m04$589h$ wustl/wusm$pioneers$in$neuroscience$...

56

Upload: others

Post on 25-Jun-2020

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$
Page 2: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  1  of  55  

     

WUSM/WUSTL  Pioneers  in  Neuroscience    Objective:       Understand  origins  of  this  relatively  new  discipline  and  gain  

perspectives  for  its  increasing  impact  on  medicine  in  the  future.    Location:     Bernard  Becker  Medical  Library  Archives  and  Rare  Books  (ARB)  -­‐  7th  

Floor;  Center  for  History  Of  Medicine  –  6th  Floor  Bernard  Becker  Medical  Library    

Time:       3:30  –  5:30  pm    Format:                        3:30  –  4:00  pm  

4:00  –  5:15  pm:  Students  present  and  discuss  assigned  readings.    5:15  –  5:30  pm:    All  students  write  and  turn  in  a  short  paragraph  

(gobbet)  on  the  topic.    Readings:   Article  PDFs  for  each  session  are  posted  on  MedPortal.  All  students  

should  glance  at  all  materials  prior  to  each  session.    Participants:      Mr.  Moises  Arriaga,  Ms.  Diane  Aum,  Mr.  Giuseppe  D’Amelio,  Mr.  Chad  

Donahue,  Ms.  Rachel  Gartland,  Mr.  James  Ko,  Mr.  Ramin  Lalezari,  Ms.  Angela  Lin,  Mr.  Brandon  Rogalski,  Ms.  Rose  Tang,  Mr.  Ethan  Tobias,  Mr.  Nai  Yeat  

 Becker  Library  Archives  and  Rare  Books  Staff:  Ms.  Elisabeth  Brander  –  Rare  Book  

Librarian;  Mr.  Stephen  Logston  –  Archivist;  Ms.  Martha  Riley  –  Rare  Books  Cataloger  &  Archivist;  Mr.  Phillip  Skroska  –  Visual  and  Graphic  Archivist  

 Faculty:   Robert  M.  Feibel,  MD  –  Professor  of  Clinical  Ophthalmology  &  Visual  

Sciences; William Landau, MD – Professor Emeritus of Neurology; Joseph L. Price, DPhil - Lecturer Anatomy and Neurobiology, Eugene H. Rubin, MD/PhD – Professor of Psychiatry; Thomas  A.  Woolsey,  MD  –  Professor  of  Experimental  Neurological  Surgery  and  Acting  Director  of  the  Center  for  History  Of  Medicine;  various  other  faculty  as  available.  

_______________    Contact  Ms.  Debra  Knox  Deiermann  362-­‐2725,  [email protected]  for  clarifications,  schedule  issues,  etc.  

Page 3: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  2  of  55  

       Schedule:    Session  Goals  General    What  is  now  termed  “Neuroscience”  has  its  origins  in  many  different  academic  backgrounds  from  distinctive  disciplines  of  medicine,  engineering  and  science.  These  include:  Anatomy,  Histology,  Physiology,  Pathology,  Medicine,  Surgery,  Psychiatry,  and  Radiology  as  well  as  undergraduate  disciplines  of  Biology,  Chemistry,  Engineering,  Psychology,  and  Physics.  Washington  University  was  a  leader  in  integrating  these  different  disciplines,  in  part  because  of  excellence  and  leadership  of  individual  faculty  (several  Nobel  Laureates)  and  in  part  because  of  exceptional  interactions  across  different  disciplines.  This  selective  may  engage  witnesses  to  the  growth  and  integration  of  different  aspects  of  Neuroscience  from  several  departments  including  –  Anatomy  and  Neurobiology,  Neurology,  Neurological  Surgery,  Psychiatry  and  Radiology  –  in  discussions  of  major  advances  in  understanding  the  nervous  system  and  its  disorders.    All   are   free   to   “swap”   summaries   with   fellow   students   to   better   match   your  interests,  schedules,  etc.  We  ask  that  you  let  Ms.  Debra  Knox  Deiermann  know  so  we  can  keep  track  of  who’s  presenting  what.  

Page 4: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  3  of  55  

     References:    -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐.  1995.  In  memoriam  and  memorial  service  –  Eli  Robins,  M.D.:  February  22,  1921-­‐Decemeber  

21,  1994.  Ann  Clin  Psychiat  7:1-­‐10.  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐.  2013.  Charles  E.  Molnar  –  14  March  1935-­‐13  December  1996.  

[http://www.cse.wustl.edu/history/molnar_c/molnar.html]  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐.  2013.  Charles  Molnar.  [http://en.wikipedia.org/wiki/Charles_Molnar]  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐.  2013.  H.  Richard  Tyler,  MD  -­‐  Brigham  and  Women's  Hospital.  

[https://www.doximity.com/pub/h-­‐tyler-­‐md]  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐.  2013.  The  H.  Richard  Tyler  Collection  of  the  American  Academy  of  Neurology.  Library.  

[http://beckerexhibits.wustl.edu/rare/collections/tyler.html]  Bishop  GH.  1944.  The  structural  identity  of  the  pain  spot  in  human  skin.  J  Neurophysiol.,  7:185-­‐98.    Bishop  GH.  1944.  The  peripheral  unit  for  pain.  J  Neurophysiol  7:71-­‐80.  Bishop  GH.  1965.  My  Life  among  the  Axons.  Ann  Rev  Physiol  27:1-­‐18.  Bishop GH, Erlanger J, Gasser HS. 1926. Distortion of action potentials as recorded from the nerve surface.

Am J Physiol 78:592-609. Bishop GH, Erlanger J. 1926. The effects of polarization upon the activity of vertebrate nerve. Am J

Physiol, 78:630-57. Bodian  D.  1973.  George  William  Bartelmez  1885-­‐1967.  Biogr  Mem  Natl  Acad  Sci  pp.  1-­‐26  

[http://www.nasonline.org/publications/biographical-­‐memoirs/memoir-­‐pdfs/bartelmez-­‐george.pdf]  

Bucholz  KK,  Cottler  LK.  2010.  In  memoriam  –  Lee  Nelken  Robins,  PhD.  Alcohol  Clin  Exp  Res  34:197-­‐198.  

Chase  MW,  and  Hunt  CC.  1995.  Herbert  Spencer  Gasser  -­‐  July  5,  1888-­‐May  11,  1963.  Biogr  Mem  Natl  Acad  Sci  67:147-­‐177.  

Clark  WA,  Molnar  CE.  1964.  The  LINC:  a  description  of  the  laboratory  instrument  computer.  Ann  N  Y  Acad  Sci,  115:653-­‐668.  

Cloninger  CR.  2001.  In  memoriam:  Samuel  B.  Guze,  MD  –  18  October  1923-­‐19  July,  2000.  Am  J  Med  Genet  B  Neuropsychiatr  Genet  105:1-­‐3.  

Cohen SB. 1986. Stanley Cohen - Biographical. [(/nobel_organizations/nobelfoundation/publications/lesprix.html)/(NobelLectures/nobel_organizations/nobelfoundation/publications/lectures/index.html)]

Cohen  S.  1960.  Purification  of  a  nerve-­‐growth  promoting  protein  from  the  mouse  salivary  gland  and  its  neuro-­‐cytotoxic  antiserum.  Proc  Natl  Acad  Sci  USA  46:301–311.  

Cohen  S,  Levi-­‐Montalcini  R,  Hamburger  V.  1954.  A  nerve  growth  stimulating  factor  isolated  from  sarcomas  37  and  180.  Proc  Natl  Acad  Sci  USA  40:1014–1018.  

Cowan  WM.  1979.  The  development  of  the  brain.  Scientific  American  241:113-­‐133.  Cowan  WM.  2001.  Viktor  Hamburger  and  Rita  Levi-­‐Montalcini:  the  path  to  the  discovery  of  nerve  

growth  factor.  Ann  Rev  Neurosci  24:551-­‐600.  Cowan  WM  ,  (Stanfield  B).  2004.  William  Maxwell  (Max)  Cowan.  The  History  of  Neuroscience  in  

Autobiogaphy.  Volume  4.  146-­‐208.  Cowan  WM,  Gottlieb  DI,  Hendrickson  AE,  Price  JL,  Woolsey  TA.  1972.  The  autoradiographic  

demonstration  of  axonal  connections  in  the  central  nervous  system.  Brain  Res  37:21-­‐51.  Cowan  WM,  Guillery  RW,  Powell  TPS.  1964.  The  origin  of  the  mammilary  peduncle  and  other  

hypothalamic  connexions  from  the  midbrain.  J  Anat  (Lond)  98:345-363. Cowan  WM,  Powell  TPS.  1954.  An  experimental  study  of  the  relation  between  the  medial  mammillary  

nucleus  and  the  cingulate  cortex.  Proc  R  Soc  Lond  Ser  B  143:114-­‐125.  Cowan  WM,  Powell  TPS.  1963.  Centrifugal  fibres  in  the  avian  visual  system.  Proc  R  Soc  Lond  Ser  B  

158:232-­‐252.  Davis  H.  1970.  Joseph  Erlanger,  January  5,  1874-­‐December  5,  1965.  Biogr  Mem  Natl  Acad  Sci  41:111-­‐

139.  

Page 5: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  4  of  55  

   Galambos  R,  Davis  H.  1943.  The  response  of  single  auditory-­‐nerve  fibers  to  acoustic  stimulation.  J  

Neurophysiol  6:39-­‐57.  Galambos  R.  1998.  Hallowell  Davis,  1896-­‐1992.  Biogr  Mem  Natl  Acad  Sci  pp.  1-­‐23.  

[http://www.nasonline.org/publications/biographical-­‐memoirs/memoir-­‐pdfs/davis-­‐hallowell.pdf]  

Grubb  RL.  1999.  Henry  G.  Schwartz,  M.D.  1909-­‐1998:  An  obituary.  J  Neurosurg  90:599-­‐602.  Grubb  RL.  2005.  Sidney  Goldring,  M.D.,  1923-­‐2004:  An  obituary.  J  Neurosurg  102:577-­‐579.  Grubb  RL.  2011.  A  commitment  to  excellence:  Sidney  Goldring  and  Neuroscience  1974-­‐89.    Chapter  9.  

In:  Neurosurgery  at  Washington  University:  A  Century  of  Excellence.  The  Washington  University  on  behalf  of  its  Department  of  Neurosurgery.  pp.  199-­‐244.  

Grubb  RL.  2011.  Henry  Schwartz  and  the  neurosurgery  residency,  1946-­‐74.    Chapter  6.  In:  Neurosurgery  at  Washington  University:  A  Century  of  Excellence.  The  Washington  University  on  behalf  of  its  Department  of  Neurosurgery.  pp.  141-­‐190.  

Grubb  RL.  2011.  Neurosurgery  at  Washington  University:  A  Century  of  Excellence.  The  Washington  University  on  behalf  of  its  Department  of  Neurosurgery.  442  pp.  

Grubb  RL.  2011.  The  founder  of  neurosurgery  at  Washington  University:  Ernest  Sachs,  1911-­‐46.  Chapter  3.  In:  Neurosurgery  at  Washington  University:  A  Century  of  Excellence.  The  Washington  University  on  behalf  of  its  Department  of  Neurosurgery.  pp.  41-­‐110.  

Guze  SB.  1989.  Biological  psychiatry:  is  there  any  other  kind?  Psychol  Med  19:315-­‐323.  Hamburger  V.  1934.  The  effects  of  wing  bud  extirpation  on  the  development  of  the  central  nervous  

system  in  chick  embryos.  J  Exp  Zool  68:449–494.  Hamburger,  V.  1958.  Regression  versus  peripheral  control  of  differentiation  in  motor  hypoplasia.  Am  

J  Anat,  102:365-­‐409.  Hamburger,  V.  1975.  Cell  death  in  the  development  of  the  lateral  motor  column  of  the  chick  embryo.  J  

Comp  Neurol,  160:535-­‐546.  Hamburger,  V.  (1977).  The  developmental  history  of  the  motor  neuron.  Neurosci  Res  Program  Bull,  15  

Suppl,  iii-­‐37.  Horrax,  G.  1949.  Ernest  Sachs.  J  Neurosurg  6:3-­‐5.  Hudgens  RW,  Murphy  GF.  1995.  Eli  Robins,  MD:  February  22,  1921,  to  December  21,  1994.  Arch  Gen  

Psychiatry  52:1080-­‐1081.  Hunt  CC,  Kuffler  SW.  1951.  Further  study  of  efferent  small  nerve  fibers  to  mammalian  muscle  

spindles:  multiple  spindle  innervation  and  activation  during  contraction.  J  Physiol  113:283-­‐297.  

Hunt  CC,  Kuffler  SW.  1951.  Stretch  receptor  discharges  during  muscle  contraction.  J  Physiol  113:298-­‐315.  

Hunt  CC,  Wilkinson  RS,  Fukami  Y.  1978.  Ionic  basis  of  the  receptor  potential  in  primary  endings  of  mammalian  muscle  spindles.  J  Gen  Physiol302:683-­‐698.    

Hunt  CC.  1955.  Monosynaptic  reflex  response  of  spinal  motoneurons  to  graded  afferent  stimulation.  J  Gen  Physiol  38:813-­‐852.  

Hunt  CC.  1990.  Mammalian  muscle  spindles:  Peripheral  mechanisms.  Physiol  Rev  70:  643-­‐663.  Hunt  CC.  2006.    Carlton  C.  Hunt.  The  History  of  Neuroscience  in  Autobiogaphy.  Volume  5.  pp.  352-­‐380.  Iversen  LL.  2013.  Rita  Levi-­‐Montalcini:  Neuroscientist  par  excellence.  Proc  Natl  Acad  Sci  U  S  A  

110(13):  4862-­‐4863.  Kim  DK,  Molnar  CE,  Pfeiffer  RR.  1973.  A  system  of  nonlinear  differential  equations  modeling  basilar-­‐

membrane  motion.  J  Acoust  Soc  Am.,  54:1517-­‐1529.  Kuffler  SW,  Hunt  CC,  Quilliam  JP.  1951.  Function  of  medullated  small  nerve  fibers  in  mammalian  

ventral  roots:  Effect  muscle  spindle  innervation.  J  Neurophysiol  14:29-­‐54.  Kunkler  V.  1996.  Michel  M.  Ter-­‐Pogossian  (1925-­‐1996).  Focal  Spot.  Vol  27.  

[http://beckerexhibits.wustl.edu/mig/bios/terpogossian.html]  Landau  WM.  1976.  Obituary:  James  L.  O’Leary,  Ph.D.,  M.D.,  (1904-­‐1975).  J  Neurol.  Sci  28:255-­‐57.  Landau  WM.  1985.  George  Holman  Bishop:  June  27,  1889  -­‐  October  11,  1973.  Biogr  Mem  Natl  Acad  

Sci  55:45-­‐66.  Levi-­‐Montalcini  R,  Booker  B.  1960.  Excessive  growth  of  the  sympathetic  ganglia  evoked  by  protein  

Page 6: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  5  of  55  

   isolated  from  mouse  salivary  glands.  Proc  Natl  Acad  Sci  USA  46  :373–384.  

