lyons (wind energy systems)

Upload: sagararla

Post on 03-Jun-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 Lyons (Wind energy systems)

    1/41

    Energy

    Systems

    Cornell

    12 June, 2009

    JP Lyons - CTO

    Novus Energy Partners

  • 8/12/2019 Lyons (Wind energy systems)

    2/41

    Wind Now Mainstream

    GE1.5MWTurbines

    Lamar,Colorado

    ,

    GE $6.5B 2008 revenues, 10,000 1.5 machines installed

    Good US sites (8+ m/s) - lowest COE of any new generation

    US 20+ GWs, 8.3 GW 2008, 42% new electricity

    20% Wind Energy by 2030 300+GW

    GW scale projects in sight

    2 /June 2009

  • 8/12/2019 Lyons (Wind energy systems)

    3/41

    Land Based Technology

    Vestas V100-2.75

    1.5 3.0 MW Upwind Configuration

    80 100 Meter Tower Height

    Distributed component drivetrain Full Span Pitch Control

    Ta ered C linder Steel Towers

    Clipper 2.5-93

    ~65 kWhr/kg tower top mass

    200 MW + Windfarms

    Performance

    98% Availability

    40+% Capacity Factor at IEC-II 8.5 m/sGE 2.5xl

    3 /June 2009

    CF% +10 pts in last 5 yrs

  • 8/12/2019 Lyons (Wind energy systems)

    4/41

    GE Wind TurbinesElectrical Pitch

    Drives

    GE 1.5 MW 77 M Rotor Diameter

    50-100 M Tower

    Doubly-FedGenerator

    98% Availability

    Speed 10-20 RPM

    Variable Pitch

    Gearbox

    Epoxy-GlassComposite Blades

    Bearing

    Transformer &Electrical Power Electronic

    Converter

    4 /June 2009

  • 8/12/2019 Lyons (Wind energy systems)

    5/41

    Turbine Speed vs. Size

    Southwest Windpower Storm

    Clipper 2.5 MW with 93 m

    . , .

    5 /June 2009

  • 8/12/2019 Lyons (Wind energy systems)

    6/41

    Wind Energy Conversion

    Rotor power: P = 1/2 cp Avw3

    cp - rotor power coefficient - a r ens y

    A - rotor swept area

    Ideal cp = 0.593 (Betz factor)

    w ere 2 = 1 w n ve oc y s ows y

    Tip speed ratio: = vt / vw

    6 /June 2009

    cp = f()

    Windturbines: Fundamentals, Technologies, Application and Economics , Erich Hau, ISBN: 3540570640; (April 30, 2000)

  • 8/12/2019 Lyons (Wind energy systems)

    7/41

    Wind

    TurbineDynamics

    er o c orces xc te ec an ca ystem

    bladepassingfrequency(BP)

    3P

    wind

    shear,

    yaw

    error,

    tower

    shadow

    Protationalfrequency

    TurbineNaturalFrequencies

    ower

    en ng

    mo es

    Bladeflapbendingmode

    Bladeflutter&torsional modes

    7 /June 2009

    Windturbines:Fundamentals,Technologies,ApplicationandEconomics,ErichHau,ISBN:3540570640;(April30,2000)

    Drivetraintorsional oscillation

  • 8/12/2019 Lyons (Wind energy systems)

    8/41

    IEC Design Envelope

    IEC 61400 defines a standard design envelope fordifferent desi n classes.

    Assumes most extreme conditions for which a 20 yeardesign life can be maintained.

