density etc. ), channel output percentages, the sample period and the cycle number selected for each of the four zones. A sample screen is shown below.

CHAN 1/ CHAN 2 MODE indicate what type of calculations are performed on each of those channels. In the example, both channels are configured as processing VOLUME data. CYCLE OUT MODE specifies the mode for the final output between the two channels. (Since ‘AVERAGE’ is selected then the CYCLE % OUT value is found by taking the average of the two individual channel outputs, in this case 30 and 60.) CHANNEL OUT MODE is the selection type for the individual channel inputs. In this example, the algorithm takes the HIGHEST of the sensor inputs to channel 1 and then, since the sample period above is 4, computes CHANNEL 1 % OUT by selecting the HIGHEST of the last 4 channel 1 calculations. A similar calculation is done for channel 2. The corresponding screens for zones 2 through 4 are displayed by pressing the PGDN key.

For a detailed explanation of how the CYCLE computational channels operate, please review C-O-S Pattern Selection in the General Information section of this manual.

Offset & Split Channels (1-2) The Offset and Split Channel screens contain the same information as the Cycle screen with the exception of the CYCLE OUT MODE. The final offset and split output is a result of the signed delta between their two respective channels, OFFSET 1-OFFSET 2

CHANNEL DYNAMIC MENU 1. CYCLE 2. OFFSET 6. SPECIAL 3. SPLIT 7. MASTER LINK 4. OCCUPANCY 8. ZONE LINK

CYCLE CHAN ZONE 1 CHAN 1 MODE: VOLUME CHAN 2 MODE: VOLUME CYCLE OUT MODE: AVERAGE SAMPLE: 4 CYCLE % OUT:45 CYCLE SELECTED: 3 CHANNEL OUT MODE: HIGHEST CHANNEL 1 % OUT: 30 CHANNEL 2 % OUT: 60

Page 66: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

58 • DYNAMIC DISPLAYS

and SPLIT 2- SPLIT 1. Sample screens for the OFFSET and SPLIT channels are shown below. (Pressing the PGDN key accesses the information for zones 2 through 4.

According to the OFFSET screen, both channels are configured for density calculations. The traffic responsive algorithm computes CHANNEL 1 % and CHANNEL 2 % OUT in the same manner as described for the cycle computational channels. (i.e. the algorithm takes the AVERAGE of the sensor inputs to channel 1 and then takes the average of the last 4 channel 1 calculations.) Details on offset and split channel calculations can be found in the C-O-S Pattern Selection in the General Information section of this manual.

Occupancy Channels (1-4) The dynamic screen for the four occupancy channels contains output mode, sample period and percentage output information as well as the operator-selected override C-O-S pattern. Unlike the cycle, offset and split channels, the results of the four occupancy outputs are calculated independently from each other. The MODE and SAMPLE parameters, shown in the screen below, have a separate entry for each channel. The C-O-S Override pattern will be selected if any one of the four channels meets the threshold settings defined by the operator. (see Pattern Functions/ Transfer Thresholds in the Programming Data section.)

Special Channels (1-4) The Special and Occupancy screens contain almost identical information. The only additional parameter displayed is the input mode, MODE IN. This defines the calculation type for each of the four channels. (This is unnecessary for the occupancy channels since the input mode for these channels is always occupancy.) As mentioned

OFFSET CHAN ZONE 1 CHAN 1 MODE:DENSITY CHAN 2 MODE:DENSITY OFFSET DELTA % :10 SAMPLE: 2 OFFSET SELECTED: 3 CHANNEL OUT MODE: AVERAGE CHANNEL 1 % OUT: 30 CHANNEL 2 % OUT: 20

SPLIT CHAN ZONE 1 CHAN 1 MODE:SPEED CHAN 2 MODE:SPEED SPLIT DELTA % :-65 SAMPLE: 2 SPLIT SELECTED: 1 CHANNEL OUT MODE: AVERAGE CHANNEL 1 % OUT: 75 CHANNEL 2 % OUT: 10

OCCUPANCY CHAN ZONE 1 CHANNEL: 1 2 3 4 MODE: AVERAGE HIGHEST SAMPLE: 3 5 % OUT: 25 60 OVERRIDE COS PATTERN: 313

Page 67: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

M3000 Series On-Street Master Computational Channel Data • 59

for the occupancy channels, the threshold settings defined by the operator determine when the Special C-O-S Override pattern will be selected. (see Pattern Functions/ Transfer Thresholds in the Programming Data section.)