Levi-­‐Montalcini  R,  Cohen  S.  1956.  In  vitro  and  in  vivo  effects  of  a  nerve  growth-­‐stimulating  agent  isolated  from  snake  venom.  Proc  Natl  Acad  Sci  USA  42:571–574.  

Levi-­‐Montalcini,  R.,  &  Hamburger,  V.  1951.  Selective  growth  stimulating  effects  of  mouse  sarcoma  on  the  sensory  and  sympathetic  nervous  system  of  the  chick  embryo.  J  Exp  Zool  116:321-­‐361.  

Levi-­‐Montalcini  R,  Meyer  H,  Hamburger,  V.  1954.  In  vitro  experiments  on  the  effects  of  mouse  sarcomas  180  and  37  on  the  spinal  and  sympathetic  ganglia  of  the  chick  embryo.  Cancer  Res  14:49-­‐57.  

Lorente  de  Nó  R.  1943.  Cerebral  cortex:  architecture,  intracortical  connections,  motor  projections.  Chapter  XV.  In:  JF  Fulton,  Physiology  of  the  Nervous  System.  Oxford:  New  York,  pp.  274-­‐313.  

Marshall  LM,  Magoun  HW.  1990.  The  Horsley-­‐Clarke  stereotaxic  instrument:  The  beginning.  Kopf  Carrier  October  1990,  pp.  1-­‐5.  

Morris  JC,  Landau  WM.  2007.  In  memoriam:  Leonard  Berg,  MD  (1927-­‐2007).  Neurol  69:1206-­‐1207.    O'Leary  J,  Heinbecker  P,  Bishop  GH.  1934  Analysis  of  function  of  a  nerve  to  muscle.  Am  J  Physiol  

110:636-­‐658.  Purves  D.  2001.  Viktor  Hamburger  1900-­‐2001.  Nat  Neurosci  4:777-­‐778.  Robins  E,  Guze  SB.  1970.  Establishment  of  diagnostic  validity  in  psychiatric  illness:  its  application  to  

schizophrenia.  Am  J  Psychiat  126:983-­‐987.  Sabin  FR.  1944.  Stephen  Walter  Ranson  1880-­‐1942.  Biogr  Mem  Natl  Acad  Sci  23:364-­‐397.  Schwartz  HG,  and  O’Leary  JL.  1941.  Section  of  the  spinothalamic  tract  in  the  medulla  with  

observations  on  the  pathway  for  pain.  Surgery  9:183-­‐193.  Ter-­‐Pogossian  M,  Raichle  ME,  Sobel  BE.  1980.  Positron-­‐emission  tomography.  Scientific  American  

243:170-­‐181.  Van  Essen  DC,  Price  JL.  2002.  Obituary:  W.  Maxwell  Cowan  (1931-­‐2002).  Nature  418:600.  Wann  DF,  Price  JL,  Cowan  WM,  Agulnek  MA.  1974.  An  automated  system  for  counting  silver  grains  in  

autoradiographs.  Brain  Res  81:31-­‐58.  Wann  DF,  Woolsey  TA,  Dierker  ML,  Cowan  WM.  1973.  An  on-­‐line  digital  computer  system  for  the  

semi-­‐automatic  analysis  of  Golgi-­‐impregnated  neurons.  IEEE  Trans  Biomed  Eng  BME-­‐20:233-­‐247.  

Woolsey  TA.  2000.  Rafael  Lorente  de  Nó,  1902-­‐1990.  Biogr  Mem  Natl  Acad  Sci.  79:85-­‐105.  Zeliadt  N.  2013.  Rita  Levi-­‐Montalcini:  NGF,  the  prototypical  growth  factor.  Proc  Natl  Acad  Sci  USA  

110:4873-­‐4876.    

Page 7: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  6  of  55  

   

Page 8: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  7  of  55  

     Session  I.     Wednesday  April  9,  2014  -­‐  Physiology  (Ophthalmology,  

Neurology)    

 Focus:    Electrophysiology  of  sensory  neurons.    Summarizers: Mr. Yeat ---------. 2013. H. Richard Tyler, MD - Brigham and Women's Hospital.

[https://www.doximity.com/pub/h-tyler-md] ---------. 2013. The H. Richard Tyler Collection of the American

Academy of Neurology Library. [http://beckerexhibits.wustl.edu/rare/collections/tyler.html]

Mr. Tobias Davis H. 1970. Joseph Erlanger, January 5, 1874-December 5, 1965. Biogr Mem Natl Acad Sci 41:111-139.

Ms. Tang Chase MW, and Hunt CC. 1995. Herbert Spencer Gasser - July 5, 1888-May 11, 1963. Biogr Mem Natl Acad Sci 67:147-177.

Mr. Rogalski Landau WM. 1985. George Holman Bishop: June 27, 1889-October 11, 1973. Biogr Mem Natl Acad Sci 55:45-66.

Ms. Angela Lin Erlanger J, Bishop GH, Gasser HS. 1926. Experimental analysis of the simple action potential wave in nerve by the cathode ray oscillograph. Am. J Physiol 78:537-73.

Mr. Lalezari Bishop GH. 1944a. The peripheral unit for pain. J Neurophysiol 7:71-80. Bishop GH 1944b. The structural identity of the pain spot in human skin. J

Neurophysiol 7:185-98. Mr. Ko Bishop GH. 1965. My Life among the Axons. Annu Rev Physiol 27:1-18.

Page 9: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  8  of  55  

   Other references for voluntary consideration: Bishop GH, Erlanger J, Gasser HS. 1926. Distortion of action potentials as recorded from the

nerve surface. Am J Physiol 78:592-609. Bishop GH, Erlanger J. 1926. The effects of polarization upon the activity of vertebrate nerve.

Am J Physiol 78:630-57. Erlanger J, Bishop GH, Gasser HS. 1926. The action potential waves transmitted between the

sciatic nerve and its spinal roots. Am. J Physiol 78:574-91. O'Leary J, Heinbecker P, Bishop GH. 1934. Analysis of function of a nerve to muscle. Am J

Physiol 110:636-658.

Page 10: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  9  of  55  

     

ARB  Displays      

Session  I  April  9,  2014    

Documents:    The  H.  Richard  Tyler  Collection  of  the  American  Academy  of  Neurology  Library    H.  Richard  Tyler  (b.  1927)  received  his  medical  degree  from  the  Washington  University  School  of  Medicine  in  1951.  He  led  the  Neurology  Division  at  Peter  Bent  Brigham  Hospital  in  Boston  from  1956-­‐1988  and  is  an  internationally  renowned  neurologist  at  Harvard  Medical  School.  Although  neurology  became  a  specialty  late  in  the  19th  century,  its  origins  are  in  early  anatomical  atlases  and  general  medical  works  that  depict  and  describe  the  nervous  system,  or  specifically  the  brain  or  the  spinal  cord.  Of  the  7,000  volumes  in  the  H.  Richard  Tyler  Collection,  the  majority  are  landmarks  in  neurology  and  neuroscience.  Dr.  Tyler’s  donation  ensures  that  future  neurologists  and  medical  historians  will  be  able  to  uncover  and  interpret  the  beginnings  and  development  of  this  significant  field  in  medicine.    Albertus  of  Orlamünde,  Dominican  (fl.  late  13th  C).    Philosophia  pauperum.  Venetiis:  Georgium  de  Arriuabenis,  1496.  The  Philosophia  pauperum,  now  generally  ascribed  to  Albertus  of  Orlamünde,  includes  extracts  from  writings  of  Albertus  Magnus  (1193?-­‐1280).  Works  by  Albertus  Magnus  were  often  digested  by  his  students  and  confrères  for  the  instruction  of  the  less  learned  brethren.  In  earlier  manuscripts  this  “Philosophy  for  the  simple”  (Philosophia  pauperum),  as  the  work  was  sometimes  called,  is  ascribed  only  to  a  “Brother  Albert,  O.P.”  Other  manuscripts  are  more  specific,  mentioning  an  “Albert  of  Orlamünde.”  Scholars  now  believe  that  it  was  this  Albert  (fl.  late  13th  c.),  a  Dominican  teacher  in  Thüringen,  who  compiled  these  digests,  a  short  textbook  of  natural  philosophy  and  psychology  which  was  used  in  schools  throughout  the  Middle  Ages.  In  the  chapter  about  the  soul  (De  anima)  the  author  discusses  the  three  ventricles  of  the  brain  as  it  is  represented  in  the  illustration.    Vesalius,  Andreas  (1514-­‐1564).  Andreae  Vesalii  Bruxellensis,  scholae  medicorum  Patauinae  professoris  De  humani  corporis  fabrica  libri  septem  ...  -­‐  Basileae:  Ex  officina  Joannis  Oporini,  anno  salutis  reparatae  1543.  Mense  Iunio.    Vesalius  alone  made  anatomy  a  living  working  science.  His  Fabrica  came  out  of  five  years  experience  as  public  prosector  at  Padua,  where  he  taught  students  to  discuss  and  inspect  parts  in  situ.  Vesalius  was  the  teacher  of  Gabriele  Fallopio  and  he  became  court  physician  to  Charles  V  in  Madrid.    Malpighi, Marcello (1628-1694), Fracassati, Carlo (ca. 1630-1672). Epistolae anatomicae virorum clarissimorum Marcelli Malpighii et Caroli Fracassati. Amstelodami: apud C. Commelinum, 1669. A collection of letters compiled by Carlo Fracassati, Malpighi’s friend and colleague at the University of Bologna. Four of the letters written by Malpighi and two by Fracassati are treatises about the brain. Detailed copperplate illustrations represent Malpighi’s microscopic investigations. This image depicts the crosscut of the optical nerve in the Xiphia fish.  Willis,  Thomas  (1621-­‐1675).  The  anatomy  of  the  brain,  1681  edition  with  the  original  illustrations  by  Sir  Christopher  Wren.  Tuckhoe,  New  York,  1971    

Page 11: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  10  of  55  

 Willis,  Thomas  (1621-­‐1675).  Opera  Omnia.    Coloniae:  Sumptibus  Gasparis  Storti,  1694.    Willis  practiced  in  Oxford  then  in  London,  where  he  was  known  as  an  outstanding  physician.    In  addition  to  his  practice  he  carried  on  extensive  research  and  published  a  number  of  important  works  on  medicine,  anatomy,  and  pharmacology.    His  Cerebri  anatome  or  Anatomy  of  the  brain  was  considered  the  most  complete  and  accurate  account  of  the  nervous  system  which  had  hitherto  appeared.  Christopher  Wren,  the  illustrator  and  architect,  was  his  student  at  Oxford.    Descartes, René  (1596-1650). Tractatus de homine. Amsterdam: Elsevier, 1677. René  Descartes,  French  philosopher,  mathematician  and  scientist,  first  published  his  De  homine  in  1622.    He  explained  the  mechanism  of  the  eye  in  his  Dioptrica  (1637).  He  was  probably  the  first  to  suggest  that  reflex  reactions  occurred  without  any  conscious  awareness.    Bell,  Charles  (1774-­‐1842).  The  anatomy  of  the  brain  explained  in  a  series  of  engravings.  London:  Longman  and  Rees,  1802.  Charles  Bell  was  trained  in  art  as  well  as  in  medicine,  and  his  twelve  plates  illustrating  the  structure  of  the  brain  are  among  the  most  beautiful  in  neuroanatomy.    Gall,  F.  J.  (1758-­‐1828)  and  Spurzheim,  Johann  Gaspar  (1776-­‐1832).  Anatomie  et  physiologie  du  systéme  nerveux  en  général,  et  du  cerveau  en  particulier,  avec  des  observations  sur  la  possibilitéde  reconnoitre  plusieurs  dispositions  intellectuelles  et  morales  de  l'homme  et  des  animaux,  par  la  configuration  de  leurs  têtes,  par  F.  J.  Gall  et  G.  Spurzheim  ...  -­‐  Paris,  chez  F.  Schoell,  1810-­‐19.      -­‐-­‐Atlas  folio  edition.  -­‐-­‐  v.  4  quarto  edition.  This  work  introduced  the  theory  of  localization  of  cerebral  function,  although  in  a  somewhat  fantastic  form.    This  pioneer  attempt  to  map  out  the  cerebral  cortex  according  to  function  gave  rise  to  the  pseudo-­‐science  of  phrenology.  This  library  has  both  the  quarto  and  folio  text  of  this  first  edition.  Garrison-­‐Morton  1389    Swan,  Joseph  (1791-­‐1874).  A  demonstration  of  the  nerves  of  the  human  body.  London:  Longman,  Rees,  Orme,  Brown  and  Green,  1830.    Swan’s  atlas  of  neuroanatomy  is  one  of  the  most  beautiful  works  ever  published  on  the  subjects  with  drawings  by  E.  West  that  were  engraved  by  William  and  Edward  Finden..  This  is  the  first  folio  edition.    Duchenne,  G.  Benjamin  Amand  (1806-­‐1875)  De  l’électrisation  localisée.  Paris:  Bailliére,  1872.  Duchenne  was  one  of  the  earliest  researchers  working  on  the  electrophysiology  of  muscles  and  first  published  his  findings  in  this  monograph,  in  1855.  

Page 12: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  11  of  55  

 Charcot, Jean-Martin (1825-1893), Oeuvres complètes de J.-M. Charcot. 9 volumes. Paris: Delahaye & Lecrosnier, 1885-. volume. 3 & 9 The greatest of French neurologists, Charcot and his Salpêtrière school brought a new legitimacy to the scientific study of neuroses. t. 3. Leçons sur les maladies du système nerveux, recueillies et publiées par Babinski, Bernard, Féré, Guinon, Marie et Gilles de la Tourette 1890 t.9. Hemorragie et ramollissement du cerveau. Metallo-thérapie et hypnotisme-électrothérapie. 1890. Ramón y Cajal, Santiago (1852-1934). L'anatomie fine de la moelle épinière, mit 8 lithographische Tafeln, 1895 in Atlas der pathologischen Histologie des Nervensystems : herausgegeben von V. Babes [et al.] Redigirt von Dr. V. Babes und P. Blocq. - Berlin : August Hirschwald, 1892-1906 Ramón y Cajal, Santiago (1852-1934). Histologie du système nerveux de l'homme & des vertébrés. Ed. française rev. & mise à jour par l'auteur. Traduite de l'espagnol par L. Azoulay. - Paris: A. Maloine, 1909-1911. Ramón y Cajal, Santiago (1852-1934). Textura del sistema nervioso del hombre y de los vertebrados. Madrid: Imprenta y Librería de Nicolás Moya ..., 1899. – Letter from S. Ramón y Cajal to E.V. Cowdry, Madrid, 23 Febrier 1923. Box 17 Folder 16, E. V. Cowdry Papers, Bernard Becker Medical Library Archives, Washington University School of Medicine. Golgi, Camillo, (1843-1926). Opera omina. Milano: Ulrico Hoepli, 1903. The structure and function of the nerve cells and fibers were clarified through the significant investigations of Camillo Golgi (1843-1926) and Santiago Ramón y Cajal (1852-1934) in the first decade of the twentieth century. Cajal was the teacher of Lorente de Nó who was director of Research for the Central Institute of the deaf in St. Louis. Dandy, Walter Edward (1886-1946) The brain. Chapter 1 In: Lewis Dean’s Practice of Surgery. Hagerstown, MD: W.F. Prior, 1932. Walter Edward Dandy (1886-1946), native of Sedalia, MO, was one of Harvey Cushings’s brilliant pupils and later his personal antagonist, advanced neurosurgery through innovations in surgical technique and diagnostic procedures. Freeman, Walter (1895-1972). Psychosurgery : intelligence, emotion and social behavior following prefrontal lobotomy for mental disorders, by Walter Freeman and James W. Watts. With special psychometric and personality profile studies by Thelma Hunt. - Springfield, IL: Charles C Thomas, 1942. Walter Jackson Freeman II, M.D. was an American physician who specialized in lobotomy. He studied neurology and the University of Pennsylvania Medical School. He earned a PhD in neuropathology. He was a member of the American Psychiatric Association. His partner in psychosurgery was neurosurgeon James Watts (1904-) who performed the actual surgeries.  

