m2: meson dynamics title of the poster · m2: meson dynamics title of the poster principal...

1
Title of the Poster M2: Meson Dynamics Principal Investigators: N. Berger, M. Fritsch, W. Gradl, S. Scherer Role within the CRC The duality between a better knowledge of the internal structure and the dynamics of hadrons and its relevance and impact in different elds is the central and connecting goal of the CRC1044. In this project the spectroscopy and dynamic investigations of light and heavy mesons connect the perturbative description of the strong interaction at high energies which describes the interaction in terms of quarks and gluons with the non-perturbative description at the low-energy regime where mesons and baryons are the degrees of freedom. Physics Program of the Second Funding Period (2016 – 2019) Eective Field Theory: Description of anomalous processes in chiral EFT including vector mesons Dirac constraint analysis Investigation of various vector-meson approaches (vector, tensor, massive Yang-Mills formulation) to study VPγ interactions Development of power-counting scheme (complex-mass scheme) Quantum corrections to chiral anomaly Investigation of more complex processes such as η ( ) π + π - γ and η ( ) π + π - γγ Light Mesons: η, ω and η’ decays with A2 @ MAMI Amplitude analysis η ' 3π 0 Study decays ω ηγ and ω π 0 e + e - Light hadron dynamics in charmonium decays Study difference between J/ψ π + π - π 0 and ψπ + π - π 0 (ρπ puzzle) Study effects of ππ rescattering Develop and test amplitude analysis methods across channels and with various models Heavy Mesons: Global analysis of exotic charmonium states Interrelationship of Y and Z + states Simultaneous amplitude analysis of the channels Y J/ψ π + π - and Y DD * Search for exotic charmonium isospin singlets Isospin singlet decaying to J/ψη to the Z c (3900) triplet Isospin singlet decaying to η c η Search for exotic charm states Inclusive analyses of the D and D + recoil spectra Big Questions What is the interplay of dynamical symmetry breaking, explicit symmetry breaking by the quark masses, and the chiral anomaly? How does it affect the dynamics of light mesons? What role do light meson (rescattering) dynamics play in heavy meson decays? What is the nature of the bound states of the strong force? When does the quark-antiquark picture of mesons break down? Are there exotic states like tetraquarks, molecules, hybrids, and glueballs and how do they interrelate? Achievements of the First Funding Period A2 @ MAMI: Commissioning of end-point tagger, upgrade of DAQ system, successful η’ data taking First results on γp η’p cross section Construction of forward PID and trigger detector BESIII: Amplitude analysis of D 0 K S K + K - Theory: Vector form factor of the pion in chiral effective eld theory η-η’ mixing in large-N c chiral perturbation theory E ecve field theories for vector parcles and constraint analysis 5. 5. 5. [GeV 2 /c 4 ] 2 ) 0 S + S m( 0 5 10 [GeV 2 /c 4 ] 2 ) 0 S - S m( 0 5 10 -20 0 20 40 60 ] 2 [GeV/c - e + e m 0 0.1 0.2 0.3 0.4 0.5 0.6 )] 2 /dm [eV/(GeV/c Γ d -1 10 1 10 ] 2 [GeV/c - e + e m 0 0.1 0.2 0.3 0.4 0.5 0.6 2 ω F 1 10 2 10 / ndf 2 χ 5.618 / 15 p0 0.06802 ± 0.9953 p1 0.2365 ± 2.301 ω π 0 e + e - [GeV 2 /c 4 ] 2 ) 0 S + S m( 0 2 4 6 8 [GeV 2 /c 4 ] 2 ) 0 S - S m( 0 2 4 6 8 0 200 400 600 J/ψ ΨFormulate Lorentz-invariant Lagrangian L(V, ˙ V ) with parameters a. Determine Hamiltonian H,V ) by solving for ˙ V . Self-consistent theory. #DoF in H minus #Constraints equals #DoF of particles? Non-physical theory. Retry with other choice for a. Introduce Lagrange multiplier z for unknown ˙ V and primary constraints φ 1 . Some ˙ V not solvable. Yes No Require conservation in time for φ i . Solve for z . Choose a. Introduce secondary (tertiary, . . . ) constraints φ 2 (φ 3 ,...). depends on a ) [GeV] + (D rec m 1.8 2 2.2 2.4 2.6 2.8 Events 0 500 1000 1500 2000 2500 3000 3500 4000 4500 BESIII Work In Progress = 4360 MeV s - D *- D 4010 4190 4210 4220 4230 4245 4260 4360 4390 4420 4310 3810 3900 4090 4420 4470 4530 4575 4600 3.8 3.9 4 4.1 4.2 4.3 4.4 4.5 4.6 10 2 10 3 E cm (GeV/c 2 ) Luminosity (pb -1 ) 1 GeV 2 GeV 3 GeV 4 GeV 0 -+ 1 -- 2 -+ 2 -- 0 ++ 1 +- 1 ++ 2 ++ 1 -+ 0 - π η f 0 (600) ρ ω η‘ f 0 (980) ф a 0 (980) h 1 (1170) b 1 (1235) a 1 (1260) a 1 (1260) f 2 (1270) f 2 (1270) η(1295) π(1300) a 2 (1320) a 2 (1320) f 1 (1285) f 1 (1285) f 0 (1370) π 1 (1400) η(1405) ω(1420) f 1 (1420) f 1 (1420) a 0 (1450) ρ(1450) η(1475) f 0 (1500) f‘ 2 (1525) f‘ 2 (1525) π 1 (1600) η 2 (1645) ω(1650) ф(1680) ρ(1700) ρ(1700) π 2 (1670) π 2 (1670) f 0 (1710) π(1800) π 2 (1880) π 2 (1880) f 2 (2010) f 2 (2010) Y(2170) f 2 (2300) f 2 (2300) f 2 (2340) f 2 (2340) f 2 (1950) f 2 (1950) D 0 1 - D * (2007) 0 0 + D * (2400) 0 1 + D 1 (2420) 0 2 + D * 2 (2460) 0 η c J/ψ χ c0 χ c1 0 -+ 1 -- 2 -+ 2 -- 0 ++ 1 +- 1 ++ 2 ++ 1 -+ h c χ c2 η c (2S) ψ(2S) ψ(3770) X(3820) X(3872) Z c (3900) + χ c2 (2P) Z c (4020) + ψ(4040) ψ(4160) ψ(4415) Y(4260) Y(4360) Y(4660) Z c (4200) + Z c (4430) + 0 - 1 - 0 + 1 + 2 + Z 1 (4050) + Z 2 (4250) + J P J PC K 0 K * (892) K 1 (1270) J P K * 0 (1430) K 1 (1410) K * 2 (1430) K * (1680) 2 - 2 - K 2 (1770) K 2 (1820) ? D sJ (2317) + J PC 2.80 2.85 2.90 2.95 3.00 3.05 3.10 3.15 3.20 c mass [GeV/c 2 ] 0 1000 2000 3000 4000 5000 6000 7000 Entries 2(K + K ) after Selection MC match MC mismatch total