    Air density 1.225 kg/m3, shear coefficient of 0.2 AND

    IECIIIB IECIIIA IECIIB IECIIA IECIB IECIA

    Mean WS 7.5 7.5 8.5 8.5 10 10

    TI@15m/s 16% 18% 16% 18% 16% 18%

    V50 - 3s 52.5 52.5 59.5 59.5 70 70

    8 /June 2009

  • 8/12/2019 Lyons (Wind energy systems)

    9/41

    Loads Analysis Aero Elastic Model

    9 /June 2009

  • 8/12/2019 Lyons (Wind energy systems)

    10/41

    Time Series BladeRootB

    Main Shaft

    R

    T

    Tower Top

    LoadTime Series

    Wind speedParameter Iu,,z0

    10 /June 2009

  • 8/12/2019 Lyons (Wind energy systems)

    11/41

    Wind Turbine Performance

    -

    1,200

    1,400

    1,600

    (kW)

    Cut-outRated Power

    400

    600

    800

    1,000

    lectricalPower

    Cut-in

    Wind speedWind speed

    0

    200

    0 5 10 15 20 25

    Wind Speed (m/s)

    Energy in the Wind3

    Captured Energy(1/2 V3 S cp)

    Wind Distribution

    11 /June 2009

    Annual EnergyProduction (AEP)

    Power Curve

    Energy

  • 8/12/2019 Lyons (Wind energy systems)

    12/41

  • 8/12/2019 Lyons (Wind energy systems)

    13/41

    Analysing the wind

    a s ca me o s

    (1)

    Once the roughness length and the according

    height exponent a is estimated, the formula (1)gives the wind speed (v2) in a projected height (h2):

    =

    1

    212

    h

    hvv

    (2)

    Because the estimation of a is subjective, thefollowing formular gives an objective way of

    calculating the height exponent out of two differenthei hts of measurement:

    ( )

    ( )21

    21

    ln

    ln

    hh

    vv=

    Further formulas for calculation of windcharacteristics:

    Vref= 5 x Vm

    Ve1 = 0.75 x Ve50

    (3)

    (4)Empiric ormulas according IE standards

    Ve50 = 1.4 x Vref (5)

    13 /June 2009

  • 8/12/2019 Lyons (Wind energy systems)

    14/41

    Tech Improvements

    Scale 5MWmachinesontheGreatPlains

    GWscalelandprojects

    Logistics:insitublade&towermfg

    PowerTrain

    Compact1stageintegratedgearbox,

    90kWhr/kgspecificyield

    bearings,generator

    Directdrive

    PMgenerators WTCompositesSheathedSpaceFrameTower

    BendTwistCoupledBlades

    Controls

    FullMVpowerconversion Multivariablemodelbasedcontrols

    Loadmitigation&damping

    Cyclic&independentbladepitchcontrol

    Blades Largerrotors,higheffairfoils+10%CF

    Loadmitigatingsweepandflaptwistcoupledblades

    14 /June 2009

    u oma e car on ersparcap a eroo

    Onsitebladeinfusion

    Drivetrain BearingNacelle

  • 8/12/2019 Lyons (Wind energy systems)

    15/41

    2-Blades: Back to the Future? Nordic1000

    rotate 25-30% faster: power with less torque more blade noise

    ,

    Eliminates weight/cost of 3rd blade - decrease in Cpcompensated by slightly longer blades

    Teetered hub minimizes bending loads on the mainshaft /gears

    Simplified installation logistics

    Potential 25% wei ht/cost advanta e: Technolo for COE driven markets e. .

    Optimized3blade Optimized2blade

    Great Plains, Northern China, Offshore?

    15 /June 2009

  • 8/12/2019 Lyons (Wind energy systems)

    16/41

    New Innovation

    FloDesign Turbine

    16 /June 2009

    Venturi + Mixer/Ejector(Mass)

    Coriol is Wind VAWT(Israel)

  • 8/12/2019 Lyons (Wind energy systems)