Page 13: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  12  of  55  

 Images:    Joseph  Erlanger  with  nerve  potential  graph,  circa  1922  Joseph  Erlanger  was  born  in  San  Francisco,  studied  at  the  University  of  California  and  received  his  medical  education  at  Johns  Hopkins  University  in  1899.  He  was  an  intern  at  the  Johns  Hopkins  University  Hospital  under  William  Osler.  From  1900  to  1906,  he  was  an  Assistant  in  Physiology  at  Johns  Hopkins  under  William  H.  Howell.  He  became  Professor  of  Physiology  at  the  University  of  Wisconsin  Medical  School  in  1906.  In  1910,  he  became  Professor  and  Head  of  the  Department  of  Physiology  at  Washington  University  in  St.  Louis  until  he  retired  in  1946.  In  1944,  he  and  Herbert  S.  Gasser  were  awarded  the  Nobel  Prize  in  Physiology  or  Medicine  “for  …  discoveries  relating  to  the  highly  differentiated  functions  of  nerve  fibres.”  VC027052    Herbert  Gasser  Herbert  Spencer  Gasser  was  born  in  Platteville,  Wisconsin  and  attended  the  University  of  Wisconsin,  receiving  his  bachelors  and  masters  degrees.  It  was  at  this  time  he  first  became  acquainted  with  Erlanger.  After  receiving  a  doctorate  from  Johns  Hopkins  University,  he  became  Professor  of  Pharmacology  in  1921  at  Washington  University.  A  decade  later,  Gasser  was  appointed  Professor  of  Physiology  and  Head  of  the  Medical  Department  at  Cornell  University  in  New  York  City.  From  1935  to  1953,  he  was  Director  of  the  Rockefeller  Institute  for  Medical  Research.  He  was  awarded  the  Nobel  Prize  for  Medicine  in  1944,  along  with  Joseph  Erlanger,  for  their  work  with  action  potentials  in  nerve  fibers.  VC027037    Erlanger  seated  at  oscillograph,  circa  1940  VC027014    Erlanger  and  Gasser’s  home-­‐made  cathode  ray  tube  When  Erlanger  and  Gasser  began  working  on  the  properties  of  nerve  fibers  they  originally  used  a  string  galvanometer  which  proved  to  be  too  slow  to  register  the  nerve  potentials.  They  realized  that  a  relatively  new  instrument,  the  cathode  ray  tube  oscilloscope  invented  by  Karl  Ferdinand  Braun,  could  work.    Unable  to  purchase  one  from  Western  Electric  they  began  to  build  their  own  cathode  ray  tube.  When  they  first  switched  it  on  there  was  an  explosion  –  they  had  forgotten  to  put  in  a  central  controlling  resistor.    By  then,  their  correspondence  with  Western  Electric  paid  off  and  they  were  able  to  have  a  special  CRT  made  for  them.  VC128009    George  H.  Bishop,  circa  1930  George  H.  Bishop  received  his  PhD  from  the  University  of  Wisconsin  and  joined  the  faculty  of  Washington  University  School  of  Medicine  in  1921.  He  held  a  variety  of  appointments,  among  them  Research  Associate  and  Associate  Professor  in  the  Department  of  Physiology  (1921-­‐1930),  Professor  of  Applied  Physiology  in  the  Department  of  Ophthalmology  (1930-­‐1932),  Professor  of  Biophysics  in  the  Neurophysiology  Laboratory  (1932-­‐1947)  and  Professor  of  Neurophysiology  in  the  Department  of  Neuropsychiatry  (1947-­‐1954).  Dr.  Bishop  is  remembered  for  his  collaboration  with  Joseph  Erlanger  and  Herbert  S.  Gasser  in  research  on  the  properties  of  nerve  fibers,  for  which  the  latter  two  received  the  1944  Nobel  Prize  in  Physiology  or  Medicine.  Dr.  Bishop  is  also  well-­‐known  for  his  work  in  the  development  of  electroencephalography  as  a  diagnostic  tool  in  the  understanding  of  epilepsy.  VC034043    

Page 14: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  13  of  55  

 Erlanger  J,  Gasser  H,  (Bishop  G)  The  compound  nature  of  the  action  current  of  nerve  as  disclosed  by  the  cathode  ray  oscillograph,  Reprint.  American  Journal  of  Physiology  v.  70,  no.  3  (November  1924)  Joseph  Erlanger  Papers  (FC001),  Series  7,  Publications,  Box  33,  [Bound  volume]  Reprints,  Erlanger  (II)  1912-­‐1924    Helen  T.  Graham  in  her  lab,  circa  1950  Helen  Treadway  Graham  received  her  PhD  from  the  University  of  Chicago.  She  joined  the  Department  of  Pharmacology  where  she  worked  closely  with  Gasser,  Erlanger  and  Bishop  on  the  early  research  on  nerve  conduction.  VC049087    Peter  Heinbecker  Peter  Heinbecker  was  a  surgical  trainee  under  Evarts  Graham,  the  Head  of  the  Department  of  Surgery.  Graham,  the  husband  of  Helen  Treadway  Graham,  recommended  that  Heinbecker  do  the  research  component  of  his  training  with  George  Bishop.  Heinbecker  and  Bishop  would  make  important  discoveries  concerning  the  C  wave  of  unmyelinated  nerve  fibers.  However,  his  work  with  Bishop  would  also  create  difficulties  with  Erlanger  over  who  had  investigative  primacy  over  the  nerve  research.  VC410HeinbeckerP    James  L.  O’Leary  James  L.  O’Leary  received  his  PhD  in  Anatomy  from  the  University  of  Chicago  in  1928.  He  continued  his  studies  to  earn  an  MD  also  from  the  University  of  Chicago  in  1931.  After  receiving  his  MD,  O’Leary  came  to  Washington  University  School  of  Medicine.  By  the  early  1940s  he  held  joint  appointment  as  Associate  Professor  of  Anatomy  and  of  Neurology,  eventually  becoming  the  Head  of  the  Department  of  Neurology.  During  his  time  with  the  department,  he  extensively  studied  nerve  physiology,  pain  mechanisms,  and  the  clinical  and  electroencephalographic  aspects  of  epilepsy.  VC410OLearyJL    Various  publications  from  the  continued  research  on  nerve  fibers  by  Bishop,  Heinbecker,  and  O’Leary  James  L.  O'Leary  Papers  FC021,  Series  18:  Publications  Box  47  Folder  5:  Reprints,  1932.    George  Bishop  at  home  with  his  wife  and  colleague,  Ethel  Ronzoni.  Ronzoni  received  her  PhD  in  Physiology  from  the  University  of  Wisconsin  in  1923.  She  came  to  Washington  University  in  1923  as  Assistant  Professor  in  Biochemistry.    She  also  ran  the  chemistry  lab  of  the  Department  of  Medicine  and  Barnes  Hospital.  VC034014      George  Bishop  with  the  Head  of  Neurosurgery,  Henry  G.  Schwartz.  VC034036    Cartoon  and  poem  authored  by  George  Bishop  VC034034  

Page 15: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  14  of  55  

   

Page 16: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  15  of  55  

 M04  589H  –  Pioneers  in  Neuroscience  Gobbets  

   

Session  I  April  9,  2014    

Faculty:  Drs.  Feibel,  Landau  &  Woolsey        

What  I  found  most  interesting  was  the  collaboration  and  general  politics  that  took  place  in  working  toward  these  major  discoveries.    The  disparate  backgrounds  of  the  different  scientists  seemed  to  be  integral  in  providing  the  perspectives  necessary  to  accomplish  the  work.    Also,  the  experiments  Bishop  performed  on  himself  are  very  different  from  the  way  that  experiments  are  done/allowed  to  happen  today.        I  continue  to  be  amazed  by  the  insight  and  intellectual  capacity  it  must  have  taken  to  research  in  an  otherwise  mystical  and  unknown  field.  The  readings  for  this  week  showed  how  successful  Drs.  Erlanger,  Gasser,  Bishop,  and  Tyler  all  were  and  how  their  groundbreaking  research,  which  seems  so  basic  to  us  now,  with  limited  resources  and  a  lack  of  background  knowledge.  It  seems  crazy  that  researchers  like  Bishop  did  so  many  experiments  on  themselves.  It  was  also  really  cool  to  have  Dr.  Landau  here  to  speak  with  us  and  give  us  a  personal  take  on  the  people  and  subjects  we’re  learning  about.        The  history  and  progression  of  science  is  fascinating.  Seeing  real  signatures  and  aging  photographs  bring  to  life  the  topics  learned  in  sometimes  mundane  lecture  halls.  After  today,  I  felt  as  though  I  had  spent  two  hours  with  Erlanger,  Gasser,  and  Bishop  themselves.  I  really  enjoyed  hearing  biographies  of  these  revolutionary  scientists  before  reading  their  papers;  I  believe  context  puts  their  discoveries  in  perspectives  I  have  never  experienced.  

Page 17: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  16  of  55  

     With  our  first  session  we  discussed  some  of  the  first  investigators  looking  into  the  electrical  properties  of  the  neuron.  I'm  fascinated  by  the  ways  in  which  they  were  able  to  capture  the  rapid,  non-­‐linear,  and  non-­‐periodic  activity  of  neurons  with  extremely  early  technology.  The  amount  of  careful  engineering  required  to  get  a  good  quality  signal  with  a  home  made  cathode  ray  tube  is  extremely  impressive,  especially  when  they  were  relying  on  passive  components  such  as  a  wheat-­‐stone  bridge  for  signal  stabilization.          Today,  we  learned  about  Drs.  Tyler,  Erlanger,  Gasser  and  Bishop  who  laid  the  groundwork  for  what  would  later  become  the  field  of  neurology.  They  played  especially  pivotal  roles  in  establishing  neuroscience  and  neurology  as  a  field  in  the  United  States,  since  in  the  years  that  they  were  active,  neurology  was  not  yet  an  established  field  in  the  United  States  though  it  was  more  established  in  the  United  Kingdom  and  Europe.  It  was  very  interesting  to  hear  the  personal  anecdotes  supplied  by  Dr.  Landau  on  the  characters  of  Dr.  Erlanger  et  al.  Dr.  Landau’s  stories  added  a  lot  of  color  to  today’s  session,  and  I  look  forward  to  the  coming  sessions.        The  readings  for  this  week’s  Pioneers  in  Neuroscience  were  interesting  because  many  of  the  people  who  were  making  developments  in  the  field  did  not  begin  their  careers  in  biology  or  medicine.  We  read  about  a  few  individuals  who  were  officially  trained  in  electrical  engineering,  and  one  person  who  was  actually  trained  in  literature.  When  thinking  about  the  field  of  neurology  now,  it  seems  strange  that  its  heyday  was  organized  and  run  by  people  without  medical  training.  It  can  catch  one  off  guard  to  learn  that  a  field  that  is  so  specialized  originally  began  with  people  who  had  no  idea  what  they  were  doing,  and  were  even  experimenting  on  themselves.  To  hear  that  Bishop  was  cutting  parts  of  his  skin  out  in  order  to  learn  more  about  sensation  seems  quite  the  opposite  from  the  high  tech  imaging  research  that  is  conducted  today.  The  readings  from  this  week  remind  me  that  it  is  important  to  look  back  and  realize  that  what  we  think  of  as  the  epitome  of  knowledge  and  understanding,  trying  to  understand  what  the  brain  is  made  of,  originally  began  as  raw,  barely  understood  experiments.  

Page 18: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  17  of  55  

     We  discussed  today  about  some  of  the  first  steps  in  research  towards  the  discovery  of  functions  of  the  nervous  system,  in  particular  peripheral  neurons,  and  those  whose  work  was  instrumental  in  this  matter.  What  was  most  striking  was  that  many  of  these  scientists,  while  they  made  great  discoveries  and  seem  almost  mystical  in  the  way  they  are  discussed  now,  had  many  human  aspects,  varying  personalities  but  also  some  flaws.  We  also  discussed  research  that  was  contemporary  at  the  time  and  about  what  they  viewed  as  the  future  of  neuroscience,  in  particular  discussions  about  the  physiology  of  itch  and  the  evolution  and  function  of  various  nerve  fibers  between  vertebrates  and  invertebrates.          Here  at  WashU,  people  know  the  names  of  Nobel  laureates  Erlanger  and  Gasser,  but  we  usually  only  hear  about  their  scientific  work.  Today  we  had  the  chance  to  hear  about  another  side  –  personalities  and  politics  –  from  Dr.  Landau.  Dr.  Landau’s  mentor,  George  Bishop,  made  essential  contributions  to  the  studies  of  the  compound  action  potential,  for  which  his  co-­‐authors  Erlanger  and  Gasser  received  the  Nobel  Prize,  and  Dr.  Landau’s  anecdotes  regarding  these  three  men  were  most  illuminating  concerning  this  situation.  As  students,  most  of  us  have  done  research  using  various  digital  technologies,  and  it  was  interesting  (and  impressive)  to  take  a  closer  look  at  research  accomplished  using  what  now  seem  to  be  quite  rudimentary  techniques,  as  well  as  to  peek  into  the  lives  of  these  three  researchers.        I  am  especially  impressed  with  the  ingenuity  and  foresight  all  of  the  various  pioneers  we  discussed  today.  With  very  limited  equipment  and  neurophysiological  knowledge,  Erlanger,  Gasser  and  Bishop  developed  complex  theories  regarding  the  neuron  itself  and  the  action  potentials  they  produce  with  startling  detail.  Learning  about  Dr.  Bishop  particularly  moved  me.  I  found  it  fascinating  that  he  developed  the  theory  on  pain  fibers  by  experimenting  on  himself.  It’s  incredible  that  someone  would  perform  skin  biopsies  and  inject  himself  with  turpentine  to  create  an  immunological  reaction  all  for  the  sake  of  studying  pain  receptors.  It  seems  to  me  that  scientific  research  during  that  period  was  raw  and  tangible  and  that  kind  of  research  excites  me  a  lot  more  than  the  computer-­‐driven  data  analytics  that  dominates  today.  Call  me  old  school  but  I’m  partial  to  Bishop’s  “Wild  West”  techniques.  