Upload: others

Post on 19-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: M2: Meson Dynamics Title of the Poster · M2: Meson Dynamics Title of the Poster Principal Investigators: N. Berger, M. Fritsch, W. Gradl, S. Scherer Role within the CRC The duality

Title of the PosterM2: Meson Dynamics

Principal Investigators: N. Berger, M. Fritsch, W. Gradl, S. Scherer

Role within the CRC

The duality between a better knowledge of the internal structure and the dynamics of hadrons and its relevance and impact in different fields is the central and connecting goal of the CRC1044. In this project the spectroscopy and dynamic investigations of light and heavy mesons connect the perturbative description of the strong interaction at high energies which describes the interaction in terms of quarks and gluons with the non-perturbative description at the low-energy regime where mesons and baryons are the degrees of freedom.

Physics Program of the Second Funding Period (2016 – 2019)

Effective Field Theory: ● Description of anomalous processes in chiral EFT including vector mesons

Dirac constraint analysis

Investigation of various vector-meson approaches (vector, tensor, massive Yang-Mills formulation) to study VPγ interactions

Development of power-counting scheme (complex-mass scheme)

● Quantum corrections to chiral anomaly

Investigation of more complex processes such as η(’) → π+π-γ and η(’) → π+π-γγ

Light Mesons: ● η, ω and η’ decays with A2 @ MAMI Amplitude analysis η' → 3π0 Study decays ω → ηγ and ω → π0 e+e-

● Light hadron dynamics in charmonium decays Study difference between J/ψ → π+π-π0 and ψ’ → π+π-π0 (ρπ puzzle)

Study effects of ππ rescattering

Develop and test amplitude analysis methods across channels and with various models

Heavy Mesons: ● Global analysis of exotic charmonium states Interrelationship of Y and Z+ states Simultaneous amplitude analysis of the channels Y → J/ψ π+π- and Y → DD*

● Search for exotic charmonium isospin singlets Isospin singlet decaying to J/ψη to the Zc(3900) triplet Isospin singlet decaying to ηcη

● Search for exotic charm states Inclusive analyses of the D and D+ recoil spectra

Big Questions

● What is the interplay of dynamical symmetry breaking, explicit symmetry breaking by the quark masses, and the chiral anomaly? How does it affect the dynamics of light mesons? What role do light meson (rescattering) dynamics play in heavy meson decays?

● What is the nature of the bound states of the strong force? When does the quark-antiquark picture of mesons break down? Are there exotic states like tetraquarks, molecules, hybrids, and glueballs and how do they interrelate?