    17/41

    Wind Turbine Electrical Conversion

    Type 1: Squirrel-cage induction generator - generator

    PlantFeeders

    Limited LVRT and pf capability

    PF contro lcapacitors

    generator

    PlantFeeders

    ype : oun ro or n uc on genera or w var a e ro orresistance

    Fixed speed variable pitch turbine Slip poweras heat loss

    PF controlcapacitors

    ac

    to

    dc

    Plant

    Type 3: Doubly-fed wound rotor induction generator -Limited variable speed variable pitch turbine

    generator

    ee ers

    acto

    dc

    acto

    dc

    Type 4: Full power converter interface Full variable speed variable pitch turbine

    partial power

    generator

    PlantFeeders

    acto

    acto

    17 /June 2009

    full power

    dc dc

  • 8/12/2019 Lyons (Wind energy systems)

    18/41

    -

    Grid CodesPower & Frequency Operating Range

    , ,FERC/WECC, HQ, UK, ESB, ...

    Initiated by e-on 2001

    LVRT/ZVRT fault ride-thru & transient volt support

    Reactive power specs

    Power vs, Frequency

    Germany

    1.1 pu

    1.15 pu

    For Br itain React ivePower re uired

    Alberta Alberta

    Austr

    alia,Albert

    a

    AlbertaAlberta

    VARSupport

    VoltageTransientRideThruRequirements

    Alberta,

    Phillipines

    , LIPA,

    NSP,

    PSCO,

    Italy

    Britain,

    Scotland,Thailand,Turkey,

    ERCOT,PG&E

    and therest onLHS

    Vo

    ltage

    (kV)

    1 pu

    1.05 pu

    Rated Power, Continuous

    ,

    is the same as that for the reduced

    output power (poorer pf)

    Ontario,

    LIPA, NSP,

    PG&E and the

    rest on RHS

    Iris

    h,Gr

    ee

    ce

    an

    d

    theres

    t

    on

    LH

    S

    Britain, Irish,

    Scotland,

    Alberta,

    Greece,

    Phillipines,

    Thailand,

    Turkey

    Austr

    alia,

    ERC

    OT,

    PSC

    O,

    Italy

    and

    rest

    on

    RHS

    Common,

    Except

    Australia,

    Ontario

    (upto upf) Insert another image

    Irish,Greece and the rest on

    LHS

    Irish, Greece

    0.95 pu

    0.875 pu

    0.9 pu

    Irish, Alberta, GreeceAustr

    alia

    and

    RHS

    Alberta

    For ERCOT, at lower powers, Reactive

    according to capability (poorer pf)

    For Germany, any power level, duration

    not specified. (assumed continuous)

    18 /June 2009

    Power Factor

    0.8

    50

    .9

    0.9

    5 1

    0.9

    50

    .9

    0.8

    5

    Over ExcitedUnder Excited

  • 8/12/2019 Lyons (Wind energy systems)

    19/41

    Mimic thermal lants fre droo var su ort

    Grid (Friendly) Integration

    59.50

    60.00

    3 GW wind w/ newactive power

    controls

    59.50

    60.00

    3 GW wind w/ newactive power

    controls

    Powerelectronicshavechangedwindtechnology

    fromadetrimenttoanattribute

    ZVRTfaultridethrutoberequiredbyFERC 58.50

    59.00 HQ Base case w/owind - UF LoadShed at 58.5 Hz

    58.50

    59.00 HQ Base case w/owind - UF LoadShed at 58.5 Hz

    Reactivepowercontrol voltageregulation,VAR

    supportw/o

    power

    Activepowercontrolramprates,powercurtailment,HydroQuebec VirtualInertia

    58.00

    58.0 a fbul 90 Load 220.0 1 1 60.0

    58.0 b fbul 90 Load 220.0 1 1 60.0

    58.0 c fbul 90 Load 220.0 1 1 60.0

    58.0 d fbul 90 Load 220.0 1 1 60.0

    Time( sec )

    0.0 30.0

    new controls

    58.00

    58.0 a fbul 90 Load 220.0 1 1 60.0

    58.0 b fbul 90 Load 220.0 1 1 60.0

    58.0 c fbul 90 Load 220.0 1 1 60.0

    58.0 d fbul 90 Load 220.0 1 1 60.0

    Time( sec )