Page 19: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  18  of  55  

       From  the  first  session  we  learned  about  several  WUSM  faculty,  their  lives,  and  their  contributions  to  our  current  understanding  of  neuroscience.  We  discussed  the  work  of  Drs.  Erlanger,  Gasser,  Tyler,  and  Bishop.  My  assigned  reading  was  a  memoir  of  Dr.  Gasser,  and  through  the  memoir  I  was  able  to  gain  an  understanding  and  appreciation  of  both  the  work  Dr.  Gasser  accomplished  and  the  kind  of  person  he  was.  I  also  had  the  opportunity  to  hear  from  my  classmates  their  summaries  of  the  work  of  Dr.  Bishop  and  Erlanger.  Finally,  I  was  able  to  look  at  the  various  books  and  original  publications  of  these  researchers  and  even  the  original  cathode  ray  Drs.  Erlanger  and  Gasser  built,  which  allowed  me  to  better  put  the  work  they  have  done  in  perspective.        It  was  very  interesting  hearing  about  the  interactions  between  research  staff  members  at  Wash  U  when  the  field  of  neurophysiology  was  just  beginning.  In  the  new  and  obscure  field  of  neurophysiology,  the  research  methods  and  approaches  seemed  particularly  creative.  I  was  simultaneously  impressed  and  amused  by  how  Dr.  Bishop  studied  the  structure  of  synapses  by  performing  experiments  and  biopsies  on  his  own  skin.          Drs.  Erlanger,  Gasser  and  Bishop  were  among  the  preeminent  pioneers  in  the  neurosciences  and  contributed  greatly  to  the  field.  They  came  together  at  Washington  University  School  of  Medicine  in  the  early  1920s  and  using  the  newly  invented  cathode  ray  tube  were  able,  with  great  difficulty,  to  make  recordings  of  nerves.  Their  research  revealed  several  different  types  of  nerve  fibers  with  differing  velocities.  What  I  learned  from  this  discussion  was  that  there  was  a  major  power  struggle  among  the  researchers,  especially  since  Dr.  Erlanger,  as  head  of  the  department  of  Physiology,  controlled  the  publications  of  his  other  researchers.  Later,  only  Drs.  Erlanger  and  Gasser  were  awarded  the  Noble  prize,  although  they  shared  the  prize  money  with  Dr.  Bishop  recognizing  his  contribution.  The  researchers  parted  ways,  and  Dr.  Bishop  later  worked  at  Rockefeller  on  the  units  of  pain  sensation.  In  order  to  conduct  his  research,  Dr.  Bishop  used  himself  as  a  subject  and  amazingly  removed  patches  of  his  own  skin  in  the  name  of  science.  I  am  fascinated  by  their  contributions  to  the  medical  science  and  the  interesting  facets  of  their  personal  lives.    

Page 20: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  19  of  55  

     Session  II.     Wednesday  April  16  –  Zoology  &  Biochemistry,  aka  

Neuroembryology    

   Focus: Discovery of nerve growth factor (NGF). Summarizers: Mr. Yeat Purves D. 2001. Viktor Hamburger 1900-2001. Nat Neurosci 4:777-778.

Iversen LL. 2013. Rita Levi-Montalcini: Neuroscientist par excellence. Proc Natl Acad Sci U S A 110: 4862-4863.

Zeliadt N. 2013. Rita Levi-Montalcini: NGF, the prototypical growth factor. Proc Natl Acad Sci U S A 110:4873-4876.

Cohen SB. 1986. Stanley Cohen - Biographical. [(/nobel_organizations/nobelfoundation/publications/lesprix.html)/(NobelLectures/nobel_organizations/nobelfoundation/publications/lectures/index.html)]

Mr. Tobias Hamburger V. 1934. The effects of wing bud extirpation on the development of the central nervous system in chick embryos. J Exp Zool 68:449–494.

Ms. Gartland Hamburger, V. 1975. Cell death in the development of the lateral motor column of the chick embryo. J Comp Neurol, 160, 535-546.

Mr. Donahue Mr. D’Amelio Cohen S, Levi-Montalcini R, Hamburger V. 1954. A nerve growth

stimulating factor isolated from sarcomas 37 and 180. Proc Natl Acad Sci USA 40:1014–1018.

Mr. Arriaga Cowan WM. 2001. Viktor Hamburger and Rita Levi-Montalcini: the path to the discovery of nerve growth factor. Ann Rev Neurosci 24:551-600.

Page 21: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  20  of  55  

  Other references for voluntary consideration: Cohen S. 1960. Purification of a nerve-growth promoting protein from the mouse salivary gland

and its neuro-cytotoxic antiserum. Proc Natl Acad Sci USA 46:301–311.Hamburger, V. 1958. Regression versus peripheral control of differentiation in motor hypoplasia. Am J Anat 102:365-409.

Hamburger, V. (1977). The developmental history of the motor neuron. Neurosci Res Program Bull, 15 Suppl, iii-37.

Levi-Montalcini R, Booker B. 1960. Excessive growth of the sympathetic ganglia evoked by protein isolated from mouse salivary glands. Proc Natl Acad Sci USA 46:373–384.

Levi-Montalcini R, Cohen S. 1956. In vitro and in vivo effects of a nerve growth-stimulating agent isolated from snake venom. Proc Natl Acad Sci USA 42:571–574.

Levi-Montalcini R, Hamburger V. 1951. Selective growth stimulating effects of mouse sarcoma on the sensory and sympathetic nervous system of the chick embryo. J Exp Zool 116: 321-361

Levi-Montalcini R, Meyer H, Hamburger V. 1954. In vitro experiments on the effects of mouse sarcomas 180 and 37 on the spinal and sympathetic ganglia of the chick embryo. Cancer Res 14:49-57.

Page 22: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  21  of  55  

       

Session  II    -­‐  April  16,  2014    

Faculty:  Drs.  Feibel,  Landau  &  Woolsey      

 We  discussed  again,  a  trio  of  collaborators  in  neuroscience  research  at  WashU,  two  of  whom  received  the  Nobel  Prize,  leaving  out  one  who  arguably  made  similar  or  greater  contributions  (apparently  not  an  uncommon  occurrence,  as  a  result  of  academic  politics).  For  their  isolation  of  nerve  growth  factor  (NGF),  Rita  Levi-­‐Montalcini  and  Stanley  Cohen  shared  the  Nobel  Prize  in  1986,  excluding  Viktor  Hamburger,  who  had  started  the  project  with  Levi-­‐Montalcini  and  introduced  her  to  sarcoma  180,  a  mouse  tumor  with  nerve-­‐growth-­‐inducing  properties  that  she  and  Cohen  used  to  study  nerve  growth  in  chick  ganglia.  WashU  appears  to  have  benefited  indirectly  from  the  influence  of  Nazi  Germany  and  Mussolini  in  Italy,  since  Hamburger  stayed  in  the  US  after  the  Nazi  party  revoked  his  instructorship  at  the  University  of  Freiburg  due  to  his  Jewish  heritage,  and  Levi-­‐Montalcini’s  academic  career  in  Italy  was  cut  short  by  Mussolini’s,  similarly  anti-­‐Semitic,  Manifesto  of  Race.        This  session’s  discussion  focused  on  the  lives  and  works  of  Drs.  Viktor  Hamburger,  Rita  Levi-­‐Montalcini,  and  Stanley  Cohen.  Dr.  Hamburger  was  widely  recognized  for  his  contributions  to  embryology  and  developmental  neuroscience.  His  major  accomplishments  involved  work  on  the  normal  cell  death  that  occurred  as  part  of  the  normal  nervous  system  developmental  process  in  chick  embryos.  In  addition,  he  showed  that  neurons  depended  on  their  peripheral  targets  to  thrive  and  grow.  Drs.  Cohen  and  Levi-­‐Montalcini  collaborated  under  the  leadership  of  Dr.  Hamburger  to  isolate  the  NGF  that  Dr.  Levi-­‐Montalcini  had  discovered  under  Dr.  Hamburger’s  supervision.  I  was  very  impressed  with  and  inspired  by  Dr.  Levi-­‐Montalcini’s  dedication  to  research  and  discovery,  going  so  far  as  to  build  an  in-­‐home  laboratory  at  a  time  when  she  wasn’t  allowed  to  pursue  her  career.  Like  many,  I  found  it  unfortunate  that  the  Nobel  Committee  failed  to  appreciate  the  significance  of  Dr.  Hamburger’s  contributions,  which  paved  the  way  to  the  later  discoveries  of  Drs.  Levi-­‐Montalcini  and  Cohen.  This  made  me  contemplate  the  criteria  and  politics  that  are  involved  as  well  as  the  many  controversies  that  surround  the  committee  and  decision  process.  

Page 23: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  22  of  55  

     So  much  of  modern  research  involves  searching  for  genetic  point  mutations  or  specific  isoforms  of  proteins  that  I  would  not  even  know  how  to  approach  experiments  like  Viktor  Hamburger  and  Rita  Levi-­‐Montalcini’s.  The  methods  they  used  seem  so  innovative  and  creative,  especially  since  they  didn’t  have  much  to  base  their  science  or  methods  on.  There  must  only  be  a  couple  people  in  the  world  that  would  think  to  use  snake  venom  to  degrade  the  nucleic  acid  part  of  a  protein  that  can  then  be  applied  to  neural  growth  research.    My  favorite  part  of  this  session  was  actually  learning  about  how  World  War  II  caused  so  many  brilliant  scientists  to  relocate  and  end  up  at  WashU.  I’m  really  glad  that  someone  pays  me  to  do  research  over  the  summer  and  I  won’t  have  to  hide  in  my  attic.          I  thoroughly  enjoyed  learning  about  the  exciting  history  of  the  discovery  of  nerve  growth  factor.  Discussing  a  protein  in  this  context  opens  my  eyes  to  the  stories  of  the  molecules  that  often  get  glossed  over  in  lectures.  I  felt  a  feeling  similar  to  when  you  gaze  upon  a  crowded  city  square  and  humbly  recognize  that  each  person  walking  before  you  has  a  story.  So  too,  do  each  of  the  molecules  that  are  discussed  in  our  lectures.  Each  has  a  riveting  story  of  hard  work  and  triumph  in  their  discoveries.        I  was  struck  by  the  serendipitous  fashion  in  which  some  of  these  discoveries  took  place.  It  really  highlighted  the  importance  not  just  of  strong  theoretical  backing  but  of  a  willingness  to  examine  new  sources  of  information  in  research.  It  would  have  been  very  easy  to  Hamburger  at  multiple  times  to  ignore  contrary  opinions  from  Levi-­‐Montalcini  or  not  to  follow  up  on  a  result  which  did  not  support  his  beliefs.  Instead,  through  a  strong  sense  of  curiosity  and  willingness  to  discover  the  truth,  regardless  of  the  outcome,  this  important  discovery  was  made.    

Page 24: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  23  of  55  

     Today  we  discussed  the  many  years  of  research  that  led  to  the  discovery  of  nerve  growth  factor,  which  was  found  to  be  extremely  important  in  the  development  of  the  peripheral  nervous  system.  What  was  most  interesting  was  that  many  of  the  experiments  seemed  to  be  based  on  seemingly  random  components.  For  example,  mouse  sarcomas  implanted  in  chick  embryos  were  found  to  maintain  the  proliferation  of  neurons  in  that  area.  Also,  snake  venom  was  eventually  found  to  have  a  profound  nerve  growth  effect.  From  this,  NGF  was  eventually  isolated  from  that  venom.  We  also  discussed  the  nature  of  its  discovery  and  how  credit,  with  particular  focus  on  the  Nobel  prize,  was  given  to  researchers  and  how  Dr.  Hamburger,  whose  research  was  instrumental  in  the  discovery  of  NGF,  was  not  awarded  the  Nobel  Prize.  We  finally  discussed  the  implications  this  research  had  for  similar  types  of  research,  such  as  in  angiogenesis,  which  have  great  relevance  to  our  knowledge  of  the  pathogenesis  and  treatment  of  cancer  today.        One  of  the  most  impressive  components  of  this  week’s  readings  is  the  intuition  behind  the  research  that  revealed  Nerve  Growth  Factor  and  nerve  development.  Nowadays  we  focus  so  much  on  the  amount  of  information  made  available  via  the  internet,  computer  models,  and  extremely  complex  organizational  systems  in  experiments  that  we  forget  the  simplicity  and  intuition  that  resulted  in  major  developments  in  years  past.  The  example  where  Cohen,  Hamburger,  and  Levi-­‐Montalcini  saw  sarcomas  resulting  in  nerve  proliferation  and  hyperplasia  and  simply  kept  repeating  the  experiment  with  different  components  of  the  sarcoma  show  how  a  well  designed  and  simple  experiment  can  have  profound  effects.  They  just  kept  purifying  the  sarcomas  down  to  smaller  and  smaller  components  until  they  arrived  at  the  substance  they  were  looking  for.  They  did  not  need  crystallography,  computational  modeling,  etc.  Of  course,  these  are  important  tools;  these  early  experiments  revealed  that  a  factor  existed,  however,  it  shed  little  to  no  light  on  how  the  factors  worked  molecularly.  It  is  important  to  look  back  and  see  the  previous  steps  in  science’s  advancements.  By  better  understanding  how  Nerve  Growth  Factor  was  discovered  and  purified,  we  might  be  better  able  to  understand  our  own  molecular  research.      