Master Link Channels (1-2) The Master Link Channel screen provides the calculation type (volume, occupancy, speed, etc.) and percentage output for both channels as well as the sample period used in the calculations. If the results for either one or both of the channels meet the threshold requirements to initiate a master link, then MASTERS SELECTED lists which secondary masters were successfully sent a master link command. (NOTE: if the primary was not able to contact the secondary then MASTERS SELECTED will not list that secondary.) If the percentage outputs do not meet the limits required to establish a link then the MASTERS SELECTED field will be blank. In the sample screen shown below, either 18 or 46% met the requirements for a master link since MASTERS SELECTED indicates that secondary masters 1 and 4 have been selected. Please note that CHAN 1 MODE and CHAN 2 MODE can be different since each channel has its own set of thresholds.

Zonal Link Channels (1-2) The dynamic screen for the zonal link channels contains the same information as the master link screen. ZONES SELECTED lists the zones currently linked to the one displayed. For example, in the screen shown below, ZONES SELECTED indicates that zones 2 and 4 are currently using the same C-O-S pattern as zone 1. Either 24% (occupancy) or 88% (speed) met the requirements set by the user-defined thresholds and initiated a zonal link.

SPECIAL CHAN ZONE 1 CHANNEL: 1 2 3 4 MODE IN: VOLUME SPEED MODE OT: AVERAGE HIGHEST SAMPLE: 2 3 % OUT: 15 50 OVERRIDE COS PATTERN: 524

MASTER LINK CHAN ZONE 1 CHAN 1 MODE: VOLUME CHAN 2 MODE: DENSITY SAMPLE: 2 MASTERS SELECTED:1 4 CHANNEL 1 % OUT: 18 CHANNEL 2 % OUT: 46

ZONE LINK CHAN ZONE 1 CHAN 1 MODE: OCCUPANCY CHAN 2 MODE: SPEED SAMPLE: 5 ZONES SELECTED: 2 4 CHANNEL 1 % OUT: 24 CHANNEL 2 % OUT: 88

Page 68: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

60 • DYNAMIC DISPLAYS

This page intentionally left blank

Page 69: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

M3000 Series On-Street Master Program Level & Revision Information • 61

Program Level & Revision Information The program level & revision dynamic display is the same as the master's start-up screen. The PEEK TRAFFIC and TRANSYT logos are displayed, along with the software revision level and copyright message.

Voltage Information This screen provides the user feedback on the status of master’s battery and voltage supplies. A typical screen is shown below.

VOLT/AMP/TEMP DEFINITION MIN MAX Battery Internal Battery voltage for RAM and real time clock backup 2.0 VDC na Internal 8V Internal 8V generated by power supply as controller 5V source 7.5 VDC 9.0 VDC 24V Supply Current Current load on the 24 volt supplies (Internal & External) 0 amps 1 amp Unregulated 25V Unregulated secondary voltage for 24 volt supplies 28 VDC 32 VDC High regulated 25V Regulated voltage source for 24 volt supplies 22 VDC 27 VDC Internal 24V 24 volt internal source 22 VDC 26 VDC External 24V 24 volt external source 22 VDC na

SMARTWAYS M3000 ON-STREET MASTER 5581 v1.0 5/22 Copyright 1994-1995 Transyt Corp. All Rights Reserved

BATTERY = 3.0 VOLTS INTERNAL 8v = 8.6 VOLTS 24V SUPPLY CURRENT = 0.1 AMPERE UNREGULATED 25V = 30.5 VOLTS HIGH REGULATED 25V = 25.5 VOLTS INTERNAL 24V = 24.8 VOLTS EXTERNAL 24V = 25.4 VOLTS

Page 70: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

62 • DYNAMIC DISPLAYS

This page intentionally left blank

Page 71: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

M3000 Series On-Street Master Time of Day • 63

Time of Day The TOD dynamic screens display the status of TOD operation and all TOD circuits. The currently selected cycle number and its corresponding cycle timer are displayed. The week plan and day plan in effect are shown along with the cycle-offset-split. The date and time are displayed along with the day of week and week of year.