    0.0 30.0

    new controls

    ,

    10%Power

    Increase

    VoltageatPOIWindPlantVoltage

    Frequency(Hz)

    Power(kW)

    4%FrequencyReduction

    WindPlantPowerOutput

    19 /June 2009

    ColoradoGreen220kVBusVoltageRegulation

    ActivePowerRampRateControl GE/ESBIreland

  • 8/12/2019 Lyons (Wind energy systems)

    20/41

    2001 NYISO Day Ahead Forecast E rror (F-A) January

    Wind in New York

    1500

    2500

    3500

    Erro

    Load Error (F-A)

    Wind Error (A-F)

    Total Error (F - A)

    -1500

    -500

    500

    1 49 97 145 193 241 289 337 385 433 481 529 577 625 673 721

    Hour

    M

    NY RPS

    25% renewables by 2013 (15% existing hydro)

    Summer Morning Load Rise - Hourly Variabilit y

    + w n . ac eva e w m nor c anges n operat ons

    Day-ahead uncertainty w/ wind similar to load forecast

    Wind improves post-fault response of interconnected grid

    100

    150

    200

    uency

    State Jun-Sep 7AM-9AM 1HR Delta Histogram

    Largest Hourly Change

    With Day-Ahead

    Wind ForecastingWithout WindForecasting

    Total variable cost reduction

    (includes fuel cost, variable O&M, start-upcosts, and emission payments)

    $ 430M $ 335M

    Total variable cost reduction per MW-hourof wind generation

    $48 / MWh $38 / MWh

    $95M

    0

    50

    -3000 -2000 -1000 0 1000 2000 3000

    Freq

    2756 MW with wind

    NYS Benefits

    $48/MWhr of Wind Energy Production Cost

    Wind revenue $ 315M $ 305MNon-wind generator revenue reductions $ 795M $ 960M

    Load payment reductions

    (calculated as product of hourly load andthe corresponding locational spot price)

    $ 515M $ 720M

    MWLoad Load-Wind

    20 /June 2009

    CostsAnnual Operating Cost Impactsfor 2001 Wind and Load Profi les

  • 8/12/2019 Lyons (Wind energy systems)

    21/41

    Wind ForecastingEltra, Denmark - 2000 Study

    1.9GW onshore farms, 16% consumption

    3.4TWh produced, 1.3TWh miscalculated (38%)

    Climatology-based forecast, inaccuracies up to 800MW

    m a ance paymen s . c

    Advanced forecast using a

    Current State-of-the-Art

    statistical models, and 3D

    meso-scale climatology

    Local statistical model + 3D climatology model - 10-15% mean abserror for day-ahead and 5-10% error for 6 hr ahead forecasts

    2005 regulations in Spain provide:

    - Penalties for >20% error on 24hr production forecast

    -

    2003 Cal ISO regulations unbiased hourly, daily forecasts settlementmonthly for net deviations at average rate

    Utilities need short (72h) forecasts

    21 /June 2009

  • 8/12/2019 Lyons (Wind energy systems)

    22/41

    Site Specific Power Forecasting System

    Wind SpeedForecast

    PowerCurve

    PowerForecast

    Availability Model

    YieldForecast

    Assume w e areDown for 5 min(t o)

    K

    W

    K

    W

    For all Downtimes (t) > (to)Calculate t- to

    CalculateAverag e(log( t- to ))

    Stddev (log(t- to ))

    Increment (to)By 1 hour

    while (to)

  • 8/12/2019 Lyons (Wind energy systems)

    23/41

    Offshore Wind

    23 /June 2009

  • 8/12/2019 Lyons (Wind energy systems)