Page 25: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  24  of  55  

       The  stories  of  Drs.  Hamburger,  Levi-­‐Montalcini,  and  Cohen,  were  fascinating,  both  because  of  their  significant  contributions  to  the  field  of  neuroscience  leading  to  the  discovery  of  NGF  and  because  of  their  personal  narratives.  I  was  particularly  moved  by  how  both  Drs.  Hamburger  and  Levi-­‐Montalcini  faced  persecution  in  their  native  European  countries  because  of  their  identity  and  were  fortunate  enough  to  get  past  those  experiences.  The  story  of  Dr.  Levi-­‐Montalcini’s  secret  laboratory  in  Mussolini  run  Italy  showed  how  she  risked  her  life  to  pursue  science.  I  also  found  the  story  of  the  serendipitous  discovery  of  NGF  in  rattlesnake  venom  to  be  interesting  and  an  important  reminder  to  us,  as  future  physician-­‐scientists,  not  to  disregard  incidental  findings  and  to  pursue  them,  because  they  might  turn  out  to  be  particularly  important.        Today,  we  learned  about  the  discovery  of  nerve  growth  factor,  an  important  discovery,  not  just  in  the  field  of  neuroscience,  but  also  in  the  field  of  modern  cell  biology,  as  Nerve  Growth  factor  (NGF)  was  the  first  diffusible  growth  factor  to  be  discovered.  My  biggest  takeaway  from  today’s  session  was  the  fact  that  while  scientific  breakthroughs  often  happen  as  the  result  of  serendipity,  the  groundwork  for  such  serendipity  (which  is  often  invisible)  is  laid  over  the  course  of  many  years,  and  sometime,  many  generations  of  researchers.  For  example,  Montalcini  and  Cohen’s  discovery  of  nerve  growth  factors  was  helped  along  by  the  fact  that  they  stumbled  upon  snake  venom  and  mouse  salivary  glands,  but  most  would  agree  that  their  findings  were  built  on  Viktor  Hamburger’s  earlier  work.  Hamburger’s  work  in  turn,  was  possible  only  because  of  the  earlier  work  done  by  Frank  Lillie  on  chick  embryos  (Viktor  Hamburger  used  the  techniques  that  he  learned  at  Lillie’s  lab  for  more  than  50  years).        

Page 26: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  25  of  55  

   Session  III.    Wednesday  April  23  -­‐  Neurosurgery,  Neurology  and  

Psychiatry    

   Focus:    Development  and  transformation  of  Neurological  Surgery,  Neurology  and  

Psychiatry.    Summarizers: Ms. Aum Sabin FR. 1944. Stephen Walter Ranson 1880-1942. Biogr Mem Natl

Acad Sci. 23:364-397. Mr. Donahue Bodian D. 1973. George William Bartelmez 1885-1967. Biogr Mem Natl

Acad Sci. 43: 1-26 Ms. Tang Horrax, G. 1949. Ernest Sachs. J Neurosurg 6:3-5.

Marshall LM, Magoun HW. 1990. The Horsley-Clarke stereotaxic instrument: The beginning. Kopf Carrier. October 1990, pp. 1-5.

Page 27: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  26  of  55  

 Mr. Rogalski Landau WM. 1976. Obituary: James L. O’Leary, Ph.D., M.D., (1904-

1975). J Neurol Sci 28:255-57. Grubb RL. 1999. Henry G. Schwartz, M.D. 1909-1998: An obituary. J

Neurosurg 90:599-602. Grubb RL. 2005. Sidney Goldring, M.D., 1923-2004: An obituary. J

Neurosurg 102:577-579. Morris JC, Landau WM. 2007. In memoriam: Leonard Berg, MD (1927-

2007). Neurol 69:1206-1207. Mr. Yeat -----------. 1995. In memoriam and memorial service – Eli Robins, M.D.:

February 22, 1921-Decemeber 21, 1994. Ann Clin Psychiat 7:1-10. Hudgens RW, Murphy GF. 1995. Eli Robins, MD: February 22, 1921, to

December 21, 1994. Arch Gen Psychiatry 52:1080-1081. Mr. Ko Bucholz KK, Cottler LK. 2010. In memoriam – Lee Nelken Robins,

PhD. Alcohol Clin Exp Res 34:197-198. Cloninger CR. 2001. In memoriam: Samuel B. Guze, MD – 18 October

1923 - 19 July, 2000. Am J Med Genet (Neuropsychiat Genet) 105:1-3.

Ms. Gartland Robins E, Guze SB. 1970. Establishment of diagnostic validity in psychiatric illness: its application to schizophrenia. Am J Psychiat 126: 983-987.

Mr. Donahue Guze SB. 1989. Biological psychiatry: is there any other kind? Psychol Med 19:315-323.

Other references for voluntary consideration: Grubb RL. 2011. A commitment to excellence: Sidney Goldring and Neuroscience 1974-89.

Chapter 9. In: Neurosurgery at Washington University: A Century of Excellence. The Washington University on behalf of its Department of Neurosurgery. pp. 199-244.

Grubb RL. 2011. Neurosurgery at Washington University: A Century of Excellence. The Washington University on behalf of its Department of Neurosurgery. 442 pp.

Grubb RL. 2011. The founder of neurosurgery at Washington University: Ernest Sachs, 1911-46. Chapter 3. In: Neurosurgery at Washington University: A Century of Excellence. The Washington University on behalf of its Department of Neurosurgery. pp. 41-110.

Grubb RL. 2011. Henry Schwartz and the neurosurgery residency, 1946-74. Chapter 6. In: Neurosurgery at Washington University: A Century of Excellence. The Washington University on behalf of its Department of Neurosurgery. pp. 141-190.

Page 28: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  27  of  55  

     

Session  III    -­‐  April  23,  2014    

Faculty:  Drs.  Feibel,  Landau,  Rubin  &  Woolsey      

 I  have  noticed  that  many  of  the  scientists  we’ve  discussed  in  this  class  have  started  out  as  zoologists,  which  is  intriguing  to  me.  With  the  residency  match  system  and  strictly  structured  career  path  for  us  today,  it  can  seem  like  we  get  locked  into  specialties  –  it  is  good  to  remember  that  we  can  take  very  different  paths  later  in  life.      For  those  who  definitely  know  what  they  want  to  go  into,  however,  the  accelerated  wartime  premedical  programs  that  we’ve  heard  about  in  various  peoples’  training  sounds  really  cool.  Not  that  war  is  cool,  but  accelerated  programs  are  a  cool  idea  for  medical  training  during  times  in  which  medical  professionals  are  in  high-­‐demand.  I  would  totally  sign  up  for  that.    I  also  liked  the  shout-­‐out  to  my  alma  mater,  the  University  of  Pittsburgh,  when  we  talked  about  Dr.  Goldring.  It’s  good  to  hear  Pitt’s  name  among  the  super  famous  greats  like  WashU,  Chicago,  and  Hopkins.  Although  talking  about  all  these  people  who  got  their  M.D.  at  age  21  makes  me  feel  old…        This  week  we  discussed  many  of  Washington  University’s  early  neurologists,  neurosurgeons  and  psychiatrists.  One  of  the  early  facts  that  struck  me  was  how  many  of  the  physicians  we  studied  trained  in  Dr.  Bishop’s  physiology  lab.  When  we  discussed  Bishop  in  the  first  week,  it  was  apparent  that  he  made  many  important  discoveries  as  a  scientist  but  I  would  argue  that  his  most  important  contribution  to  society  might  have  been  the  training  of  future  clinician-­‐scientists.  Continuing  with  this  theme,  I  thought  it  was  impressive  just  how  committed  many  of  these  doctors  were  to  the  training  and  mentoring  of  future  physicians.  Switching  gears,  it  was  noted  that  many  of  these  pioneers  were  recruited  into  the  military  during  WWII  and  I  think  it  would  be  interesting  to  see  how  much  of  an  impact  this  event  made  on  both  their  individual  careers  but  also  on  the  fields  of  neurosurgery  and  neurology  themselves.  I  know  that  many  of  the  great  advancements  in  medicine  have  come  from  war  and  I  would  imagine  that  this  paradigm  holds  true  for  WWII  and  the  neurosciences.    

Page 29: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  28  of  55  

     I  found  the  stories  about  the  individual  researchers’  personal  idiosyncracies  particularly  compelling.  For  the  example,  I  found  interesting  the  story  of  Dr.  O’Leary  kicking  the  exposed  film  canisters  down  the  corridor  or  the  story  of  Dr.  Sachs  and  the  way  he  chided  a  student  for  not  knowing  to  use  a  flashlight  to  diagnose  an  enlarged  scrotum.  I  also  found  their  personal  histories  particularly  fascinating.  For  example,  it  was  impressive  that  Dr.  Schwartz  volunteered  to  serve  in  WW  II  after  visiting  Germany  and  seeing  what  was  going  on  there.  It  was  also  interesting  how  Dr.  Berg  became  very  involved  in  medical  research  after  leaving  private  practice.  This  is  definitely  not  a  normal  career  move  but  it  shows  what  an  incredible  clinician  and  leader  in  Alzheimer’s  research  he  was.        Medicine  and  medical  research  now  is  firmly  interdisciplinary,  and  it’s  hard  for  me  to  imagine  a  time  when  anatomy  and  physiology  were  studied  strictly  separately,  so  it’s  interesting  to  hear  about  neuroscientists  who  worked  at  the  start  of  this  interdisciplinary  era,  when  experimental  neurosurgical  procedures  were  intertwined  with  research.  Since  we  just  started  learning  about  the  somatosensory  system  in  lecture,  reading  about  Schwartz’s  medullary  tractotomy  as  treatment  for  intractable  pain  was  particularly  interesting  (even  though  I  didn’t  get  to  share  my  excitement  this  week).  I  really  liked  hearing  about  which  of  these  notable  neuroscientists  were  Dr.  Landau’s  friends  and  classmates  –  I  wonder  which  of  my  former  or  present  classmates  will  end  up  as  prolific  scientists!  

Page 30: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  29  of  55  

     Today’s  session  focused  on  prominent  figures  in  the  development  of  neurosurgery,  neurology,  and  psychiatry.  I  had  the  opportunity  to  learn  about  the  contributions  of  various  WUSM  faculties  to  these  fields  of  neuroscience.  I  noticed  that  many  of  these  faculty  considered  one  of  their  greatest  accomplishments  the  training  of  residents  and  students  under  them,  many  of  whom  went  on  to  serve  as  leaders  in  the  field.  I  enjoyed  hearing  about  Dr.  Goldring’s  collaboration  with  Dr.  Bishop  and  his  influence  on  him,  which  highlights  the  interdisciplinary  nature  of  neuroscience.  Furthermore,  regarding  the  field  of  psychiatry,  I  was  surprised  to  learn  that  WashU  was  one  of  the  few  academic  centers  that  was  not  dominated  by  psychoanalysis.  I  admire  Dr.  Robin's  significant  contributions  and  influences  on  direction  of  psychiatric  research  and  diagnostic  criteria.  Finally,  I  particularly  enjoyed  Dr.  Landau’s  anecdotes,  recollections,  and  personal  memories  regarding  Drs.  Schwartz,  Goldring,  O’Leary,  Berg,  and  Sachs.        While  the  theme  of  today’s  lecture  focused  on  neurosurgery,  neurology,  and  psychiatry,  it  also  focused  on  those  who  would  eventually  start  and  develop  neuroscience  related  fields  at  Washington  University.  Much  of  the  session  focused  on  researchers  who  pioneered  evidence–based  methods  in  the  study  of  psychiatric  disorders,  neuroscience,  and  neurosurgery  which  had  not  been  studied  well.  This  was  especially  important  in  the  field  of  psychiatry  in  a  time  when  the  philosophy  of  psychoanalysis  pervaded  the  field.  Another  main  point  of  today’s  session  was  the  importance  of  mentorship  in  the  field  of  research.  Many  of  the  people  discussed  today  took  a  particular  interest  in  teaching  and  would  be  mentors  for  many  of  the  prominent  researchers  and  clinicians  in  the  field  today.  Today’s  discussion  revealed  the  importance  of  the  people  in  the  process  of  research  and  how  the  movement  of  researchers  could  greatly  influence  the  productivity  of  a  department.      

Page 31: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  30  of  55  

     I  was  interested  in  the  intersection  between  basic  science  and  neuroimaging  with  the  somewhat  more  qualitative  field  of  psychiatry.  My  primary  background  has  been  in  neural  signal  processing  and  imaging  as  an  approach  to  ontological  study,  generally  not  covering  the  more  large-­‐scale  studies  of  cognition  and  neural  function.  Combining  the  basic  science  and  philosophical  approaches  seems  to  be  an  interesting  method  of  gaining  more  knowledge  about  cognition.        In  our  discussions,  I  find  the  area  of  university/academic  politics  very  interesting,  as  well  as  the  circuitous  routes  that  academics  take  through  their  careers  to  various  universities.    The  development  of  evidence-­‐based  psychiatry  is  especially  interesting  in  how  it  was  able  to  combat  the  faith-­‐based  beliefs  in  mental  illness.        For  today’s  session,  we  learned  about  the  development  of  neurosurgery,  neurology  and  psychiatry.  It  was  interesting  to  see  how  psychiatry  evolved  from  being  a  domain  completely  separate  from  neurology  and  neurosurgery  (psychiatry  was  dominated  by  psychoanalysis;  neurology  and  neurosurgery  had  nothing  to  do  with  psychoanalysis)  into  a  field  that  was  highly  informed  by  findings  in  neurology  and  neurosurgery.  It  was  also  eye-­‐opening  to  learn  about  how  different  the  training  process  was  for  physicians  back  in  the  day,  and  a  little  bit  upsetting  to  learn  that  almost  everyone  we  read  about  today  graduated  from  medical  school  at  or  before  the  age  of  21!  Finally,  I  found  to  be  of  historical  interest,  the  intricacies  of  how  faculty  positions  were  structured  and  funded,  and  how  faculty  funded  their  positions  back  when  institutional  funding  for  faculty  positions  was  scarce.      I  enjoyed  learning  about  Eli  Robins’  work  in  evidence-­‐based  evaluation  of  psychiatric  disorders  such  as  suicide  and  depression.  It  was  interesting  hearing  about  this  pivotal  change  in  psychiatry.  I  also  appreciated  Dr.  Lindau's  thoughts  and  anecdotes  on  his  colleagues.  I  also  enjoyed  reading  about  George  Bartelmez's  transitional  studies  from  zoology  to  neurohistology  that  were  all  based  on  his  versatile  expertise  with  the  light  microscope.  

Page 32: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  31  of  55  

       This  week’s  readings  were  extremely  interesting  to  me  because  of  my  interest  in  pursuing  a  career  in  psychiatry.  Incidentally,  one  of  the  readings  from  this  week’s  selections  addresses  a  question  that  was  brought  up  to  me  when  I  was  applying  to  medical  school.  I  studied  psychology  in  New  York  City  as  an  undergraduate.  Studying  psychology  gave  me  the  vision  of  my  potential  psychiatry  practice  being  a  perfect  blend  of  “doctoring,”  by  prescribing  medicine,  and  psychotherapy.  Additionally,  New  York  is  one  of  the  last  havens  for  Psychoanalytic  thought,  which  had  a  large  impact  on  my  experiences  with  the  field.  Therefore,  when  applying  to  medical  school,  I  was  warned  about  Washington  University,  being  told  that  it  focused  too  much  on  the  biological  and  biochemical  aspects  of  psychiatric  illnesses,  and  ignored  the  psychological  components  of  mental  illness.  It  is  quite  surprising  that  Guze  wrote  about  this  topic  in  this  1989,  yet  the  exact  same  critique  of  the  school  still  exists  15  years  later.      Indeed,  it  is  actually  quite  confusing  that  this  exists.  During  my  undergraduate  career,  every  single  psychology  class  that  I  took  made  sure  to  emphasize  the  medical  model  of  classification,  research,  and  treatment  of  mental  illnesses.  It  is  confusing  that  individuals  could  champion  the  developments  of  the  faculty  of  Wash  U,  including  the  diagnostic  system;  yet  condemn  the  school  for  focusing  too  much  on  science  and  biology.  Especially  while  much  of  the  field  of  psychology  moves  closer  to  the  medical  model.  It  seems  that  even  more  understanding  of  the  brain  is  required.  