If no TOD program is active, this display will indicate week plan 1, day plan 1, c/o/s=1/3/02 (defaults).

The circuit number and 3 character reference are displayed. An 'X' indicates that a particular circuit is currently active. Refer to Appendix A for details concerning TOD circuit assignment and definition.

The screens below show the defaults for MASTER TOD if no TOD plan has been entered.

TIME OF DAY ZONE 1 08/01/1994 14:55:05 WEEKEND DAY PLAN C/O/ S CYCLE TIMER 1 1 1/3/02 4 35 FLASH CIRCUIT: FREE CIRCUIT: X MASTER LINK ENABLE: LOCAL TOD: ZONE LINK ENABLE: DAY OF WEEK= MONDAY WEEK OF YEAR = 32

TOD DYNAMIC CIRCUIT ZONE 1 14:55:05 CIRCUIT 1 2 3 4 5 6 7 8 FUNCTION ASP ASF MTC LM1 LM2 LM3 LM4 N/U STATUS CIRCUIT 9 10 11 12 13 14 15 16 FUNCTION N/U N/U N/U N/U N/U N/U UD1 UD2 STATUS

Page 72: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

64 • DYNAMIC DISPLAYS

This page intentionally left blank

Page 73: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

M3000 Series On-Street Master Checksum Data • 65

Checksum Data The checksum dynamic display allows the user to see if any checksum failures have occurred on data in the master. When data is entered through the keyboard, by transfer or by any other valid means, new (CRC) checksums are generated and stored. If data changes without proper cause, a checksum failure will occur and LOCAL TOD. “CHECKSUM FAILURE” will appear on the Zonal Operation status display accessed under the System Operation Menu.

Once checksum failures have occurred, the user loads the correct data into the indicated areas via the EEPROM or through the keyboard. The M3000 will automatically recalculate the checksums and clear the errors as appropriate.

It is possible to manually clear the checksum failures by going into the first screen shown below and pressing the corresponding number key. (i.e. ‘1’ for CONTROL, ‘2’ for CHANNEL, etc.) This method forces the master to calculate new checksums but does NOT modify the database in any way. It is important to note that manually clearing the checksum failures can be dangerous since bad data still exists in the database. After the checksum failures have been cleared, the user must perform an external restart (or power interrupt) to restart the master.

Checksum failures can occur individually on control, channel, time of day, pattern, communication, special and options data.

1. Checksum failures exist

2. Clear the checksum failures by pressing each number 1-7 as directed above

3. Restart the machine

CHECKSUM FAILURES PRESENT IN THE MACHINE 1. CONTROL 4. PATTERN 2. CHANNEL 5. COMMUNICATION 3. TIME OF DAY 6. SPECIAL 7. OPTIONS >>CHECKSUM CAN BE CLEARED BY SELECTING A NUMBER FROM ABOVE, BUT DATA MAY BE BAD<<

No checksum failures present in the machine, but the unit had Checksum failure and needs to be restarted.

NO CHECKSUM FAILURES PRESENT

Page 74: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

66 • DYNAMIC DISPLAYS

This page intentionally left blank

Page 75: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

M3000 Series On-Street Master Input/Output Data • 67

Input/Output Data The Input/Output Data screen defines which of the user-defined inputs and/or cabinet switches are currently active. The first screen displays the 8 user-defined time-of-day circuits, 2 for each zone. (These are enabled through the Time-of-Day Event Programming Menu). ‘Z1-1’ and ‘Z1-2’ correspond to user-defined outputs 1 and 2 for ZONE 1. Similarly, ‘Z2-1’ and ‘Z2-2’ represent the outputs for ZONE 2, and so on. If any are active, an ‘X’ will appear below the corresponding output. On the example screen shown below, user outputs zone 1 output 1, zone 2 output 2 and zone 3 output 2 are currently active.

The remaining two screens display the status of the cabinet inputs. These inputs provide external control for cycle, offset, split and free pattern selection or the operator may enable local TOD or master TOD patterns. Alternate sampling periods and smoothing factors are also selectable through these inputs. Example screens are shown below followed by a description of the various input designations:

CY2-CY6: indicate cycle numbers 2 through 6; cycle number 1 is not included since it is the defaulted value.

