m so 202 solutions 3

Upload: shivamtaji

Post on 06-Jan-2016

214 views

Category:

Documents


0 download

DESCRIPTION

mso

TRANSCRIPT

  • E

    DepartmentofMathematicsandStatisticsIndianInstituteofTechnologyKanpur

    MSO202A/MSO202Assignment3SolutionsIntroductionToComplexAnalysis

    The problems marked (T) need an explicit discussion in the tutorial class. Other problems areforenhancedpractice.1. (a) ,

    C

    z z dz whereCisthecounterclockwiseorientedsemicircularpartof thecircle 2z lyinginthesecondandthirdquadrants.(T)(b) ,

    C

    zz dzz where C is the clockwise oriented boundary of the part of the annulus

    2 4z lyinginthethirdandfourthquadrants.(c) ( 2 ) ,n

    C

    z a dz whereCisthesemicircle 2 , 0 arg( 2 )z a R z a .Solution:(a) A parametric equation of C is 2 iz e , 3

    2 2 . Therefore the given integral is

    3 /2

    /2

    8 8C

    z z dz i d i

    .

    (b) C

    zz dzz AB BEC CD DFA

    z z z zz dz z dz z dz z dzz z z z

    2 2 4

    4 2 0

    2 42 2 4 42 4

    i ii i

    i ie ex dx ie d x dx ie de e

    8 326 6 4

    3 3

    (c) ( 2 )nC

    z a dz = 1 ( 1)0 0

    ( )n in i n i nR e iR e d iR e d i

    11[( 1) 1], 1 0.

    1

    nnR for n

    n

    Therighthandintegralin(i)isobviously i forn+1=0.

    F

    A B C D

  • 22. Evaluatetheintegral 1

    C

    dzz ,ineachofthefollowingcases:

    (a) Cisthecounterclockwiseorientedsemicircularpartofthecircle 1z intheupperhalfplaneand z isdefinedsothat 1 1. (T)(b)Cisthecounterclockwiseorientedsemicircularpartofthecircle 1z inthelowerhalfplaneand z isdefinedsothat 1 1.

    (c)Cistheclockwiseorientedcircle 1z and z isdefinedsothat 1 1. (d)Cisthecounterclockwiseorientedcircle 1z and z isdefinedsothat 1 .i Solution:(a) The two distinct values of z , iz r e , are given by ln ( 2 )exp( ), 0,1.

    2 2z nz i n

    1 1 0.n TheparametricequationofCis ,0itz e t / 2

    0( / 2)

    0

    [ ]1 1 2( 1)/ 2

    itit

    i tC

    edz i e dt i ie iz

    .(b) 1 1 1.n TheparametricequationofCis , 2itz e t

    2 /2 2

    ( /2)[ ]1 1 2(1 ).

    / 2

    itit

    i tC

    edz i e dt i iiez

    (c) 1 1 0.n TheparametricequationofCis , 2 0.itz e t

    0 / 2 02

    ( / 2)2

    [ ]1 1 4.( / 2)

    itit

    i tC

    edz i e dt ie iz

    (d) 1 0.i n TheparametricequationofCis , 0 2 .itz e t

    2 /2 20

    ( /2)0

    [ ]1 1 4.( / 2)

    itit

    i tC

    edz i e dt iiez

    3. Withoutactuallyevaluatingtheintegral,provethat

    (T)(a) 21 ,1 3Cdz

    z whereC is the arcof the circle 2z fromz=2 to z=2i lying in the first

    quadrant. (b) 2 2( 1) ( 1),

    C

    z dz R R whereCisthesemicircleofradiusR>1withcenterattheorigin.Solution:

    2 21 1( ) , ,

    1 2 1a Length of C and on C

    z 2 2

    1 1 .1 2 1 3Cdz

    z (byMLEstimate)

    (b) Length ofC = R , and onC, 2 21 1z R . Consequently, the desired inequality follows byMLestimate

  • 34. (T)DoesCauchyTheoremholdseparatelyfortherealorimaginarypartofananalyticfunctionf(z)?

    Whyorwhynot?Solution:No,CauchyTheoremneednotholdseparatelyforrealorimaginarypartofananalyticfunction.Consider,forexamplef(z)=zandC: 1.z Then,

    2

    1 0

    2

    1 0

    Re cos

    Im sin

    i

    z

    i

    z

    z dz i e d i

    z dz i e d

    5. Aboutthepointz=0,determinetheTaylorseriesforeachofthefollowingfunctions:

    (T) 2( ) 2 ( ) ( 3 2)i z i ii Log z z Solution:(i) 2z i = 1/22 (1 )

    2zii

    2/ 2 1/ 2

    1 1 11 2 22 ( ) [12 2 2 2

    1 1 11 .... 12 2 2.... .....]

    2

    i

    n

    z zei i

    nz

    n i

    12

    1 1.3.5.....(2 3)(1 )[1 ( 1)2 2 22

    nn

    nn

    z n zii in

    .(ii)Log(z23z+2)=Log(1z)+Log(2z)+2m i ,forsomem. =Log(1z)+Log2+log(1

    2z )+2m i ,forsomem

    =Log2+2m i 1

    n

    n

    zn

    1

    / 2 n

    n

    zn

    ThereforetheTaylorseriesofLog(z23z+2)isgivenby log(z23z+2)=log2+2m i

    1

    1(1 )2

    n

    nn

    zn

  • 46. Abouttheindicatedpointz=z0,determinetheTaylorseriesanditsregionofconvergenceforeachof

    thefollowingfunctions.Ineachcase,doestheTaylorseriesnecessarilysumsuptothefunctionateverypointofitsregionofconvergence?