Page 33: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  32  of  55  

   

Page 34: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  33  of  55  

 Session  IV.    Wednesday  April  30  -­‐Radiology,  CID*,  and  IBC†    

*Central  Institute  for  the  Deaf  -­‐  now  in  the  Department  of  Otorhinolaryngology    †Institute  for  Biomedical  Computing  –  now  in  the  School  of  Engineering    

   Focus:    Advancing  technology  and  analysis  of  the  structure  and  function  of  the  nervous  

system.      [Rollovers  from  4/23/2013]   Ms. Lin Schwartz HG, and O’Leary JL. 1941. Section of the spinothalamic tract

in the medulla with observations on the pathway for pain. Surgery 9:183-193.

Ms. Gartland Robins E, Guze SB. 1970. Establishment of diagnostic validity in psychiatric illness: its application to schizophrenia. Am J Psychiat 126: 983-987.

Mr. Donahue Guze SB. 1989. Biological psychiatry: is there any other kind? Psychol Med 19:315-323.

Summarizers:   Mr. Lalezari Woolsey TA. 2000. Rafael Lorente de Nó, 1902-1990. Biogr Mem Natl

Acad Sci. 79:85-105. Mr. Tobias Galambos R. 1998. Hallowell Davis, 1896-1992. Biogr Mem Natl Acad

Sci. pp. 1-23. Ms. Tang Galambos R, Davis H. 1943. The response of single auditory-nerve

fibers to acoustic stimulation. J Neurophysiol 6:39-57.

Page 35: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  34  of  55  

 Mr. Rogalski -----------. 2002. Charles E. Molnar – 14 March 1935 – 13 December

1996. [http://www.cse.wustl.edu/history/molnar_c/molnar.html] -----------. 2013. Charles Molnar.

[http://en.wikipedia.org/wiki/Charles_Molnar] Mr. D’Amelio Clark WA, Molnar CE. 1964. The LINC: a description of the laboratory

instrument computer. Ann N Y Acad Sci 115:653-668. Ms. Aum Kunkler V. 1996. Michel M. Ter-Pogossian (1925-1996). Focal Spot.

Vol 27. [http://beckerexhibits.wustl.edu/mig/bios/terpogossian.html]

Mr. Arriaga Ter-Pogossian M, Raichle ME, Sobel BE. 1980. Positron-emission tomography. Scientific American 243:170-181.

Other references for voluntary consideration: Kim DK, Molnar CE, Pfeiffer RR. 1973. A system of nonlinear differential equations modeling

basilar-membrane motion. J Acoust Soc Am 54:1517-1529. Lorente de Nó R. 1943. Cerebral cortex: architecture, intracortical connections, motor

projections. Chapter XV. In: JF Fulton, Physiology of the Nervous System. Oxford: New York, pp. 274-313.

Page 36: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  35  of  55  

     

Session  IV    -­‐  April  30,  2014    

Faculty:  Drs.  Price  &  Woolsey      

 Now  that  biological  bases  for  psychiatric  disorders  are  generally  well-­‐accepted,  it’s  hard  to  imagine  a  time  when  someone  would  have  told  Dr.  Guze  that  the  psychiatry  residency  at  WashU  was  too  focused  on  biology.  I  liked  Guze’s  comparison  of  psychiatric  disorders  to  cardiovascular  conditions  –  something  with  a  biological  basis  that  can  be  environmentally  triggered.  Deep-­‐brain  stimulation  for  treatment  of  depression  is  something  I  heard  about  in  undergrad,  so  it  was  interesting  to  hear  Dr.  Price  talk  about  that  (and  the  research  that  led  to  its  implementation).  Conversely,  I  had  never  heard  of  audioanalgesia,  probably  precisely  because  Davis’s  research  showing  that  it  could  lead  to  permanent  hearing  loss  led  to  its  disuse,  so  that  was  interesting  for  the  opposite  reason  –  usually  we  don’t  talk  about  treatments  that  didn’t  work  out.  

My  favorite  one-­‐liner  from  this  session:  “Computers  don’t  save  time,  they  merely  redistribute  it”  from  Dr.  Molnar.      In  the  first  part  of  today’s  discussion,  I  thought  the  amount  of  personal  information  and  detail  in  Angela’s  article  was  unexpected  –  I  don’t  see  that  happening  in  modern-­‐day  papers  about  the  spinothalamic  tract.  It  is  incredible  that  the  doctors  were  able  to  create  pain-­‐free  life  without  a  full  knowledge  of  the  pain  and  physiological  pathways.  Although  the  Robins  and  Guze  article  that  I  reviewed  was  specifically  about  schizophrenia,  it  was  great  to  see  the  psychiatric  application  work  of  WashU  being  applied  to  studies  done  throughout  the  world.    People  don’t  think  about  everyday  technology  like  Internet  and  computers  being  developed  from  medical/scientific  laboratories.  I  never  knew  contributions  from  WUSM  scientists  would  have  had  such  influence  over  everyday  life,  not  just  medical  issues.  I  also  thought  it  was  funny  how  difficult  it  was  for  us  to  understand  the  technical  descriptions  of  the  LINC  –  it  used  such  old  technology  and  parts  that  its  hard  for  us,  on  our  MacBooks  and  touch  screens,  to  conceptualize.  

Page 37: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  36  of  55  

     Today  we  finished  our  discussion  of  the  diagnosis  and  treatment  of  psychiatric  disorders  and  neurological  disorders  with  psychiatry,  neurology,  and  neurosurgery.  What  was  most  interesting  was  realizing  that  the  predominant  approach  to  psychiatry  at  the  time  did  not  give  much  thought  to  the  biological  basis  of  neurological/psychiatric  disorders.  It  was  interesting  to  see  how  research  in  this  realm  was  slowly  able  to  change  the  minds  of  researchers  at  other  universities  who  originally  gave  little  heed  to  biological  psychiatry.  

The  rest  of  today’s  readings  focused  on  the  development  of  instruments  that  improved  research  techniques  in  the  advancement  of  neuroscience.  One  interesting  discovery  was  how  they  found  that  the  cochlea  was  an  active  process  and  not  a  passive  process  as  was  originally  thought.  We  also  talked  about  the  initial  application  of  computers  to  research  that  was  limited  in  its  initial  ability  and  started  off  as  not  being  very  user  friendly.  Increases  in  processing  powers  of  computers  would  eventually  allow  the  development  of  machines  such  as  the  PET  scan,  greatly  improving  the  ability  of  researchers  to  visualize  the  inner  body.  

 

 I found Dr. Schwartz’s idea to attempt a lesion of the spinothalamic tract in the medulla to cure intractable pain interesting and brave. The surgery showed that afferent pain fibers run in the spinothalamic tract and helped to elucidate the organization of the pathway. I found Dr. Guze’s work particularly fascinating and surprising especially the fact that as late as the 1980s psychiatry was not universally considered to have a biological basis. I think it was wise of him to emphasize biology in the field of psychiatry and agree that biological therapy of psychiatric illness and psychotherapy can complement each other and coexist. I was also interested in the short-lived rise and fall of audio analgesia. I had never heard of the procedure and was surprised that it could be done. I recognize why Dr. Hallowell Davis would be concerned that it could cause deafness in patients and I agree with him that its use should have been discontinued but I would really like to learn more how it works. Overall, I found today’s session fascinating and enjoyed learning about how these various personalities played major roles in developing the technologies we take for granted today: the lab computer, EEG and PET.        

Page 38: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  37  of  55  

     Today’s  session  was  about  advancing  technology  and  analysis  of  the  structure  and  function  of  the  nervous  system.  I  enjoyed  hearing  stories  about  the  colorful  characters  who  were  responsible  for  the  technological  advancements  that  drove  biomedical  research  in  the  past  half  century.  It  was  also  interesting  to  learn  about  when  and  how  the  developments  that  brought  computers  into  common  usage  happened.  Learning  about  the  state  of  technology  when  many  of  the  most  fundamental  discoveries  of  neuroscience  happened  also  made  me  appreciate  the  constraints  that  researchers  of  that  time  were  operating  under,  as  well  as  the  ingenuity  of  researchers  in  working  around  the  technological  limitations  of  their  time.        Today’s  session  focused  on  the  various  faculty  members  who  engaged  in  pioneering  work  in  the  structure  and  function  of  the  nervous  system  as  well  as  technological  advances  and  neuroimaging.  I  had  the  opportunity  to  read  an  article  by  Drs.  Galambos  and  Davis  describing  the  behavior  of  single  auditory  nerves  in  response  to  auditory  stimulation.  Impressively,  this  experiment  was  also  the  first  evidence  of  single  neuron  recordings  from  the  CNS.  Dr.  Davis,  along  with  Dr.  Lorente  de  Nó,  were  on  the  forefront  of  research  on  the  auditory  system  and  worked  at  the  CID  here  in  St.  Louis.  Furthermore,  I  learned  about  Dr.  Molnar’s  work  in  developing  the  LINC,  which  was  the  first  microcomputer  and  the  forerunner  to  the  personal  computer.  What  I  found  remarkable  during  today’s  session  was  how  so  many  of  the  common  and  integral  technologies  we  use  today  in  the  medical  field,  such  as  the  PET  scan,  were  pioneered  right  here  at  this  institution.        Today’s  session  was  very  exciting  in  that  it  weaved  in  superbly  with  the  information  that  we  are  currently  learning  in  our  neural  sciences  course.  I  had  just  been  studying  the  vestibulo-­‐occular  pathway  last  night,  and  then  read  the  biography  of  the  man  who  spent  much  of  his  life  describing  it.  This  course  in  general  has  really  been  expanding  the  facets  of  science  in  my  learning.  I  especially  liked  today’s  discussion  about  the  first  personal  computer.  A  device  that  I  knowingly  take  for  granted  had  such  a  rich  and  vibrant  history.  

Page 39: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  38  of  55  

     It  was  very  nice  how  the  spinothalamic  transection  operations  markedly  reduced  pain  from  lower  extremities  as  intended.  However,  it  is  unfortunate  that  both  patients  died  shortly  after  their  operations  due  to  their  primary  illnesses.  I  was  very  interested  in  the  paper  by  Guze,  head  of  the  Psychiatry  Dept.  at  Wash  U  and  his  view  on  the  biological  component  of  psychiatry.  I  agreed  with  him  on  many  points  such  as  how  brain  functions  reflect  the  results  of  biological  evolution  and  selection  and  Psychopathology  is  the  manifestation  of  effects  on  biological  processes.  There  is  indeed  a  very  strong  and  innate  derivation  of  brain  function  from  the  genome  and  interactions  with  environment.  It  was  nice  hearing  about  Rafael  Lorente  de  Nó  who  seems  like  a  very  vivacious  scientist.  I  was  impressed  by  the  extensive  and  also  comprehensive  work  he  did  on  nerve  physiology  as  well  as  neurophysiology  ranging  from  the  cerebral  cortex  to  synapses.      It  was  also  great  to  hear  about  the  major  figures  behind  the  technical  components  that  are  so  helpful  and  even  necessary  to  biological  research.  Molnar's  work  on  personal  computers  and  circuit  design  made  dramatic  changes  to  research  since  biological  researchers  now  had  efficient  and  effective  computer  tools.  It  was  also  nice  hearing  about  the  development  of  the  PET  scan  led  by  Ter-­‐Pogossian.  It  was  interesting  hearing  about  the  mechanism  by  which  it  works  from  isotope  tagged  molecules  to  looking  at  the  densities  of  gamma  ray  emitting  molecules  to  looking  at  blood  flow  and  metabolism  in  the  heart.  It  was  also  nice  hearing  Dr.  Price's  input  on  the  limitations  of  PET  scans  in  the  brain  as  they  depend  on  the  relatively  slow  clearance  of  Glucose  uptake.      Before  I  get  into  the  meat  of  today’s  topics,  I  would  like  to  comment  on  a  residual  topic  from  last  time.  It  was  very  interesting  to  see  the  discussions  on  the  physiological  basis  of  psychiatric  disease  through  Dr.  Guze’s  work.  I  found  it  incredible  that  as  recent  as  1989,  people  argued  against  the  validity  of  a  biological  basis  to  psychiatric  disease.  This  seems  like  a  cornerstone  of  modern  psychiatric  medicine  and  to  think  that  20  years  ago  it  was  still  an  idea  up  for  debate  speaks  to  the  explosive  growth  of  the  field  in  part  due  to  new  technologies  which  leads  me  to  today.  I  believe  that  today’s  discussion  of  the  pioneers  really  emphasizes  medicine’s  growing  interconnection  with  and  dependence  on  technology.  Molnar  and  Ter-­‐Pogossian  revolutionized  medicine  with  their  discoveries  of  the  LINC  and  PET  scanner  respectively.  It  is  hard  to  imagine  modern  research  succeeding  without  the  personal  computer  and  a  whole  field  of  cancer  imaging  resulted  from  the  PET  scanner.  I  think  that  the  marriage  of  medicine  and  technology  will  not  only  stay  the  course  but  will  flourish  even  more  in  the  coming  years.    