OF1-OF2, OF4-OF5: indicate offset numbers 1,2,4 and 5; offset number3 is not included since it is the default value.

SL1,SL3,SL4: indicate split numbers 1,3 and 4; split number 2 is not included since it is the default value.

EZ1: enables the selection of the CYCLE, OFFSET and SPLIT switches for ZONE 1. (At present, C-O-S

TOD- USER DEFINED OUTPUTS (X = ON) D25#-22 D37#-37 D37#-3 D37#-2 Z1-1 Z1-2 Z2-1 Z2-2 X X D37#-1 D37#-20 D37#-21 D37#-22 Z3-1 Z3-2 Z4-1 Z4-2 X

MSA- INPUTS (X = ON) #-h #-EE #-N #-m #-z #-w #-GG #-L CY2 CY3 CY4 CY5 CY6 OF1 OF2 OF4 #-K #-M #-k #-v #-f #-g #-i #-P OF5 SL1 SL3 SL4 EZ1 FZ1 STO MTO

MSA- INPUTS (X = ON) #-R #-S #-T #-n #-x #-Y #-AA #-BB SF1 SF2 SF3 SF4 SP1 SP2 SP3 SP4 #-q LT0

Page 76: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

68 • DYNAMIC DISPLAYS

selections via cabinet switches are NOT available for ZONES 2 through 4)

FZ1: selects FREE operation for ZONE 1 only.

STO, MTO: select System (LOCAL) TOD or Master TOD for all zones.

SF1-SF4: forces the alternate smoothing factors to be used for zones 1 through 4, respectively.

SP1-SP4: forces the alternate sampling periods to be used for zones 1 through 4, respectively.

LT0: forces the lower threshold for the Minimum Volume Sensor Test to 0.

Page 77: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

M3000 Series On-Street Master Log Information • 69

Log Information The M3000 records pattern changes, events, sensor failures, security code entry and volume and occupancy data. All of this information is accessible through the Dynamic Log Menu.

Pattern Changes The master logs all pattern changes as they occur. The log information includes the C-O-S pattern, mode type (how the pattern was selected), date and time. If the mode type references LOCAL TOD, FREE operation or FLASH, no C-O-S pattern is recorded. A ‘+’ will appear before the C/O/S - MODE description if that pattern change has been reported to Central. In the sample screen shown below, the entries at 8:30, 8:55 and 9:05 have been sent to Central; the two most recent have not. The log can hold up to 120 entries for each zone. Additional pages for the current zone and screens for zones 2 through 4 are displayed by pressing the PGDN key. Any zone or page can be directly accessed by entering the desired zone number or page on the top line of the screen.

Events The M3000 logs a variety of events including checksum, computational channel and EEPROM failures. Recovery from any of the failure conditions is also recorded along with downloads and power-up and power-down conditions. The event log can hold up to 1002 entries. Each entry lists the event (MESSAGE), and the date and time. S/LOCAL indicates whether the message has been sent to Central. If S/LOCAL is a ‘+’ then the message has been sent. The event log entries are recorded in a ‘rolling’ data structure such that the 1003rd entry will replace the oldest value in the log.

A computational channel failure occurs when the number of good sensors for a particular channel is less than the minimum allowed for a valid calculation. (This parameter is found in the Computational Channel Configuration screens under the CHANGE DATA MENU) The event message will include not only the name of the failed channel but its zone as well. A sample screen is shown below.

PATTERN CHANGE LOG ZONE 1 PAGE 1 OF 2 C/O/ S - MODE 1/3/01 MIXED SOURCES 8/02/94 11:03 2/4/01 TRAFFIC RESPONSIVE 8/02/94 10:54 +FREE, TRAFFIC RESPONSIVE 8/02/94 9:05 +5/3/04 MANUAL PATTERN 8/02/94 8:55 +FREE, MANUAL PATTERN 8/02/94 8:30