    24/41

    Offshore Wind

    176 MW Siemens/Bonus

    90MW VestasBarrow, UK

    Offshore Technology

    19 Projects, 900 MW Installed, shallow water

    ,

    3 4 MW upwind configuration

    5-6 MW turbines in prototype

    80 m towers

    Monopile & gravity foundations < 15m

    Many challenges turbine only 1/3 project costs

    Performance Average 45+% Capacity Factor 11 c/kwhr UK Thames Estuary site

    40 MW Bonus Middlegrunden

    Farm in Copenhagen Harbor

    24 /June 2009

  • 8/12/2019 Lyons (Wind energy systems)

    25/41

    Middlegrunden Copenhagen Harbor

    25 /June 2009

  • 8/12/2019 Lyons (Wind energy systems)

    26/41

    Gamechanger: US Offshore Wind

    Wind Map off Long Island Virginia to Boston,densest US population

    LIPA lannin 140 MW ilot offshore-electric prices

    Huge renewable assetwithin 50 km of coast

    and less than 50 m

    farm

    RPS in NY, Mass, Conn RPS will drive need for large scalerenewables

    Deeper water foundation technology & higher power moreeconomic turbines needed

    Great Lakes close to large load centers in US & Canada Toronto, Cleveland, Detroit, Chicago, Milwaukee,

    Lake Erie shallowest at 15-30 m

    26 /June 2009

    Foundation technology 50-70 m would enable largedeployment need to withstand ice conditions

  • 8/12/2019 Lyons (Wind energy systems)

    27/41

    Offshore Machines

    Nacelle

    Manufacturer ModelPower

    (MW)

    Rotor

    (m)

    Weight

    + Rotor

    (kg)

    GeneratorCf

    (%)# Units

    Enercon E112 4.5 112 440 WF Sync 44.0 5

    Enercon E120 6 120 440 WF Sync 41.6 0*

    .

    Vestas NM110 4.2 110 214 DFIG 44.6 1

    Vestas V120 4.5 120 214 DFIG 46.5 0*GE 3.6s 3.6 104 280 DFIG 45.3 9

    GE 3.6sl 3.6 111 265 DFIG 47.9 0*

    Siemens/Bonus 3.6 3.6 107 200 Induction 46.4 1

    Repower 5M 5 126 400 DFIG 46.3 1

    Prokon Nord Multibrid 5 116 280 PM Sync 43.4 1 Vestas V903MW, 90m

    Siemens Bonus 3.63.6MW, 107m* planned upgrades

    27 /June 2009

    Enercon E-112/120m,4.5/6MW

    Prokon Nord5MW, 116m

    Vestas NM110/V120m4.2/4.5 MW

    GE 3.6 MW 104/111m Repower 5M 5MW, 126

  • 8/12/2019 Lyons (Wind energy systems)

    28/41

    Offshore Installation TechniquesEarly Industry Approach

    ump ng ac arge to nsta tur nes notdesigned for offshore wind industry

    Separate cable-laying vessel additionalship to charter

    Turbine access using conventional boat 1m wave height limit.

    Learning from Experience

    Mayflower Resolution vessel purpose-designed to install offshorewind turbines and infrastructure

    Transports turbines, towers, blades to foundation and erects

    Capable of laying cables

    Specially-designed Windcat turbine access craft allows installationand commissioning to continue in strong sea-states (2.5m waveheight)

    Going Deeper

    Floating platforms / turbines can be assembled at a port

    Tugs to take assembly to wind farm location

    28 /June 2009

    ecure y a ac e o anc or ng po n s

  • 8/12/2019 Lyons (Wind energy systems)

    29/41

    Foundation Technologies

    0 20m : Mono ile & ravit foundations are most

    Jacket weight increases

    with depth even at

    constant MW rating

    prevalent; Resonance constraints from rotoroperation leads to increasing tonnage &manufacturing limits.

    .Depth dependence on weight

    can be reduced substantially

    with a floating foundation

    system

    Gravity FoundationNear Shore

    Monopile20 m, 12 km

    20 40m: Multi-legged jacket/tripod/braced pilestructures from O&G industry experience. JointFatigue & O&M issues are main design drivers.