    01( ) , 11i zz (T) 0( ) cosh ,ii z z i (T) 0( ) , 1iii Log z z i Solution:(i)

    11 1 111 2 2

    zz

    = 01 1( 1)2 2

    nn

    n

    z

    .TheregionofconvergenceofitsTaylorseriesis1 2.z TheTaylorseriessumsupto 1

    1 z ateverypointof 1 2z ,since1

    1 z isanalyticateverypointof 1 2z .

    (ii)coshz=cosh(z i+ i)=cos(i(z i) )=cos(i(z i)).Therefore,

    2

    0

    ( )cosh2

    n

    n

    z izn

    .TheregionofconvergenceofTaylorseriesiswholecomplexplane.The

    Taylorseriessumsuptocoshzateverypointofthecomplexplane,sincecoshzisanalyticateverypointofthecomplexplane.(iii) 1

    1

    1( 1) , 1, 2,......( 1 )

    nn

    n nz i

    d nLog z for ndz i

    1

    (1 )( 1 ) ( 1 )2

    nn

    nn

    iLog z Log i z in

    .

    TheregionofconvergenceoftheTaylorseriesonRHSis 1 2z i .However,theTaylorseriesdoesnotsumuptoLogzateverypointof 1 2z i , sinceLogzisnotanalyticonnegativerealaxis,apartofwhich iscontained in thedisk 1 2z i ,while thesumfunctionrepresentedby theaboveTaylorseriesisanalyticateachpointofthisdisk.

  • 57. (T)Evaluate the integral 2( 1)C

    dzz z , for all possible choices of the contour C that does not pass

    throughanyofthepointsz=0, i .Solution:LetcurveC beorientedcounterclockwiseinthefollowingcases.ForclockwiseorientedC thevalueoftheintegralwillbenegativeofthevalueobtainedinthesecases.Case1(Cdoesnotencloseanyofthepoints0, i ):Inthiscase,I= 2( 1)C

    dzz z =0,byCauchyTheorem.

    Case2WhenCenclosesonlythepoint0,I= 2(1/ 1 )

    C

    zdz

    z

    =2 i ,byCauchyIntegralFormula.Similarly,whenCenclosesonlythepointi,I= (1/ )

    C

    z z idz

    z i

    = 12 2i ii i andwhenCenclosesonlythepointi,I= (1/ )

    C

    z z idz

    z i

    = 12 2i ii i .Case3:WhenCenclosesonlythepoints0,i,

    1 2

    2

    1 2(1/( 1)) (1/ ( )) ,

    0 .C C

    z z z iI dz dz where C and C are sufficientlyz z i

    small circles around and i respectively

    12 1 2

    2i i i

    i i ,byCauchyIntegralFormula.

    Othercases,i.e.whenCenclosesonlythepoints0,iori,iaretreatedsimilarly.Case4(Cenclosesallofthepoints0,i,i):Inthiscase

    1 2 3

    2

    1 2 3

    (1/( 1)) (1/ ( )) (1/ ( )) ,

    ,0 , .

    C C C

    z z z i z z iI dz dz dzz z i z i

    where C C and C are sufficiently small circles aroundi and i respectively

    1 12 1 2 2 02 2

    i i ii i i i

    .

  • 6

    8. (T)UseCauchyTheorem formultiplyconnecteddomainsandCauchy IntegralFormula toevaluatetheintegral

    2cos

    ( 1) 2C

    z dzz z

    ,C:thecircle 3z orientedcounterclockwise.

    Solution:LetC1,C2bethecounterclockwiseorientedcirclesofsufficientlysmallradiuscenteredat1and2respectively.TheintegrandisananalyticfunctionintheregionlyingbetweenthecirclesCandC1,C2Therefore,byCauchyTheoremformultiplyconnecteddomains,

    2cos

    ( 1) 2C

    z dzz z

    =

    1 2

    2 2(cos / ( 2)) (cos / ( 1))( 1) ( 2)C C

    z z z zdz dzz z

    2 2

    1 2cos cos2 ( ) 2 ( ) 4

    2 1z zz zi i i

    z z .(byCauchyIntegralFormula)

    9. Evaluate

    (T)(a)2

    4( 1)

    z

    C

    e dzz z ,C:thecircle 2z orientedclockwise

    (b) 2sin

    ( ) nC

    z dzz ,C:thecircle 1z orientedcounterclockwise

    Solution:(a) UsingCauchyTheoremformultiplyconnecteddomains,

    1 2

    2 4 2

    41

    1 2

    ( / ( 1) ) ( / ) ,( 1)

    , 1 .

    z z

    z z

    e z e zGiven Integral dz dzz z

    where z z are sufficiently small clockwise oriented circles

    2 3 2

    0 14 3

    2[2 ( ) { ( )} ]( 1) 3

    z z

    z ze i d eiz dz z

    (byCauchyIntegralFormulafornthderivatives)

    (b) GivenIntegral=2 1

    2 12 2( sin ) ( 1)

    2 1 2 1

    nn

    zni d iz

    n ndz

    10. Ifuisaharmonicfunctionin 0 ,z R and r R showthat

    2

    0

    1(0) ( ) .2

    iu u re d

    Solution:Let vbe theharmonic conjugateofu in z R so that f(z)=u+ i v is analytic in z R . ByCauchyIntegralFormula

    2

    0

    1 ( ) 1(0) ( ) .2 2

    i

    z r

    f zf dz f re i di z i

    Nowtakingtherealpartonboththesidesgivesthedesiredresult.