EVENT LOG PAGE 1 OF 2 S/LOCAL - MESSAGE DATE TIME -CHECKSUM FAILURE 8/03/94 13:54 -DOWNLOAD INITIATED 8/03/94 12:05 -CH 1 Z2 CYCLE FIX 8/03/94 12:01 + -CH 1 Z3 QUE FIX 8/03/94 11:45 + -CH 2 Z3 SPEC FAIL 8/03/94 11:32 + -CH 1 Z2 CYCLE FAIL 8/03/94 11:21

Page 78: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

70 • DYNAMIC DISPLAYS

Sensor Failures Before any sensor data is used for a traffic responsive pattern calculation, the master tests each individual sensor for LOCKED, ABSENCE, ERRATIC and MIN and MAX VOLUME failures. The M3000 logs these failures and records the type and time for each. If sensor operation returns to normal, the log will also record the sensor as recovered. The individual sensor tests, LOCKED, ABSENCE, ERRATIC and MIN and MAX VOLUME are described in the Sensor Configuration section of this manual. If a ‘+’ appears before the sensor number, then that failure has been reported to Central. As shown in the screen below, the threshold failures for sensors 2 and 15 have been reported but the remaining failures have not. The M3000 can log a maximum of 204 sensor failures. Please note that a master sensor must have an intersection and local sensor assignment to be checked for a failure condition - see Sensor Configuration/Sensor Assignments.

Keyboard Log The keyboard log is a record of the last 30 keyboard accesses. The actual keystrokes are not listed in the log, but rather whether a security code was entered to gain access to the database. If no security code is active, no entry is made in the log. If the keyboard entry has been reported to Central then the M3000 will print a ‘+’ as the first character of the log entry. As with the other logs, any page may be accessed directly by entering the page number in the upper left portion of the screen.

Volume & Occupancy Counts The M3000 provides volume and occupancy counts in 15 minute increments for the last four days. Please note that the volume values are the actual counts while occupancy is recorded in percent. Up to 48 sensors can be logged. Each screen designates the day by -0, -1, -2, or -3 where -0 indicates today, -1, yesterday, -2 the day before yesterday and so on. The time of day is displayed in the upper right hand corner. There are 3 screens for every 15 minute period (16 sensors per screen for a total of 48 sensors). To access a particular day and time, the operator simply enters the appropriate values in the day and time fields. This enables the operator to quickly compare volume and occupancy data at specific times of the day over the past 4 days without having to page through multiple screens. Sample screens for 1 set of sensors is shown below:

SENSOR FAILURE LOG PAGE 1 OF 2 SENSOR-FAILURE MODE DATE TIME 15 -RETURN TO NORMAL 8/06/94 15:04 24 -LOCK 8/06/94 14:34 22 -ABSENCE 8/06/94 14:33 +2 -LOW THRESHOLD 8/06/94 13:21 +15 -HIGH THRESHOLD 8/06/94 11:24

KEYBOARD LOG PAGE 1 OF 1 SECURITY DATE TIME SUPERVISORY 5/25/94 09:30 +SUPERVISORY 4/28/94 11:02

Page 79: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

M3000 Series On-Street Master Log Information • 71

VOLUME- OCCUPY LOG DAY -0 TIME: 12:45 SENSOR 3 7 14 18 22 34 46 48 VOLUME 75 150 225 300 375 450 525 600 OCCUPY 10 20 30 40 50 60 70 80 (1 OF 3) SENSOR 52 55 61 65 72 77 83 85 VOLUME 36 75 134 154 154 65 98 100 OCCUPY 23 97 88 22 74 54 16 20

VOLUME- OCCUPY LOG DAY -0 TIME: 12:45 SENSOR 88 90 92 93 94 95 98 102 VOLUME 342 143 54 23 242 232 324 425 OCCUPY 23 34 85 45 56 23 85 24 (2 OF 3) SENSOR 104 105 106 108 111 112 115 119 VOLUME 234 356 434 423 423 423 314 423 OCCUPY 47 96 28 99 95 24 13 6

VOLUME- OCCUPY LOG DAY -0 TIME: 12:45 SENSOR 120 125 126 127 128 VOLUME 132 331 424 143 123 OCCUPY 5 23 84 47 36 (3 OF 3) SENSOR VOLUME OCCUPY