    40m beyond : Floating Platforms: Mini-TLP / Sparbuoy based platforms under investigation; Primary

    29 /June 2009

    -dependence from water depth.

  • 8/12/2019 Lyons (Wind energy systems)

    30/41

    Monopile Foundation System Design Drivers

    Modal Analysis - 3.6s/sl Tower/Foundation2

    2nd Mode Desi n Box :

    1.2

    1.6

    (Hz)

    6P +/-10%

    (2X BladePass Freq )

    15.3r

    pm

    1440rpm

    erator

    in=8. 5

    rp m

    r,800rp m

    enerat o

    r

    Nmax

    =21

    .3rpm

    r otor,20 0

    0rpm

    gen

    era

    tor

    f1 >1.607

    0.8

    Frequenc

    3P +/-10%

    (Blade Pass Freq

    Nrtd

    rotor,

    ge

    Nmi

    rot g

    0

    0.41P +/-10%

    (Rotor Pass Freq

    1st Mode Design Box: 0.28< f0>0.383n = rotor speed

    nR = Ratedrotor speed

    Note: Range for f1 depen d s on chosen rated rpm

    . . . . . .

    Relati ve Rotor Speed (n/n R)

    30 /June 2009

    Eigen Frequency Often Primary Driver for Monopile Designs

  • 8/12/2019 Lyons (Wind energy systems)

    31/41

    Nysted Rdsand

    31 /June 2009

    Source: http://www.aarsleff.com/internet/acms.nsf/Webpages/168241DB8B190997C1256D2B0029822E

    -

  • 8/12/2019 Lyons (Wind energy systems)

    32/41

  • 8/12/2019 Lyons (Wind energy systems)

    33/41

    Electrical BOP

    Radial 33 kV col lector s stem

    , ,

    maintenance and 20 year design life.

    Need shelter in case someone gets stranded on the platform.

    High capacitances of sea cables - reactive compensation and

    regulation can play a substantial role in system design.

    Transmission

    Connection

    xxxx

    x x x

    CBs

    33kV

    Collector ESP(500MW block)Collector Circuits

    1-7

    8-14

    15-21

    22-28

    x x

    400kV

    Shore Connection(500MW block)

    x x132kV

    x xCB

    132kV

    System Layout for 500MW UK Farm

    BOP Estim ate

    Equipment Cost Total

    x Transformer Disconnect/Earthing Switch

    -

    77-84Disconnect/

    Earthing Switch

    Transformer

    Horns Rev 180 MW ESP

    500 MW ESP (electrical equipment) $12,925,000

    500 MW ESP (platform) $32,075,000 $45,000,000

    33 kV Cable (84 miles) $25,000,000

    33 kV Cable installation and burial (84 miles) $33,000,000

    115 kV Cable (8 miles submarine, 6 miles land) $64,000,000

    33 /June 2009

    a e - ns a su mar ne , , , ,

    Total $188,000,000

    Transmission Options, UMass

  • 8/12/2019 Lyons (Wind energy systems)

    34/41

    UK Offshore 500MW Farm Thames Estuary

    Assumptions

    Next-gen turbines: 4, 5, 6, or 7 MW

    Swept Area: 2.6 m2/kW (approx. same as 3.6sl)

    Specific Weight: 55 kg/kW

    Tip clearance to water: 25m

    Soil Profile from GunFleet Sands 12 m water depth, 20 km to shore

    90 m/s tip speed

    4 MW 5 MW 6 MW 7 MW# Turbines 125 100 83 71Rotor (m) 116 130 142 153.5

    Hub Height (m) 83 90 96 102

    Model Inputs

    UK economics structure w/ 10.25 c/kWhr

    Tower Top Mass (tonnes) 220 275 330 385

    Yield (MWhr) 15600 19500 23400 27650

    Capacity Factors 44.5% at Gunfleet 9.3m/s at 78m

    After Tax Unlevered IRR = 9.5%

    Foundation & Tower costs f(MW size)

    Civil installation costs f(MW size)

    Electrical BOP costs f(MW size)

    ModelOutput

    Wind Farm Price/MW f(MW

    Size)

    34 /June 2009

    CSA costs f(MW size)

  • 8/12/2019 Lyons (Wind energy systems)

    35/41

    Economics of 500 MW Offshore Wind Park

    ssump ons

    Nextgenturbines:4,5,6,or7MW

    SweptArea:2.6m2/kW

    SpecificWeight:55kg/kW

    .

