lti system analysis with the laplace...

25
LTI System Analysis with the Laplace Transform

Upload: vankien

Post on 21-Aug-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

LTI System Analysis withthe Laplace Transform

Laplace transforms

The diagram commutesSame answer whichever way you go

Linearsystem

Differentialequation

Classicaltechniques

Responsesignal

Laplacetransform L

Inverse Laplacetransform L-1

Algebraicequation

Algebraictechniques

Responsetransform

Tim

e do

mai

n (t

dom

ain) Complex frequency domain

(s domain)

Laplace Transform - definition

Function f(t) of timePiecewise continuous and exponential order

0- limit is used to capture transients and discontinuities at t=0s is a complex variable (σ+jω)

There is a need to worry about regions of convergence ofthe integral

Units of s are sec-1=Hz

A frequency

btKetf <)(

∫∞

−=0-

)()( dtetfsF st

Laplace transform examplesStep function – unit Heavyside Function

After Oliver Heavyside (1850-1925)

Exponential functionAfter Oliver Exponential (1176 BC- 1066 BC)

Delta (impulse) function δ(t)

0if1

)()(

0

)(

000

>=+

!=!===

"+!"!"

!

!"

!

!## $

%$

%$

sj

e

s

edtedtetusF

tjststst

<=

0for,10for,0

)(tt

tu

! !" "

"+#

+###>

+=

+#===

0 0 0

)()( if

1)( $%

$$

$$$

ss

edtedteesF

tstsstt

sdtetsFst allfor1)()(

0

== !"

#

#$

Laplace Transform Pair Tables

damped cosine

damped sine

cosine

sine

damped ramp

exponential

ramp

step

impulse

TransformWaveformSignal)(t!

22)( !"

"

++

+

s

s

22)( !"

!

++s

22 !

!

+s

22 !+s

s

1

s

1

2

1

s

!+s

1

2)(

1

!+s

)(tu

)(ttu

)(tuet!"

)(tut

te!"

( ) )(sin tut!

( ) )(cos tut!

( ) )(sin tutt

e !"#

( ) )(cos tutt

e !"#

Laplace Transform Properties

Linearity – absolutely critical propertyFollows from the integral definition

Example

!

L Af1(t) + Bf

2(t){ } = AL f1 (t){ } + BL f2 (t){ } = AF

1(s) + BF

2(s)

!

L Acos("t){ } = LA

2ej"t + e# j"t[ ]

$ % &

' ( )

=A

2L e

j"t{ } +A

2L e

# j"t{ }

=A

2

1

s# j"+A

2

1

s+ j"

=As

s2 + " 2

Laplace Transform Properties

Integration property

Proof

Denote

so

Integrate by parts

( )s

sFdf

t

=!"#

$%&'0

)( ((L

dtstet

dft

df !"#

"=" $%

&'(

)

*+,

-./

0 0

)(

0

)( 0000L

)(and,

0

)(and,

tfdt

dye

dt

dx

tdfy

s

stex

st==

!=

""=

"

##

!!!"

#"

#+

$$%

&

''(

)#=

$$%

&

''(

)

0000

)(1

)()( dtetfs

dfs

edf st

tstt

****L

Laplace Transform Properties

Differentiation Property

Proof via integration by parts again

Second derivative

)0()()(

!!="#$

%&'

fssFdt

tdfL

)0()(

0

)(0

)(

0

)()(

!!=

"#

!

!+

#

!$%

&'(

) !="

#

!

!=

*+,

-./

fssF

dtstetfsstedt

tdfdtste

dt

tdf

dt

tdfL

)0()0()(2

)0()()(

2

)(2

!"!!!=

!!#$%

&'(

=#$%

&'(

)*

+,-

.=

/#

/$%

/&

/'(

fsfsFs

dt

df

dt

tdfs

dt

tdf

dt

d

dt

tfdLLL

Laplace Transform PropertiesGeneral derivative formula

Translation propertiess-domain translation

t-domain translation

)0()0()0()()( )(21 !!!!"!!!=#$

#%&

#'

#() !! mmm

m

m

ffsfssFdt

tfdL

msL

)()}({ !!+=

" sFtfe tL

{ } 0for)()()( >=!!! asFeatuatf as

L

Laplace Transform Properties

Initial Value Property

Final Value Property

Caveats:Laplace transform pairs do not always handle

discontinuities properlyOften get the average value

Initial value property no good with impulsesFinal value property no good with cos, sin etc

)(lim)(lim0

ssFtfst !"+"

=

)(lim)(lim0

ssFtfst !"!