Achievements of the First Funding Period

A2 @ MAMI: ● Commissioning of end-point tagger, upgrade of DAQ system, successful η’ data taking ● First results on γp → η’p cross section ● Construction of forward PID and trigger detector BESIII: ● Amplitude analysis of D0 → KS K+ K-

Theory: ● Vector form factor of the pion in chiral effective field theory ● η-η’ mixing in large-Nc chiral perturbation theory ● Effective field theories for vector particles and constraint analysis

5.

5.

5.

5.

5.

5.

[GeV2/c4]2)0+ m(0 5 10

[GeV

2 /c4 ]

2 )0-

m(

0

5

10

-20

0

20

40

60

]2 [GeV/c-e+em

0 0.1 0.2 0.3 0.4 0.5 0.6

)]2

/dm

[eV

/(G

eV

/cΓ

d

-110

1

10

-e+e0π →ω

]2 [GeV/c-e+em

0 0.1 0.2 0.3 0.4 0.5 0.6

2 ωF

1

10

210

/ ndf 2χ 5.618 / 15p0 0.06802± 0.9953 p1 0.2365± 2.301

/ ndf 2χ 5.618 / 15p0 0.06802± 0.9953 p1 0.2365± 2.301 ω → π0 e+e-

[GeV2/c4]2)0+ m(0 2 4 6 8

[GeV

2 /c4 ]

2 )0-

m(

0

2

4

6

8

0

200

400

600J/ψ Ψ ’

Formulate Lorentz-invariant LagrangianL(V, V̇ ) with parameters a.

Determine Hamiltonian H(Π, V )by solving for V̇ .

Self-consistenttheory.

#DoF in Hminus

#Constraintsequals #DoF of

particles?

Non-physicaltheory.

Retry with otherchoice for a.

Introduce Lagrange multiplier z forunknown V̇ and primary constraints φ1.

Some V̇ not solvable.

YesNo

Requireconservation intime for φi.Solve for z.

Choose a.Introducesecondary

(tertiary, . . . )constraints φ2

(φ3, . . . ).

depends on a

) [GeV]+ (Drec m1.8 2 2.2 2.4 2.6 2.8

Eve

nts

0

500

1000

1500

2000

2500

3000

3500

4000

4500BESIIIWork In Progress

= 4360 MeVs

-D

*-D

4010

4190

4210

42

20

4230

4245

42

60

4360

43

90

4420

4310

3810

3900

4090

4420

4470

4530

4575

46

00

3.8 3.9 4 4.1 4.2 4.3 4.4 4.5 4.6

102

103

Ecm (GeV/c2)

Lum

inos

ity (p

b-1)

1 GeV

2 GeV

3 GeV

4 GeV

0-+ 1-- 2-+ 2-- 0++ 1+- 1++ 2++ 1-+ 0-π

η

f0(600)

ρ ω

η‘ f0(980)ф

a0(980)

h1(1170) b1(1235)

a1(1260)a1(1260)f2(1270)f2(1270)η(1295) π(1300)a2(1320)a2(1320)

f1(1285)f1(1285)

f0(1370)π1(1400)η(1405) ω(1420) f1(1420)f1(1420)

a0(1450)ρ(1450)

η(1475)f0(1500) f‘2(1525)f‘2(1525)

π1(1600)η2(1645)ω(1650)

ф(1680)ρ(1700)ρ(1700) π2(1670)π2(1670) f0(1710)

π(1800)

π2(1880)π2(1880)

f2(2010)f2(2010)

Y(2170)

f2(2300)f2(2300)

f2(2340)f2(2340)

f2(1950)f2(1950)

D0

1-

D*(2007)0

0+

D*(2400)0

1+

D1(2420)0

2+

D*2(2460)0

ηc

J/ψ

χc0

χc1

0-+ 1-- 2-+ 2-- 0++ 1+- 1++ 2++ 1-+

hc

χc2

ηc(2S)ψ(2S)

ψ(3770)X(3820)

X(3872) Zc(3900)+χc2(2P)

Zc(4020)+ψ(4040)

ψ(4160)

ψ(4415)

Y(4260)

Y(4360)

Y(4660)

Zc(4200)+

Zc(4430)+

0- 1- 0+ 1+ 2+

Z1(4050)+

Z2(4250)+

JP

JPC

K0

K*(892)

K1(1270)

JP

K*0(1430)

K1(1410)K*

2(1430)

K*(1680)

2-

2-

K2(1770)K2(1820)

?

DsJ(2317)+

JPC

2.80 2.85 2.90 2.95 3.00 3.05 3.10 3.15 3.20

c mass [GeV/c2]

0

1000

2000

3000

4000

5000

6000

7000

Entr

ies

2(K + K ) after SelectionMC matchMC mismatchtotal