low temperature silicon rf-pecvd epitaxy for thin film...

32
Romain Cariou Jean-Louis Gentner & Pere Roca i Cabarrocas 14/12/2012 Low temperature Silicon RF-PECVD epitaxy for thin film crystalline solar cells

Upload: lamkhuong

Post on 02-Jul-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Low temperature Silicon RF-PECVD epitaxy for thin film ...jnpv.geeps.centralesupelec.fr/documents/docjnpv2012/Actes/cariou.pdf · Romain Cariou Jean-Louis Gentner & Pere Roca i Cabarrocas

Romain Cariou

Jean-Louis Gentner & Pere Roca i Cabarrocas 14/12/2012

Low temperature Silicon RF-PECVD epitaxy for thin film crystalline

solar cells

Page 2: Low temperature Silicon RF-PECVD epitaxy for thin film ...jnpv.geeps.centralesupelec.fr/documents/docjnpv2012/Actes/cariou.pdf · Romain Cariou Jean-Louis Gentner & Pere Roca i Cabarrocas

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

Outline

► Introduction ■ Motivations & literature overview

■ Potential of thin crystalline silicon solar cells

■ RF-PECVD: a versatile tool for PV materials

►Silicon epitaxy by RF-PEVCD at 175°C ■ Material properties

■ Thin film epi-Si solar cell

■ Improvement strategy

►Perspectives ■ Light management

■ Transfer to foreign substrate

■ Hetero-epitaxy

►Conclusion

Page 3: Low temperature Silicon RF-PECVD epitaxy for thin film ...jnpv.geeps.centralesupelec.fr/documents/docjnpv2012/Actes/cariou.pdf · Romain Cariou Jean-Louis Gentner & Pere Roca i Cabarrocas

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

Motivations

► Low cost innovative concepts are needed for TW scale

►Material: ~ 1/3 of PV pannel cost ■ High temperature (T > 1000°C), kerf losses, etc.

►Thin wafers are difficult to handle ■ 180-150 µm wafer thickness is close to the

mechanical limit

►Thinner c-Si layer can achieved high Eff. ■ Epi match wafer based devices: 43 µm | 19.1%

certified

■ Currently at the lab scale

3

J.H. Petermann et al., Prog. in Photovoltaics 20, 1 (2012)

http://en.wikipedia.org/wiki/Solar_cell

►Crystalline silicon solar cells > 80 % market share

Page 4: Low temperature Silicon RF-PECVD epitaxy for thin film ...jnpv.geeps.centralesupelec.fr/documents/docjnpv2012/Actes/cariou.pdf · Romain Cariou Jean-Louis Gentner & Pere Roca i Cabarrocas

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

Thin Film c-Si: literature overview

Top down approach: wafer thinning, exfolitation, Epi-Free

4

a

b

c

aA. Wang et al.,Prog in Photovoltaics 4, 55–58 (1996) bR.A. Rao et al., 37th IEEE PVSC, 001504 –001507 (2011) cC. Trompoukis et al., Applied Physics Letters 101, 103901 (2012)

Page 5: Low temperature Silicon RF-PECVD epitaxy for thin film ...jnpv.geeps.centralesupelec.fr/documents/docjnpv2012/Actes/cariou.pdf · Romain Cariou Jean-Louis Gentner & Pere Roca i Cabarrocas

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

Thin Film c-Si: literature overview

Bottom up: epitaxy and lift off from wafer

5

a

b

c

d

e

f

aA. Wang et al.,Prog in Photovoltaics 4, 55–58 (1996) bR.A. Rao et al., 37th IEEE PVSC, 001504 –001507 (2011) cC. Trompoukis et al., Applied Physics Letters 101, 103901 (2012)

dR.B. Bergmann et al., Sol Energ Mater 74, 213 (2002)

eJ.H. Petermann et al., Prog. in Photovoltaics 20, 1 (2012) fhttp://optics.org/indepth/3/7/3

Page 6: Low temperature Silicon RF-PECVD epitaxy for thin film ...jnpv.geeps.centralesupelec.fr/documents/docjnpv2012/Actes/cariou.pdf · Romain Cariou Jean-Louis Gentner & Pere Roca i Cabarrocas

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

gP. Rosenits et al., Thin Solid Films 519, 3288 (2011) hK. Van Nieuwenhuysen et al., Thin Solid Films 518,S80 (2010)

eK. Alberi et al., Appl. Phys. Lett. 96, 073502 (2010) jR. Cariou et al., Proc. SPIE - 84700B (2012).