=

Laplace Transform Properties

Multiplication-Convolution Property

Critical property for notion of transfer function

More in a bit…

!

L{ f (t) * g(t)} = F(s)G(s)

Rational FunctionsWe shall mostly be dealing with LTs which are

rational functions – ratios of polynomials in s

pi are the poles and zi are the zeros of the function

K is the scale factor or (sometimes) gain

A proper rational function has n≥mA strictly proper rational function has n>mAn improper rational function has n<m

)())((

)())((

)(

21

21

011

1

011

1

n

m

nn

nn

mm

mm

pspsps

zszszsK

asasasa

bsbsbsbsF

!!!

!!!=

++++

++++=

!!

!!

L

L

L

L

How Laplace transforms are born…in MAE 143A

From linear ODEs:

Under zero initial conditions, Laplace tranforms produce

For any given X(s) we can compute Y(s)!

This is the same as convolution in the time domain:

!

y(n )(t) + a

1y(n"1)(t) + ...+ any(t) = b

0x(m )(t) + b

1x(m"1)

(t) + ...+ bmx(t)

!

sn + a

1sn"1 + ...+ a

n( )Y (s) = b0sm + b

1sm"1 + ...+ b

m( )X(s)

!

Y (s) = H(s)X(s), H(s) :=b0sm

+ b1sm"1

+ ...+ bm

sn

+ a1sn"1

+ ...+ an

!

H(s) = L h(t){ }, Y (s) = H(s)X(s), y(t) = h(" )x(t # " )d"#$

$

%

Example

Compute the impulse response of the RC circuitdescribed by the ODE:

Apply Laplace tranform:

The impulse response is then

!

" y (t) +1

RCy(t) =

1

RCx(t)

!

Y (s) = H(s)X(s), H(s) ="

c

s+"c

, "c:=

1

RC

!

h(t) = L"1H(s){ } =

1

RCe"1

RCt

u(t)

Inverting Laplace Transforms

We have a table of inverse LTsWrite F(s) as a partial fraction expansion

Now appeal to linearity to invert via the tableSurprise!Nastiness: computing the partial fraction expansion is best

done by calculating the residues

!

F(s) =bms

m + bm"1sm"1 +L+ b1s+ b0

ansn + an"1s

n"1 +L+ a1s+ a0

= K(s" z1)(s" z2)L(s" zm)

(s" p1)(s" p2)L(s" pn )

=#1

s" p1( )+

#2

s" p2( )+

#31

(s" p3)+

#32

s" p3( )2

+#33

s" p3( )3

+ ...+#q

s" pq( )

Inverting Laplace Transforms

Compute residues at the poles

Bundle complex conjugate pole pairs into second-order terms ifyou want

but you will need to be careful

Inverse Laplace Transform is a sum of complex exponentials

In Matlab, check out [r,p,k]=residue(b,a), where b = coefficients of numerator; a = coefficients of denominator r = residues; p = poles; k = result of long division

!

(s"# " j$)(s"# + j$) = s2 " 2#s+ # 2 + $ 2( )[ ]

)()(lim sFas

as

!"

!

1

( j "1)!lims#a

dj"1

dsj"1

(s" a)mF(s)[ ]

Strictly Proper Laplace Transforms

Find the inverse LT of)52)(1(

)3(20)( 2 +++

+=

sssssF

!