Page 80: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

72 • DYNAMIC DISPLAYS

This page intentionally left blank

Page 81: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

M3000 Series On-Street Master TOD Circuit Descriptions • 73

Appendix A

TOD Circuit Descriptions Ckt # Symbol Description 1 ASP Alternate Sampling Period 2 ASF Alternate Smoothing Factor 3 MTC Master Time Clock 4 LM1 Link Master 1 5 LM2 Link Master 2 6 LM3 Link Master 3 7 LM4 Link Master 4 8 U/D undefined 9 U/D undefined 10 U/D undefined 11 U/D undefined 12 U/D undefined 13 U/D undefined 14 U/D undefined 15 UD1 User Defined 1 16 UD2 User Defined 2

When active, circuits 1 & 2 (ASP, ASF) select the alternate sampling period and smoothing factor for the enabled zone. MTC (circuit 3) forces the master to use its own MASTER TOD pattern regardless of its traffic responsive pattern selection. LM1 - LM4 (Link Master 1-Link Master 4) force the M3000 to become a PRIMARY master with the indicated secondary master. (i.e. if LM2 is active, then the current master will send a MASTER LINK command to secondary master 2 as indicated by its corresponding parameters entered in the MASTER CONTROL data screens.)

Circuits 15 & 16 (UD1, UD2) are user definable hardware outputs that can be used for any purpose desired. These outputs are available on the ‘D’ module.

Page 82: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

74 • Appendix A

This page intentionally left blank

Page 83: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

M3000 Series On-Street Master Connector Pin Lists • 75

Appendix B

Connector Pin Lists MS-A Connector

Function Pin Description Reserved A Not Used. +24VDC B 24 Volt D.C. output.

CVM C Controller Volt Monitor is active when.

D

E F G H J

OF5 K Cabinet Input: Offset 5 enable (Heavy Outbound)

OF4 L Cabinet Input: Offset 4 enable (Outbound)

SL1 M Cabinet Input: Split 1 enable CY4 N Cabinet Input: Cycle 4 enable

MTO P Cabinet Input: Master TOD pattern enable

SF1 R Cabinet Input: Alternate Smoothing Factor ZONE 1 enable

SF2 S Cabinet Input: Alternate Smoothing Factor ZONE 2 enable

SF3 T Cabinet Input: Alternate Smoothing Factor ZONE 3 enable

AC Neutral U Common lead of AC supply. Chassis Ground V

Logic Ground W X

SP2 Y Cabinet Input: Alternate Sampling Period ZONE 2 enable

Z a b c d e

EZ1 f Cabinet Input: enables the selection of the CY, OF & SL switches for ZONE 1. (cabinet settings for Zones 2-4 are NOT available at this time)

FZ1 g Cabinet Input: selects FREE operation for ZONE 1 only.

Function Pin Description CY2 h Cabinet Input: Cycle 2 enable STO i Cabinet Input: System (Local) TOD

pattern enable j

SL3 k Cabinet Input: Split 3 enable CY5 m Cabinet Input: Cycle 5 enable SF4 n Cabinet Input: Alternate Smoothing

Factor ZONE 4 enable AC+ p AC Supply Voltage LT0 q Time Clock circuit or External Input

which forces the lower threshold for the Minimum Volume Sensor Test to 0. (See also SENSOR CONFIG: Error Data)

r s t u

SL4 v Cabinet Input: Split 4 enable OF1 w Cabinet Input: Offset 1 enable

(Heavy Inbound) SP1 x Cabinet Input: Alternate Sampling

Period ZONE 1 enable SP2 y Cabinet Input: Alternate Sampling

Period ZONE 2 enable CY6 z Cabinet Input: Cycle 6 enable SP3 AA Cabinet Input: Alternate Sampling

Period ZONE 3 enable SP4 BB Cabinet Input: Alternate Sampling

Period ZONE 4 enable CC DD

CY3 EE Cabinet Input: Cycle 3 enble FF

OF2 GG Cabinet Input: Offset 2 enable (Inbound)

HH

Page 84: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

76 • Appendix B

MS-D ModuleAux Connector

Function Pin Description Function Pin Description Z2-2 1 User Defined Output #2 for ZONE 2 Z4-2 19 User Defined Output #2 for ZONE 4 Z2-1 2 User Defined Output #1 for ZONE 2 Z3-1 20 User Defined Output #1 for ZONE 3 Z1-2 3 User Defined Output #2 for ZONE 1 Z3-2 21 User Defined Output #2 for ZONE 3

4 Z4-1 22 User Defined Output #1 for ZONE 4 5 23 6 24 7 25 8 26 Common for Optical Inputs 4, 6, 28,

29, 35, 36 on Aux connector and Optical Inputs B, P, R, T, W, & X on Coord Connector.