Thin Film c-Si: literature overview

aA. Wang et al.,Prog in Photovoltaics 4, 55–58 (1996) bR.A. Rao et al., 37th IEEE PVSC, 001504 –001507 (2011) cC. Trompoukis et al., Applied Physics Letters 101, 103901 (2012)

dR.B. Bergmann et al., Sol Energ Mater 74, 213 (2002)

eJ.H. Petermann et al., Prog. in Photovoltaics 20, 1 (2012) fhttp://optics.org/indepth/3/7/3

a

b

c

d

e

f

g

h

e

j

6

Page 7: Low temperature Silicon RF-PECVD epitaxy for thin film ...jnpv.geeps.centralesupelec.fr/documents/docjnpv2012/Actes/cariou.pdf · Romain Cariou Jean-Louis Gentner & Pere Roca i Cabarrocas

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

RF-PECVD tool for thin film crystalline materials

► Target low cost solar cells, whithout compromise on efficiency, using our novel approach

► Tool: RF-PECVD (13,56 MHz) capacitively coupled reactor

► Temperature range [150-250]°C: - 3 plasma boxes - 1 vacuum chamber - no load lock - no UHV

► Industrial standard, low cost & flexible tool

► Wide range of materials:

■ a-Si:H, a-Ge:H, µc-Si, SiNx, SiOx c-Si, c-Ge

15cm15cm

ARCAM reactor

rf-PECVD (13,56 MHz) for a-Si materials deposition

High quality crystalline material for photovoltaics deposited

below 200°C !! P. Roca i Cabarrocas, J. Vac. Sci. Technol. A 9, 2331 (1991)

7

Page 8: Low temperature Silicon RF-PECVD epitaxy for thin film ...jnpv.geeps.centralesupelec.fr/documents/docjnpv2012/Actes/cariou.pdf · Romain Cariou Jean-Louis Gentner & Pere Roca i Cabarrocas

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

Equipment update

8

15cm15cm

ARCAM reactor

rf-PECVD (13,56 MHz) for a-Si materials deposition

ARCAM

ARCAM 200

Cluster tool

Page 9: Low temperature Silicon RF-PECVD epitaxy for thin film ...jnpv.geeps.centralesupelec.fr/documents/docjnpv2012/Actes/cariou.pdf · Romain Cariou Jean-Louis Gentner & Pere Roca i Cabarrocas

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

Equipment update

9

15cm15cm

ARCAM reactor

rf-PECVD (13,56 MHz) for a-Si materials deposition

ARCAM

ARCAM 200

Cluster tool

Page 10: Low temperature Silicon RF-PECVD epitaxy for thin film ...jnpv.geeps.centralesupelec.fr/documents/docjnpv2012/Actes/cariou.pdf · Romain Cariou Jean-Louis Gentner & Pere Roca i Cabarrocas

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

Outline

►Silicon epitaxy by RF-PEVCD at 175°C ■ Material properties

■ Thin film epi-Si solar cell

■ Improvement strategy

Page 11: Low temperature Silicon RF-PECVD epitaxy for thin film ...jnpv.geeps.centralesupelec.fr/documents/docjnpv2012/Actes/cariou.pdf · Romain Cariou Jean-Louis Gentner & Pere Roca i Cabarrocas

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

Silicon epitaxy proof

►Si homoepitaxy in literature: ■ Widely used techniques: CVD, HWCVD, etc. Temp. range T=[700-1100]°C

►Evidence of Si epitaxy by RF-PECVD at 175 °C on c-Si (100) wafers by ellipsometry