Page 40: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  39  of  55  

     Examining  the  technologically  that  was  originally  used  in  neuroscience  and  comparing  it  to  modern  day  technology  is  quite  amazing.  It  seems  that  the  early  days  of  neuroscience  were  limited  by  the  lack  of  powerful,  fast,  and  sizable  computers  and  other  instruments.  Additionally,  clearer  and  more  accurate  imaging  was  continually  a  desire.  The  LINC  computer  and  PET  imaging  techniques  were  some  of  the  early  ancestors  of  our  modern  technology  and  solved  some  of  these  problems.  However,  it  is  extremely  interesting  to  see  how,  as  technology  has  progressed,  allowing  us  a  better  picture  of  what  is  going  on  in  the  nervous  system,  we  still  require  greater  resolution  in  our  imaging  and  stronger,  faster  computers.  Additionally,  although  we  have  discovered  quite  a  bit  since  the  early  days  of  neuroscience,  it  is  mind-­‐blowing  how  much  is  still  unclear,  and  how  much  we  still  have  no  idea  about.  Even  though  we  have  technology  that  was  probably  not  imaginable  to  some  of  the  people  we  have  talked  about,  we  are  still  extremely  far  from  understanding  much.        As  an  engineer,  I  always  find  the  juxtaposition  of  engineering  and  medicine  fascinating.  It's  interesting  how  concepts  used  for  other  purposes  (radar,  etc.)  can  be  applied  to  different  fields.  I  enjoyed  the  discussions  about  the  development  of  the  LINC,  as  I  wasn't  aware  of  its  background.  The  initial  discussions  about  the  biological  basis  of  psychiatry  surprised  me  in  how  long  it  took  the  medical  community  to  accept  what  is  now  a  rather  obvious  idea.        I  was  most  interested  in  the  work  by  Galambos  and  Davis  on  the  response  of  single  auditory  neurons.  The  accurate  response  of  each  neuron  to  a  preferred  frequency  was  instrumental  is  understanding  auditory  encoding  and  the  future  development  of  cochlear  implants.  This  preference  is  especially  interesting  considering  the  origins  of  cochlear  implants  as  single  electrode  stimulators  which  according  to  even  the  modern  canon  of  tonotopic  response  of  cochlear  ganglion  cells  should  never  have  functioned.  It  seems  possible  that  at  frequency  levels  at  which  phase  locking  remains  possible  that  even  coarse  single  electrode  stimulation  will  stimulate  the  proper  frequency  neuron.  It  would  be  interesting  to  see  a  related  study  comparing  the  response  of  these  fibers  to  local  electrical  stimulation  as  opposed  to  the  acoustic  stimulation  used  here.          

Page 41: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  40  of  55  

                         

Page 42: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  41  of  55  

  Session  V.       Wednesday  May  7  -­‐  The  Neuroscience  Program        

   Focus:    Integration  of  neuroantomy,  neurophysiology  and  other  disciplines  into  

neuroscience.    Summarizers:    Ms. Angela Lin Hunt CC. 2006. Carlton C. Hunt. The History of Neuroscience in

Autobiogaphy. Volume 5. pp. 352-380. Mr. Lalezari Hunt CC, Kuffler SW. 1951. Stretch receptor discharges during muscle

contraction. J Physiol 113:298-315. Mr. Ko Hunt CC. 1955. Monosynaptic reflex response of spinal motoneurons to

graded afferent stimulation. J Gen Physiol 38:813-852. Ms. Gartland Hunt CC. (1990) Mammalian muscle spindles: Peripheral mechanisms.

Physiol Rev 70: 643-663. Mr. Donahue Cowan WM , (Stanfield B). 2004. William Maxwell (Max) Cowan. The

History of Neuroscience in Autobiogaphy. Volume 4. 146-208. Mr. D’Amelio Cowan WM, Powell TPS. 1954. An experimental study of the relation

between the medial mammillary nucleus and the cingulate cortex. Proc R Soc Lond Ser B

Ms. Aum Cowan WM, Gottlieb DI, Hendrickson AE, Price JL, Woolsey TA. 1972. The autoradiographic demonstration of axonal connections in the central nervous system. Brain Res 37:21-51.

Mr. Arriaga Cowan WM. 1979. The development of the brain. Scientific American 241:113-133.

Other references for voluntary consideration: Kuffler SW, Hunt CC, Quilliam JP. 1951. Function of medullated small nerve fibers in

mammalian ventral roots: Effect muscle spindle innervation. J Neurophysiol 14:29-54. Hunt CC, Kuffler SW. 1951. Further study of efferent small nerve fibers to mammalian muscle

spindles: multiple spindle innervation and activation during contraction. J Physiol

Page 43: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  42  of  55  

 113:283-297.

Hunt CC, Wilkinson RS, Fukami Y. 1978. Ionic basis of the receptor potential in primary endings of mammalian muscle spindles. J Gen Physiol 302:683-698.

Van Essen DC, Price JL. 2002. Obituary: W. Maxwell Cowan (1931-2002). Nature 418:600. Wann DF, Woolsey TA, Dierker ML, Cowan WM. 1973. An on-line digital computer system for

the semi-automatic analysis of Golgi-impregnated neurons. IEEE Trans Biomed Eng BME 20:233-247.

Wann DF, Price JL, Cowan WM, Agulnek MA. 1974. An automated system for counting silver grains in autoradiographs. Brain Res 81:31-58.

Page 44: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  43  of  55  

     

Session  V    -­‐  May  7,  2014    

Faculty:  Drs.  Landau,  Price  &  Woolsey      

 I  enjoyed  learning  about  Dr.  Hunt’s  endeavors  in  studying  muscle  spindles  and  motor  responses.  It  was  interesting  to  hear  about  his  experimental  method  of  exposing  the  muscles  of  a  cat,  severing  the  innervation,  and  then  stimulating  the  dorsal  and  ventral  nerves  at  varying  degrees.  I  was  particularly  interested  in  learning  about  the  development  of  autoradiography  to  visualize  axonal  connections  along  with  its  advantages  and  limitations.  I  appreciated  learning  about  the  physiologic  mechanisms  underlying  this  visualization  technique  and  how  it  differed  from  the  pre-­‐existing  neuronal  degeneration  visualization  techniques  that  are  dependent  on  pathologically  induced  mechanisms.  It  was  also  interesting  to  hear  about  Dr.  Cowan’s  summary  of  Sperry’s  1963  experiment  on  reversing  the  frog’s  visual  perception  by  180º  by  rotating  an  eye  that  regenerated  original  neuronal  connections  after  the  frog  had  completed  its  neural  development.  I  also  enjoyed  hearing  about  Dr.  Woolsey’s  research  on  barrel  cells  that  are  involved  in  the  innervation  of  mouse  whiskers  and  how  he  observed  their  plasticity  after  whisker  removal.                                          

Page 45: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  44  of  55  

     I  am  very  glad  that  I  chose  to  do  this  selective,  as  it  has  exceeded  my  expectations  of  what  I  thought  I  would  gain  from  it.  Before  taking  this  selective,  I  took  the  facts  that  I  learned  in  class  for  granted,  thinking  that  they  had  been  discovered  by  ‘someone’,  ‘somewhere’.  Learning  about  all  the  groundbreaking  work  that  was  done  on  this  campus  has  given  me  a  new  appreciation  for  the  institution  that  I  am  attending,  and  a  new  respect  for  the  research  that  takes  place  here.      I  also  appreciated  the  selection  of  articles,  and  the  inclusion  of  autobiographies,  biographies,  as  well  as  eulogies  into  the  mix.  I  have  always  enjoyed  reading  books  on  the  history  of  science  and  medicine,  and  I  feel  that  this  selective,  through  its  diverse  selection  of  reading  materials,  as  well  as  the  anecdotes  of  Drs.  Landau  and  Price,  gave  me  the  privilege  of  learning  about  a  period  of  development  in  neuroscience  that  has  yet  to  be  comprehensively  chronicled  in  an  easily-­‐accessible  tome.  The  effort  to  learn  about  the  scientists  we  discussed,  not  just  as  researchers,  but  also  as  humans  who  possess  foibles,  failings,  and  idiosyncrasies  has  made  the  study  of  neuroscience  a  lot  more  colorful  for  me.      I  was  struck  by  how  much  of  the  pioneering  neuroscience  work  at  WashU  was  done  in  contravention  of  the  conventional  wisdom  of  that  time  (e.g.  Eli  Robins’  work  in  WashU’s  department  of  psychiatry).  Perhaps  WashU’s  location  in  the  Midwest—a  comfortable  distance  away  from  the  spheres  of  influence  of  the  East  Coast  and  West  Coast  schools—facilitated  that.  Perhaps  like  attracts  like,  and  a  founding  population  of  outsiders  at  WashU  attracted  like-­‐minded  outsiders  willing  to  challenge  the  received  dogma  of  their  time.  In  any  case,  I  hope  that  WashU  continues  to  lead  the  charge  in  advancing  the  field  of  neuroscience,  whether  in  mapping  the  Human  Connectome  or  in  elucidating  the  genetics  of  neurological  disorders.  Thanks  for  making  this  an  enjoyable  selective.    

Page 46: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  45  of  55  

     Washington  University  is  currently  one  of  the  top  cutting-­‐edge  neuroscience  research  centers  of  the  world.  This  class  showed  me  that  although  the  modern-­‐day  technology  wasn’t  around  yet,  WashU  has  been  as  cutting-­‐edge  a  neuroscience  center  as  possible  for  any  time  period  for  many  years.  The  scientists  that  we  discussed  in  class  were  all  leading  their  fields  using  any  and  all  available  technology  and  resources.  I  think  this  resourcefulness  was  and  remains  a  key  attribute  for  leading  a  field  like  neuroscience  in  research.    In  particular,  the  articles  I  read  by  Hunt,  Guze,  and  Robins  showed  the  drive  of  WUSM  neuroscientists  to  keep  pushing  the  boundaries  of  what  has  been  accepted.  Guze  and  Robins,  for  example,  recognized  that  the  classification  of  psychiatric  disorders  was  not  good  enough,  so  they  strove  to  create  a  better  and  more  accurate  method  of  diagnosis.  Hunt  acknowledged  that  muscle  spindles  were  well  understood,  yet  still  compiled  the  available  information  and  called  attention  to  the  research  yet  to  be  done  on  the  topic.  Others  were  stalled  by  lack  of  resources  or  tools,  but  made  do  with  what  was  available  and  churned  out  groundbreaking  research.  This  drive  for  exceeding  expectations  seems  to  me  to  be  the  most  important  factor  in  pushing  WUSM  to  the  top  of  neuroscience  research.    The  future  of  neuroscience  is  promising  for  WashU.  The  involvement  of  the  neuroscience  pioneers  in  teaching  current  students,  like  in  this  class,  and  shaping  their  research  careers  means  many  of  us  will  stay  at  WashU  throughout  our  careers.  As  this  class  has  taught  us,  WashU  is  a  place  where  people  of  all  backgrounds  and  ambitions  can  come  to  conduct  research,  allowing  growth  and  diversity  for  past  and  future  discoveries.                                    

Page 47: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  46  of  55  

     So  many  facts  that  we  students  now  take  as  given—classifications  of  different  kinds  of  peripheral  nerve  fibers,  the  role  of  the  spinothalamic  tract  in  pain  sensation,  the  form  and  function  of  muscle  spindles—were  discovered  in  living  memory  here  at  WashU.  Even  the  idea  of  psychiatry  as  a  biologically-­‐based  discipline  and  medical  specialty,  which  I  have  taken  for  granted  my  whole  life,  was  shaped  by  the  vision  of  WashU  neuroscientists.  More  recently,  the  Human  Connectome  Project  is  the  current  face  of  neuroscience  in  popular  culture,  and  of  course  it  is  based  at  WashU.  

A  consistent  theme  in  the  biographies  of  the  WUSM/WUSTL  pioneers  in  neuroscience  is  the  sense  that  they  found  a  supportive  academic  home  at  WashU.  Dr.  Hunt  said  he  “[felt]  fortunate  to  have  started  out  in  neuroscience  when  it  was  a  small  and  friendly  enterprise—and  at  a  time  when  the  field  was  undergoing  an  exciting  intellectual  transformation.”  While  the  neuroscience  community  has  increased  in  size  by  orders  of  magnitude,  and  though  today’s  technology  is  a  far  cry  from  the  homemade  CRTs  used  by  Bishop,  Erlanger,  and  Gasser,  the  collaborative,  interdisciplinary  environment  at  WashU  and  the  close  relationship  between  advances  in  neuroscience  and  advances  in  technology  continue  to  keep  the  field  in  a  state  of  “exciting  intellectual  transformation.”  

Many  of  my  classmates  (including  several  in  this  selective)  have  professional  interests  in  neuroscience,  neurosurgery,  or  psychiatry,  and  I  look  forward  to  hearing  about  their  accomplishments  in  this  field.  I  look  forward  to  the  day  when  the  Human  Connectome  Project  is  declared  complete,  and  I  fully  expect  connectome  mapping  to  become  as  ubiquitous  within  my  lifetime  as  genome  mapping  has  already  become.                                      

Page 48: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  47  of  55  

     At the dawn of the twentieth century, Neuroscience was a rudimentary scientific discipline split up among disparate academic departments and medical specialties. By the dawn of the twenty-first, it had progressed substantially beyond its very basic beginnings by developing its own methods and journals and forging its own departments at centers of biomedical research all around the world. As it turns out, many of the pioneers of Neuroscience who helped establish some of the main principles and methods did much of their major research right here at Washington University. These pioneers in Neuroscience were always pushing the limits of the rapidly advancing technology of the twentieth century. In the 1920s, Drs. Erlanger, Gasser and Bishop came together at Washington University to work on developing newly invented cathode ray tubes into a useful machine for recording nerve impulses. Others of these pioneers were instrumental in developing such staples of the field as PET, EEG and axonal tracing methods. Meanwhile, others’ findings fundamentally changed biology such as when Drs. Levi-Montalcini, Hamburger and Cohen identified the nerve growth factor. And, some of their contributions completely revolutionized, or even were instrumental in developing, other related fields. For example, Dr. Guze emphasized the biological aspects of psychiatry, which until the late 1980s was still not fully accepted among the fields. And, Dr. Davis was instrumental in developing the field of audiology, in part by studying the pathways of audition from cochlea to cortex, and developing standard methods for hearing tests, including those used to test hearing in infants. The contributions of these great scientists to developing a comprehensive and burgeoning discipline cannot be overstated and their findings have made huge differences in our understanding of the workings of the human nervous system. While many of these researchers made important individual contributions in their day toward understanding the nervous system, each had his or her own appointment in another department. They were physiologists, biochemists, and anatomists, etc., who happened to have an affinity for the nervous system. However, because of their contributions to expanding the nascent field of neuroscience, these researchers enabled Dr. Cowan, to create a department of anatomy and neurobiology to bring together the disparate researchers of the field and give them a single home. This revolution in thinking about neuroscientific problems helped train a new generation of researchers with access to a wealth of methods that were specific for solving the problems of understanding nervous tissue and was responsible for the creation of the integrated neuroscience course that I, as a first-year medical student, enjoy today. It is easy to take for granted the understanding of the human nervous system and learning about these people and their contributions to the field have shown me the meaning of the statement attributed to Issac Newton, that, “If I have seen so far it is only by standing on the shoulders of giants.”        