9 27 10 28 11 29 12 30 13 31 14 32 15 33 16 34

+24 V 17 24 VDC Output 35 Ground 18 Logic Ground 36

Z1-1 37 User Defined Output #1 for ZONE 1

Preempt Connector Function Pin Description Function Pin Description

1 14 2 15 3 16 4 17 5 18 6 19 7 20 8 21 9 22 10 23 11 24 12 25 13

Coord Connector Function Pin Description Function Pin Description

A P B R

RX+ C Transceiver Pos. Input S RX- D Transceiver Neg. Input T TX+ E Transceiver Pos. Output RX Shield U Shield for Transceiver Input TX- F Transceiver Neg. Output TX Shield V Shield for Transceiver Output

G W H X J Y K Z L a M b N c

Page 85: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

M3000 Series On-Street Master • 77

RS-232 Direct-Connect Assembly 25 Pin Connector

Function Pin TD 2

RD 3

GND 7

RTS 4

CTS 5

DTR 20

DSR 6

CD 8

RS-232 MODEM Connector 25 Pin Connector

Function Pin Chassis GND 1

TD 2

RD 3

RTS 4

CTS 5

DSR 6

LOGIC GND 7

CD 8

DTR 20

R1 22

Page 86: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

78 • Appendix B Appendix B

Page 87: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

M3000 Series On-Street Master Index • 79

INDEX A

Alternate Sampling Period. See Sampling Period Alternate Smoothing Factor. See Smoothing Factor Audio Adjust, 49 Audio Level, 49

C

Cabinet Inputs, 68. See Pattern Selection, Cabinet Inputs

Calculations, Percentage, 4, 6, 9, 28, 29, 56, 57 Circuit Descriptions, 73 Communications

Central to Master, 12, 15 Master to Central, 15, 16, 29, 51, 69, 70 Master-to-Controller, 50 Setup, 50

Computational Channel Cycle, 3, 5, 31, 32, 33 Master Link, 3, 10, 31, 35 Occupancy, 3, 8, 33, 34 Offset, 3, 5, 31, 32, 33 Parameters, 31 Queue, 3, 9, 34 Special, 3, 8, 31, 33, 34 Split, 3, 5, 31, 32, 33 Zonal Link, 3, 9, 31, 35

Cycle Lengths, 41

D

Default Data Load, 45 Display, 13

Central Phone Numbers, 16 Checksum Status, 65 Cycle Channel Data, 57 Inputs, 67 Intersection Data, 55 Logs

Events, 69 Keyboard, 70 Pattern Changes, 69 Sensor Failures, 70 Volume & Occupancy Counts, 70

Master Link Channel Data, 59 Occupancy Channel Data, 58 Offset Channel Data, 57 Pattern Selection. See Display: Zone Operation Sensor Status, 56 Special Channel Data, 58 Split Channel Data, 57 Time-of-Day Circuits, 63 Voltages, 61

Zonal Link Channel Data, 59 Zone Operation, 55

E

EEPROM Module, 1, 45, 46, 49, 69 Event Programming. See Time-of-Day Exception Days, 21

F

Failures Checksum, 12, 65 Computational Channel, 6, 32

Fiber Optic Module, 1, 50 Forecast Predictor, 6, 31, 32, 35

I

Inputs Cabinet Switches, 67 Time-of-Day Circuits, 67

Intersection Parameters, 19 Sensor Assignments, 27 Zone Assignments, 55

K

Keyboard, 13

L

Link Pattern Master to Master, 4, 11, 16, 17, 43 Zone to Zone, 4, 11, 35

Link Pattern Number, 11, 17, 35, 43 Logs

Clearing, 45 Events, 69 Keyboard, 70 Pattern Changes, 69 Volume & Occupancy Counts, 70