11

►Good agreement with optical model

►Epi fitted with 100 % c-Si

Page 12: Low temperature Silicon RF-PECVD epitaxy for thin film ...jnpv.geeps.centralesupelec.fr/documents/docjnpv2012/Actes/cariou.pdf · Romain Cariou Jean-Louis Gentner & Pere Roca i Cabarrocas

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

Silicon epitaxy proof

►Si homoepitaxy in literature: ■ Widely used techniques: CVD, HWCVD, etc. Temp. range T=[700-1100]°C

►Evidence of Si epitaxy by RF-PECVD at 175 °C on c-Si (100) wafers by ellipsometry

12

►Good agreement with optical model

►Epi fitted with 100 % c-Si

Epitaxy up to 6 µm, no breakdown observed so far !

Page 13: Low temperature Silicon RF-PECVD epitaxy for thin film ...jnpv.geeps.centralesupelec.fr/documents/docjnpv2012/Actes/cariou.pdf · Romain Cariou Jean-Louis Gentner & Pere Roca i Cabarrocas

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

Silicon epitaxy proof

► TEM crossection of epi-layer covered by a-Si:H

► Monocrystalline quality confirmed by FFT

► Defects at c-Si|epi-Si interface due to air exposure after chemical cleaning

► Defects within the bulk material: probably passivated thanks to the high hydrogen incorporated during growth at 175 °C

13

C-Si wafer

Epi-Si

Epi-Si

a-Si:H

Glue

(-1,1,1) (1,-1,1)

(1,-1,-1) (-1,1,-1)

(2,0,0)

(-2,0,0)

(-2,2,0) (2,-2,0)

Page 14: Low temperature Silicon RF-PECVD epitaxy for thin film ...jnpv.geeps.centralesupelec.fr/documents/docjnpv2012/Actes/cariou.pdf · Romain Cariou Jean-Louis Gentner & Pere Roca i Cabarrocas

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

Strain engineering

14

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

Y (

µm

)

-2 0 2

X (µm)

200

400

600

800

1 000

1 200

1 400

1 600

1 800

2 000

2 200

Inte

nsi

ty (

a.u

.)

0.5 µm

D. Shahrjerdi et al., Journal of Electronic Materials 41, 494 (2012)

Biaxially compressively strained PECVD epitaxial silicon: hydrogen content

plays a key role (IBM)

Raman cross section epi-Si/c-Si intensity map – HYJ Lab Aramis

Thanks to Cynthia Takchi & Nada Habka

ITO

N+ aSi:H

Epi-Si

P++ c-Si wafer

Al

Al

Page 15: Low temperature Silicon RF-PECVD epitaxy for thin film ...jnpv.geeps.centralesupelec.fr/documents/docjnpv2012/Actes/cariou.pdf · Romain Cariou Jean-Louis Gentner & Pere Roca i Cabarrocas

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

Low Temp. Epitaxy growth mechanism

►Conventionnal HWCVD requires T>500°C avoid epitaxy breakdown (NREL, Teplin et al.) ■ Main growth precursor: SiHx,Si2Hx, etc.

►By PECVD: high hydrogen content, no epitaxy break down: ■ Nanocrystals observed for sample

co-deposited on glass (pm-Si)

■ Epitaxy hapened on c-Si (100) and not (111)

P. Roca i Cabarrocas et al., (2012) MRS Proceedings, 1426 P. Roca i Cabarrocas, et al., J. Non-Cryst. Solids 358, 2000 (2012) N. Ning and H. Vach, H., J. Phys. Chem. A 114, 3297–3305 (2010)

Autocorrelation function

15

Nanostructured material Silicon nanocrystals in an

amorphous matrix

Page 16: Low temperature Silicon RF-PECVD epitaxy for thin film ...jnpv.geeps.centralesupelec.fr/documents/docjnpv2012/Actes/cariou.pdf · Romain Cariou Jean-Louis Gentner & Pere Roca i Cabarrocas

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

Low Temp. Epitaxy growth mechanism

►Conventionnal HWCVD requires T>500°C avoid epitaxy breakdown (NREL, Teplin et al.) ■ Main growth precursor: SiHx,Si2Hx, etc.