    1400

    1450

    Cost($)

    2.80

    2.90

    MW

    Tipclearancetowater:25m

    ThamesEstuary

    12

    m

    water

    depth,

    20

    km

    to

    shore

    90m/stipspeed1200

    1250

    1300

    indfarmC

    apital

    2.40

    2.50

    2.60

    .

    CapitalC

    ostpe

    ($/MW)

    InstallationCosts

    vs

    ElectricalBOPCostsvsTurbineRating

    $170M

    $180M

    $190M

    PCost

    1150

    4 5 6 7

    Turbine Rating (MW)

    2.30

    500MW Wind Farm Breakdown

    $1.2B Total w/ 5MW Turb ines

    35%

    12%

    Turbines

    Foundation Costs vs Turbine Ratin

    ur ne a ng

    $160

    $180

    $200

    $220

    $MM

    $150M

    $160M

    3 4 5 6 7 8

    TurbineMW

    BO

    12%

    15%

    CSAConstruction & Installation

    BOP Electrics

    Project Other

    550

    600

    650

    700

    750

    800

    850

    900

    950

    1000

    Cost(K$)

    60

    80

    100

    120

    140

    160

    180

    200

    FabCost(K$/MW) $100

    $120

    3 4 5 6 7 8

    35 /June 2009

    10%

    400

    450

    500

    GE 4 MW uni t GE 5 MW un it GE 6 MW un i t GE 7 MW un i t

    0

    20

    40

  • 8/12/2019 Lyons (Wind energy systems)

    36/41

    GW Scale Wind

    10 MW Turbines 180 m rotor diameter

    ownw n a e mac ne

    Flexible compliant blades Flow control blades

    g rpm p ve oc y > m s

    Space frame structure

    Multivariable damping controls m wa er ep oun a on

    Hurricane ride-thru capability

    EU Upwind R&D ProgramCan the economics work?

    36 /June 2009

  • 8/12/2019 Lyons (Wind energy systems)

    37/41

    Wind Energy

    Cornell une

    JP Lyons - CTO Novus Energy Partners

    20% US Wi d Vi i

  • 8/12/2019 Lyons (Wind energy systems)

    38/41

    20% US Wind Vision 2030 DOE, AWEA, 20% Energy Roadmap

    Black & Veatch US Wind Supply Curve

    300+ GW, 15% CAGR, 25 years

    $60B investment in Transmission

    Benefits (2030):

    - 50% reduction NG electric gen

    - 18% reduction in coal gen

    - 7500 MMTCE cumulative carbon reduction

    - 17% water use reduction for west generation

    - 150,000 direct jobs created

    Great Plains Wind,

    38 /June 2009

    US Wind Resource

    Hi h P t ti Wi d B d 10%

  • 8/12/2019 Lyons (Wind energy systems)

    39/41

    High Penetration Wind Beyond 10%

    --+

    Vref(from gridoperator)

    Ihs [AB]

    Line Drop Compensation

    Vhs

    Vhs max

    Verror

    -

    HighSide VoltageLimiter

    QB up

    (MVAr)

    Vhs ref

    Vhs min

    Vhs

    -Qi(to NWTGs)