Page 49: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  48  of  55  

     This  course  showed  us  how  pioneers  at  WUSM  contributed  to  the  field  of  neuroscience  throughout  the  last  century.  It  was  exciting  to  be  able  to  go  through  the  brief  history  of  neuroscience  as  a  field  in  only  a  few  short  weeks  and  to  see  how  influential  Washington  University  was  to  the  advancement  of  it.  One  aspect  that  stuck  with  me  was  how  neuroscience  advancements  mirrored  the  evolution  of  technology.  We  went  from  the  beginning  of  the  20th  century,  which  included  Ramón  y  Cajal  and  his  histological  drawings  to  the  present  day  with  the  advent  of  advanced  neuroimaging  techniques  like  fMRI.  I  believe  that  neuroscience  unlike  any  other  field  is  tied  inexplicably  with  technology.  Along  those  lines,  it  was  extremely  impressive  what  the  researchers  were  able  to  accomplish  with  the  technology  they  had  at  hand.  I  found  it  fascinating  that  they  were  able  to  use  cathode  ray  tubes,  which  was  brand  new  technology  at  the  time,  to  measure  electrical  nerve  impulses  and  thus  prove  their  existence.    One  aspect  of  the  class  that  I  really  enjoyed  but  didn’t  expect  was  the  context  and  perspective  the  course  provided  to  the  scientific  advancements  we  learn  about  everyday  in  our  neuroscience  classes.  We  take  for  granted  much  of  the  work  that  went  in  to  what  we  now  consider  to  be  facts.  For  instance,  we  learned  the  importance  of  nerve  growth  factor  in  class  but  we  didn’t  know  that  much  of  the  work  that  went  into  discovering  NGF  came  from  work  in  a  home  laboratory  that  existed  because  Rita  Levi-­‐Montalcini  was  being  persecuted  for  being  Jewish.  It  must  have  taken  incredible  courage  to  continue  working  on  NGF  while  her  life  was  continuously  at  stake.  It  is  these  anecdotes  that  I  really  enjoyed  learning  about  throughout  this  course.      Lastly,  it  was  easy  to  be  impressed  by  the  numerous  advancements  made  in  neuroscience  here  at  Washington  University.  It  is  clear  that  we  are  a  powerhouse  when  it  comes  to  neuroscience  research.  However,  I  thought  it  was  equally  impressive  how  much  time  and  effort  much  of  the  faculty  like  Dr.  Schwartz  and  Dr.  Goldring  committed  to  the  teaching  of  future  clinicians.  If  I  remember  correctly,  it  was  around  half  of  the  neurosurgery  residents  that  Dr.  Schwartz  had  taught  who  went  on  to  be  program  directors  at  other  schools.  That  is  incredible!  I  think  it  really  speaks  to  the  positive  environment  that  Washington  University  provided  to  researchers  and  clinicians.  There  were  many  times  during  our  discussion  that  Dr.  Landau  produced  anecdotes  that  spoke  to  WashU’s  commitment  to  creating  an  institution  that  fostered  innovation  and  trained  future  leaders.  I  am  proud  to  be  a  part  of  this  school’s  rich  tradition  in  learning  and  teaching.                

Page 50: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  49  of  55  

     This  course  provided  me  with  a  perspective  on  research  and  discovery  that  I  likely  would  not  have  gotten  from  traditional  classroom  learning  in  medical  schools.  One  of  the  main  points  that  stuck  out  to  me  was  the  major  component  of  personal  interactions  that  effect  how  research  is  conducted  and  progresses.  In  the  session  about  psychiatry  and  those  scientists  who  pioneered  methods  and  validation  of  longitudinal  studies,  it  was  mentioned  that  when  a  researcher  left  Washington  University,  the  entire  program  drastically  decreased  in  productivity  for  three  years.  The  first  session  on  the  initial  discovery  of  different  afferent  fibers  also  showed  that  having  the  right  combination  of  people  collaborating  at  the  same  institution  could  lead  to  great  discoveries.  This  made  me  realize  the  importance  of  the  environment  and  finding  the  right  mix  of  people  in  research.  

I  was  also  surprised  about  the  struggles  that  those  at  Washington  University  had  in  starting  and  maintaining  the  neuroscience  program.  While  I  knew  that  certain  specialties  like  emergency  medicine  arose  relatively  recently,  neuroscience  seemed  to  be  a  topic  that  would  have  been  around  forever.  It  was  interesting  to  look  more  closely  at  the  beginnings  of  a  new  field  when  it  was  not  as  entrenched  in  people’s  minds.    This  was  highlighted  when  those  at  Washington  University  were  mocked  for  having  a  more  biological  view  of  psychiatry  and  neurology  rather  than  the  prevailing  view  of  the  time.  

Lastly,  I  greatly  enjoyed  gaining  some  insight  to  the  personal  lives  of  those  who  made  great  strides  in  their  field.  Often,  in  the  classroom,  the  discoveries  made  by  researchers  are  presented  quickly  and  with  such  finality  that  it  is  easy  to  forget  the  struggles  and  endless  amounts  of  work  it  took  to  make  one  minute  of  a  presentation.  Having  had  these  discussions,  I  believe  I  will  have  a  greater  appreciation  of  not  only  of  the  work  of  researchers  but  the  many  factors,  both  personal  and  environmental,  that  impact  discovery.                                

Page 51: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  50  of  55  

     With  the  tremendous  amount  of  discoveries  and  advancements  in  neuroscience,  it’s  hard  to  believe  much  of  the  development  took  place  not  too  long  ago.  It  was  a  great  opportunity  to  be  able  to  read  the  first  published  findings  of  many  of  the  facts  we  learn  in  our  neuroscience  course  today.  Many  of  these  discoveries  seem  so  well  established  and  accepted,  which  is  why  I  find  it  hard  to  believe  they  were  made  within  the  past  few  decades.  Learning  about  the  different  pioneers  and  the  various  fields  they  worked  in  allowed  me  to  gain  an  appreciation  for  the  interdisciplinary  nature  of  neuroscience,  encompassing  work  in  psychiatry,  neurology,  electrophysiology,  and  other  disciplines.  

In  the  first  session  we  learned  about  Erlanger,  Gasser,  and  Bishop’s  work  on  the  electrophysiology  of  neurons.  Session  II  focused  on  the  WUSM  faculty  involved  in  the  isolation  of  NGF.  Learning  about  how  Levi-­‐Montalcini  built  an  in-­‐home  laboratory  when  she  wasn’t  allowed  to  pursue  her  career  made  me  contemplate  the  hardships  and  difficulties  faced  by  many  researchers  in  their  native  countries.  The  third  session  focused  on  the  development  of  the  fields  of  neurosurgery,  psychiatry,  and  neurology.  What  left  the  biggest  impression  on  me  from  this  session  was  Robins’  leadership  in  changing  the  direction  of  psychiatry  and  WUSM  faculty’s  medical  model  approach  to  psychiatry  at  a  time  when  psychoanalysis  dominated.  In  the  fourth  session  we  focused  on  work  regarding  the  structure  and  function  of  the  nervous  systems  and  technological  advances,  including  Galambos  and  Davis’s  description  of  single  neuron  behavior  and  Molnar’s  work  on  development  of  the  LINC.  

As  I  mentioned  in  a  previous  summary,  I  continue  to  be  astonished  by  the  dedication  of  these  faculty  to  their  work.  Their  passion  and  commitment  to  developing  and  advancing  the  field  of  neuroscience  provides  a  basis  for  and  allows  much  of  the  research  that  takes  place  today  to  be  possible.  Reading  the  memoirs  and  biographies  on  the  faculty  gave  me  a  sense  of  who  they  were  as  a  people  in  addition  to  their  contributions  to  neuroscience.  The  many  anecdotes  provided  by  the  faculty  leading  this  selective  also  gave  these  sessions  a  personal  touch,  which  I  greatly  appreciated  and  enjoyed.  

 Thank  you  for  leading  such  a  great  selective,  I  really  enjoyed  it!                

Page 52: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  51  of  55  

     This  selective  has  been  interesting  because  it  put  the  developments  in  neuroscience  into  a  real  life  context.  Over  the  past  several  weeks,  our  neuroscience  course  has  been  in  full  swing.  We  hear  many  lectures  about  things  such  as  muscle  spindles,  nerve  growth,  PET  scanners,  etc.  In  most  of  the  cases  these  lectures  are  full  of  small  details  and  minutia  that  seem  like  random  historical  points.  These  are  frustrating  because  they  seem  like  small  details  that  make  studying  for  the  exam  more  difficult.  However,  over  the  last  five  weeks,  this  selective  has  made  me  understand  why  those  frustrating  details  matter.      During  our  first  year  of  medical  school  we  have  heard  numerous  lectures  on  a  huge  variety  of  topics.  It  becomes  very  easy  to  learn  the  science  and  mechanisms  behind  medicine  and  ignore  the  fact  that  real  people  discovered  these  concepts.  During  histology  we  learned  about  muscle  spindles,  which  we  are  learning  more  about  in  neuroscience  right  now.  This  seemed  like  just  a  group  of  muscles  with  some  function  that  I  needed  to  know  to  pass  an  exam.  However,  now  I  realize  this  was  something  that  a  person  slaved  over  in  order  to  find  out  the  mechanisms  behind  its  function.  The  scientific  world  is  not  as  cut  and  dry  as  it  seems  in  most  instances.  Politics,  friendships,  controversies,  and  rivalries  litter  all  of  the  breakthrough  discoveries  in  the  neurosciences.  However,  the  most  important  part  of  this  selective  was  not  necessarily  the  specifics  of  the  people  we  learned  about.  Rather,  I  think  that  the  most  important  thing  I  took  away  from  this  selective  was  to  approach  the  research  I  learn  about  in  all  of  the  other  fields  with  the  knowledge  I  gained  from  this  class.  I  think  I  will  have  a  better  understanding  of  the  humanity  that  is  attached  to  all  of  the  discoveries  in  the  scientific  world.      Looking  at  specific  aspects  of  the  course,  I  think  learning  about  the  LINC  computer  and  psychiatry  was  the  most  interesting.  Again,  I  believe  in  a  lot  of  cases  we  now  take  for  granted  the  tools  that  are  available.  When  many  of  these  discoveries  were  being  worked  on,  the  computing  power  was  not  there.  However,  this  did  not  stop  the  researchers  at  Wash  U.  Rather,  they  used  the  technology  that  they  had,  and  invented  new  ways  of  doing  things  in  order  to  get  their  research  done  with  the  underpowered  machines  that  were  available  to  them.  Additionally,  the  advancements  in  psychiatry  were  extremely  interesting  to  me.  Since  psychiatry  is  still  in  many  cases  viewed  as  less  “scientific”  or  “medical”  than  other  scientific  and  medical  disciplines,  it  was  interesting  to  see  how  people  here  at  Wash  U  strived  to  make  psychiatric  research  and  diagnostics  reliable  and  valid.  In  general,  reading  about  the  people  who  made  the  changes  and  discoveries  in  the  neuroscience  field  has  made  things  more  real  life,  and  will  change  the  way  that  I  think  about  research  that  is  presented  to  me  in  the  future.          

Page 53: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  52  of  55  

     The  most  important  aspect  of  this  course  was  the  reminder  that  our  faculty  and  researchers  have  made  many  great  accomplishments.    Having  worked  with  connectivity  data  derived  from  retrograde  tracers  for  some  time,  I  took  for  granted  the  amount  of  work  that  had  gone  into  even  realizing  the  method  as  a  possibility.    To  then  realize  that  a  number  of  you  were  instrumental  in  its  beginnings  was  surprising.    As  I  work  toward  my  PhD,  it  is  nice  to  know  that  every  researcher's  path  has  been  long  and  contained  many  false  starts  between  their  ultimate  successes.    It  is  very  easy  to  read  through  a  textbook  and  not  realize  that  a  simple  paragraph  of  facts  could  be  a  result  of  years  of  work.        Overall,  it  makes  me  very  proud  to  be  a  part  of  this  institution,  and  to  be  among  such  talented  and  successful  physicians  and  scientists.    The  history  I've  learned  through  the  course  has  made  me  more  invigorated  to  strive  to  add  to  the  list  of  great  achievements  that  have  been  made  here.        I  thoroughly  enjoyed  the  readings  and  discussions  that  I  participated  in  during  Pioneers  in  Neuroscience.  It  was  enlightening  to  be  able  to  place  faces  and  personalities  on  the  discoveries  that  we  so  casually  gloss  over  in  lecture.  As  I  described  in  class,  I  don’t  believe  I  will  ever  be  able  to  read  a  textbook  or  study  for  a  class  in  the  same  way  again.  Each  and  every  molecule  or  innovation  that  I  come  across  will  inspire  my  mind  to  conjure  a  possible  story,  a  possible  interaction,  that  led  to  its  discovery.      Furthermore,  the  class  inspired  me.  I  look  around  my  class  and  wonder  what  each  of  my  classmates  will  bring  to  the  world  of  medicine.  I  find  myself  longing  more  to  contribute  to  the  furthering  of  science.  I  once  had  the  honor  of  sitting  with  Nobel  laureate  James  Watson,  and  he  told  me  never  to  be  the  smartest  person  in  the  room.  I  have  always  appreciated  that  advice  and  being  here  at  Washington  University  has  allowed  me  to  hold  true  to  it.              

Page 54: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  53  of  55  

       WUSM  has  had  a  profound  impact  on  neuroscience  throughout  the  past  century,  with  discoveries  in  such  diverse  fields  as  electrophysiology,  chemistry,  psychiatry,  and  radiology.  The  discoveries  in  these  fields  revealed  new  avenues  of  inquiry  that  are  still  being  actively  pursued  in  labs  across  the  country.    The  early  work  of  Bishop  and  Erlanger  on  electrophysiological  recordings  of  the  action  potential  has  been  advanced  to  the  multi-­‐electrode  intracortical  arrays  currently  used  in  brain-­‐machine  interface  research.  Taking  the  activity  of  collections  neurons  allows  us  to  begin  to  interrogate  the  neuronal  basis  of  encoded  thoughts  and  intentions.  Ter-­‐Pogossian's  pioneering  work  with  PET  allowed  a  window  into  the  same  question  at  the  opposite  end  of  the  scale.  Being  able  to  look  at  the  activity  of  the  living  brain  brought  information  about  the  function  of  the  brain  that  was  only  available  from  post-­‐mortem  lesion  studies  previously.    Similarly,  the  work  of  Hamburger,  Cohen,  and  Levi-­‐Montalcini  on  NGF  revolutionized  our  understanding  of  neural  development  and  growth.  NGF  and  other  neurotrophins  are  active  fields  of  investigation  today  and  have  been  implicated  in  many  neurological  diseases  and  identified  as  future  therapies  for  nerve  and  brain  injuries.  Additionally,  Dr.  Guze’s  focus  on  the  biological  bases  of  psychiatric  phenomenon  was  a  bold  move  contrary  to  the  standards  of  other  departments  around  the  country.  This  firm  belief  in  the  neurobiology  as  a  foundation  for  diagnosing  and  treating  disease  has  been  validated  numerous  times  over  the  decades.    

Page 55: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  54  of  55  

 

Page 56: M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ …historyofmedicine.wustl.edu/wp-content/uploads/2012/06/M... · 2016-05-24 · M04$589H$ WUSTL/WUSM$Pioneers$in$Neuroscience$ Spring2014$

M04  589H  WUSTL/WUSM  Pioneers  in  Neuroscience  

Spring  2014  Page  55  of  55  

       

End    

Fine    

Finis                      

Facit  5-­‐15-­‐2014