F(s) =k1

s+1+

k2

s+1" 2 j+

k2

*

s+1+ 2 j

!4

5

2555

21)21)(1(

)3(20)()21(

21lim2

10

1522

)3(20)()1(

1lim1

jej

jsjss

ssFjs

jsk

sss

ssFs

sk

=""=

+"=+++

+="+

+"#=

=

"=++

+=+

"#=

!

f (t) = 10e" t

+ 5 2e("1+2 j )t+ j

5

4#

+ 5 2e("1"2 j )t" j

5

4#$

% &

'

( ) u(t)

= 10e"t

+10 2e"tcos(2t +

5#

4)

$

% & '

( ) u(t)

Laplace Transforms with Multiple Poles

Compute residues at the poles

Example!

1

( j "1)!lims# a

dj "1

dsj "1

(s" a)mF(s)$ % &

' ( )

( ) ( ) ( ) ( )31

3

21

1

1

2

31

3)1(2)1(2

31

522

+!

++

+=

+

!+++=

+

+

ssss

ss

s

ss

3)1(

)52()1(lim 3

23

1−=

+

++

−→ ssss

s1

)1()52()1(lim 3

23

1=

+

++

−→ ssss

dsd

s

2)1(

)52()1(lim!2

13

23

2

2

1=

+

++

−→ ssss

dsd

s

( ) )(32)1(52 23

21 tutte

sss t −+=

+

+ −−L

Not Strictly Proper Laplace Transforms

Find the inverse LT of

Convert to polynomial plus strictly proper rational functionUse polynomial division

Invert as normal

348126)( 2

23

++

+++=

ssssssF

3

5.0

1

5.02

34

22)(

2

++

+++=

++

+++=

sss

ss

sssF

!

f (t) = " # (t) + 2#(t) + 0.5e$t + 0.5e$3t[ ]u(t)

System stability

Easy to determine using the transfer function

System is BIBO stable ifall the poles of the transfer function lie in theopen left half of the s plane

The system is called marginally stable if there aresimple poles on the imaginary axis and no poles inthe right half-plane.

Marginally stable is a particular case of BIBOunstable.

!

H(s)

System interconnections

Cascade interconnection Parallel interconnection!

+

!

H1(s)

!

H2(s)

!

H2(s)

!

H1(s)

!

X(s)

!

X(s)

!

Y (s)

!

Y (s)

!

Y (s)

!

Y (s)

!

X(s)

!

X(s)

!

H1(s)H

2(s)

!

H1(s) +H

2(s)

Feedback interconnection

is the plant or original system we want to control is the sensor/controller selected to make closed-loopsystem have certain property (e.g., stability)

Example:

Much more about this in MAE143B…

!

+

!

+

!

"

!

H1(s)

!

H2(s)

!

X(s)

!

Y (s)

!

H1(s)

1+H1(s)H

2(s)

!

X(s)

!

Y (s)

!

E(s)

!

H1(s)

!

H2(s)

!

H1(s) =

1

s,

!

H2(s) = K,

!

H1(s)

1+H1(s)H

2(s)

=1

s+K

Block diagrams - revisited

Multiple ways of drawing a system block diagram for strictlyproper (n≥m) transfer functions

(if n>m, then some of the are zero)• as a product,

!

H(s) =Y (s)

X(s)=bnsn

+ bn"1s

n"1+L+ b

1s+ b

0

ansn

+ an"1s

n"1+L+ a

1s+ a

0

!

bi

!

H(s)

!

H2(s) =

Y (s)

Y1(s)

= bnsn

+ bn"1s

n"1+L+ b

1s+ b

0

!

H1(s) =

Y1(s)

X(s)=

1

ansn

+ an"1s

n"1+L+ a

1s+ a

0

!

H1(s)H

2(s)

!

H1(s)

!

H2(s)

!

X(s)

!

Y (s)

!

Y1(s)

Block diagrams - revisited

sNY1s( ) =

1

aN

X s( )! aN!1s

N!1Y1s( ) +L+ a

1sY

1s( ) + a

0Y1s( )"# $%{ }

!

H(s)

!

H1(s)

Block diagrams - revisited• in cascade form

• in parallel form

!

H(s) = A(s " z

1)

(s " p1)L(s " zm )

(s " pm )

1

(s " pm+1)L

1

(s " pn )

!

H(s) =K1

(s " p1)

+L+Kn

(s " pn )