Loop Calibration Factor, 27, 29

M

Master Linking, 10, 17, 21, 35, 43, 73 Sustain Link Time, 12, 17, 43 Telephone Numbers, 11, 17, 35

Mixed Mode. See Time-of-Day

Page 88: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

80 •

Mode Information AVG, HIGH, TOTAL, 5, 6, 7, 8, 9, 10, 31, 32, 37,

57

O

Outputs. See User Defined Output

P

Pattern Change Timer, 15, 55 Pattern Matrix, 9, 41, 43 Pattern Selection

Cabinet Inputs, 68 Cabinet Inputs, 10, 12, 15, 16, 55, 67 Central Override, 12 Local Time-of-Day Override, 12 Manual Override, 3, 12, 13, 15, 16, 53 Master Linking, 10, 43, 55 Master Time-of-Day Override, 12, 22 Traffic Responsive, 5, 37, 38, 39 Zonal Linking, 9

Power supply, 1 Power-up Timer, 15, 32 Primary Master. See master linking Printer

Options, 46, 47 Setup, 46

Priorities Computational Channels, 4 Master Link Pattern, 11, 43 Occupancy Channels, 9, 34 Pattern Selection, 3, 12, 53 Queue Channels, 9, 34 Special Channels, 9, 34

Processor, 1 Program Level & Revision Information, 61 Programming

Central Telephone Numbers, 16 Comp. Channel Sensors, 33, 34 Comp. Channel Thresholds, 37, 38, 39 Computational Channels

Cycle, 31 Master Link, 31 Offset, 31 Special, 31 Split, 31 Zonal Link, 31

Cycle Lengths, 41 Forecast Predictor, 32, 33 Intersection Parameters, 19 Master Link Patterns, 43 Master Linking Parameters, 17 Master Parameters, 15 Master Telephone Numbers, 17 Minimum number of good sensors, 32, 33 Mode Information (Avg, Highest, Total), 32, 33 Pattern Matrix, 41 Sampling Period, 32 Sensors Error Data, 28 Smoothing Factor, 32

Time-of-Day Date & Time, 25 Daylight Savings Time, 24 Events, 22 Exception Days, 24 Mixed Mode, 21 Week Plans, 23 Year Plan, 23

Weighting & Loop Calibration Factors, 29

R

Restart, 46

S

Sampling Period, 6, 21, 31, 32, 35, 55, 67 Secondary Master. See Master Linking Security Code, 49, 70 Security Codes, 49 Sensors

Absence Test, 5, 27, 28 Comp. Channel Assignments, 3, 5, 9, 33, 34 Erratic Test, 5, 27 Error Data, 28 Intersection Assignments, 27 Locked Test, 5, 27, 28 Logging, 15, 29, 70 Loop Calibration Factor, 29 Min/Max Volume Test, 5, 27, 28 Minimum Number Parameter, 5, 32 Testing, 27 Weighting Factor, 28

Smoothing Factor, 6, 21, 22, 31, 32, 35, 55, 67 Sustain Link Time, 12, 17, 43

T

Thresholds Master Linking, 11, 39 Occupancy, 38 Offset, 37 Queue, 34, 39 Special, 38 Split, 38 Zonal Linking, 10, 40

Time-of-Day Circuit Descriptions, 73 Cycle Reference Times, 24 Date and Time, 25 Day Plan, 21, 22, 63 Daylight Savings Time, 24 Event Programming, 21 Exception Days, 23 General, 2 Mixed Mode, 21 Time Reset, 24 Week Plan, 21, 23, 63 Year Plan, 21, 23

Traffic Responsive

Page 89: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

M3000 Series On-Street Master Index • 81

Calculations, 4 Pattern Priorities, 4 Pattern Selection, 5

U

User Defined Output, 22, 63, 73 Utilities, 45

V

Voltages, 61

W

Weighting Factor, 5, 27, 28

Z

Zonal Linking, 9, 21, 35

Page 90: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

82 •

Page 91: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221
Page 92: M3000 Series Master Controller Operating Manual Operating... · Operating Manual M3000 Series On-Street Master Peek Traffic, Inc. 2906 Corporate Way Palmetto, FL 34221

5928-4