    VoltageRegulationMode

    -

    Y

    switchdelay(for sim.model)

    deadbandRegulation

    ModeSelection

    Qtotal

    Qshunt

    Qwtgnet

    from SCADA:NWTGs on-line

    N

    ++

    +

    Qmax

    = Bma

    + N*Qimax

    Qmin=B min+ N*Qimin

    anti-windupon Qmax/min

    PFAref

    (from grid

    operator)

    Ihs[AB]

    PFCalculation withLineDropCompensation

    Vhs

    +

    +

    PFAc

    - PFAerr

    anti-windupon Vhs max/min

    Power Factor Regulation Mode

    Kppf+Kipf/s

    1N

    1s

    IfQerr1 >0then

    out=Qerr1elsereset

    integrator

    Qerr1 out

    reset

    IfX 1 >MSC/R tol

    thendisconnect

    LorconnectC

    SwitchedLorC?

    X1

    reset

    -

    ++

    QB down

    (MVAr)

    IfQerr2 < 0 If X2

  • 8/12/2019 Lyons (Wind energy systems)

    40/41

    ISO

    Timers)

    Operation Process Issues

    Unit Dispatch

    600

    700

    1 Year

    Lines

    Slower(Yea Resource and

    Capacity Planning

    (Reliability)0

    100

    200

    300

    400

    500

    0 2000 4000 6000 8000

    Hour

    MW

    (UCAP, ICAP)

    andLong-Term Load

    Growth Forecasting

    Unit Commitmentand

    Day-ahead and-

    2001 Average Load vs Average Wind

    20,000

    25,000

    30,000

    ad(MW)

    1,000

    1,200

    1,400

    1,600

    ut(MW)

    1 Day

    Day-AheadScheduling

    Forecasting

    e

    Frame

    0

    5,000

    10,000

    15,000

    1 6 11 16 21

    Hour

    NYISOLo

    0

    200

    400

    600

    800

    WindOut

    July load August load September load

    July w ind August w ind September w ind

    3000

    Load Following(5 Minute Dispatch)

    Ti

    Hour-AheadForecasting

    andPlant Active PowerManeuvering and

    Management500

    1000

    1500

    2000

    2500

    MW

    3 Hours

    Frequency andTie-Line Regulation(s

    econds)

    Real-Time andAutonomo us Pro tection

    and Control Functions

    0

    1 61 121

    M in u t e s

    S ep tem ber M or ni ng A u gu st Mo rn ing M ay E ve nin g Oc tob er Ev en in g A pr il A f te rn oon

    10 Minutes

    40 /June 2009

    (AGC)

    Faster (AGC, LVRT, PSS,

    Governor, V-Reg, etc.)

    References

  • 8/12/2019 Lyons (Wind energy systems)

    41/41

    Wind Energy Handbook

    References

    , , , Hardcover: 642 pages ; Dimensions (in inches): 1.58 x 9.82 x 6.70

    Publisher: John Wiley & Sons; ISBN: 0471489972; 1st edition (November 15, 2001)

    Windturbines: Fundamentals, Technologies, Application and Economics

    by Erich Hau Hardcover: 650 pages

    Publisher: Springer Verlag; ISBN: 3540570640; (April 30, 2000)

    by Robert Harrison, Eric Hau, Herman Snel Paperback: 200 pages ; Dimensions (in inches): 0.57 x 10.86 x 8.66

    Publisher: John Wiley & Sons; ISBN: 0471494569; (January 2001)

    Wind Energy Explained

    by J. F. Manwell, Jon McGowan,Anthony Rogers Hardcover: 512 pages ; Dimensions (in inches): 1.49 x 9.88 x 6.64

    Publisher: John Wiley & Sons; ISBN: 0471499722; 1st edition (June 15, 2002)

    Grid Integration of Wind Energy Conversion Systemsby Siegfried Heier, Rachel Waddington (Translator Hardcover: 250 pages ; Dimensions (in inches): 1.01 x 9.92 x 6.80

    Publisher: John Wiley & Son Ltd; ISBN: 047197143X; (September 1998)

    41 /June 2009