►By PECVD: high hydrogen content, no epitaxy break down: ■ Nanocrystals observed for sample

co-deposited on glass (pm-Si)

■ Epitaxy hapened on c-Si (100) and not (111)

P. Roca i Cabarrocas et al., (2012) MRS Proceedings, 1426 P. Roca i Cabarrocas, et al., J. Non-Cryst. Solids 358, 2000 (2012) N. Ning and H. Vach, H., J. Phys. Chem. A 114, 3297–3305 (2010)

Autocorrelation function

Growth hypothesis:

Nanocrystals/clusters that melting by impacting the (100) c-Si surface with subsequent recrystallization at the c-

Si/melted silicon interface

16

Nanostructured material Silicon nanocrystals in an

amorphous matrix

Page 17: Low temperature Silicon RF-PECVD epitaxy for thin film ...jnpv.geeps.centralesupelec.fr/documents/docjnpv2012/Actes/cariou.pdf · Romain Cariou Jean-Louis Gentner & Pere Roca i Cabarrocas

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

Thin film epi-Si solar cell

►Wafer equivalent solar cells: ■ PIN device with epitaxial thin film acting as an

absorber

■ n+ aSi:H emitter and P++ c-Si « dead » wafer

+R. Cariou et al., Sol. Energy Mater. Sol. Cells 95 (2011) 2260-2263

• Good quality solar cells based on this epi-layer grown at 175°C

• Proof of high quality structural and electrical properties of epi-layers

17

Sample Jsc mA/cm2

Voc V

FF %

Eff %

1104132-A 18,6 527 79 7,7

1104132-A 1h-200°c

19,9 534 80 8,5

►Device with 3,4 µm epi absorber: ■ Low Voc attributed to c-Si|epi-Si

interface

■ 80 % FF achieved upon annealing

3,4 µm

J01 (A/cm2) :1.6E-11 Voc (mV) :541

Page 18: Low temperature Silicon RF-PECVD epitaxy for thin film ...jnpv.geeps.centralesupelec.fr/documents/docjnpv2012/Actes/cariou.pdf · Romain Cariou Jean-Louis Gentner & Pere Roca i Cabarrocas

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

Modelisation for improving thin epi-Si cells

Starting from the extracted material parameters, we obtain:

► Increasing thickness will increase Eff and fraction of photocurrent created in epi-layer (increase dep. rate > 2 A.s-

1)

► Performance more sensitive to epi-Si|wafer interface: Voc can reach > 580 mV (in-situ plasma cleaning)

► FF of 80 achieved by reducing DB in epi-Si (annealing @ 200°C)

► 5µm cell with improvement listed above + front texturing: > 11% Eff.

► Additional back texturing: > 14% Eff.

18

*P. Chatterjee et al., MRS Online Proceedings Library 426 (1996) S. Chakraborty et al., submitted to EPJPV (july 2012)

-2

-1

0

1

0.001 0.01 0.1 1 10 100 1000

En

ergy (

eV

)

Position (microns)

epitaxial SiN-

a-Si:H

P-c-Si

Dandling bonds [cm-3]

Interface defect [cm-2]

Epitaxy thickness

[µm]

Actual 1015 ≥ 1012 3.2

Target 1014 5 X 1011 ≥ 5

Page 19: Low temperature Silicon RF-PECVD epitaxy for thin film ...jnpv.geeps.centralesupelec.fr/documents/docjnpv2012/Actes/cariou.pdf · Romain Cariou Jean-Louis Gentner & Pere Roca i Cabarrocas

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

Epitaxial layer characterisation

►Epitaxy below < 200°C: [0,1-1]% hydrogen content revealed by SIMS ■ Good defect passivation

19 EBIC: Sebastian Schmitt, Max planck institute for the science of light

1,2 mm

1cm2 cell

1602 µm2

►Threading dislocations density evaluation by EBIC : ~ 1.0 X 105 cm2 (HWCVD ≥ 10-4)*

*C.W. Teplin et al., Applied Physics Letters 96, 201901 (2010)

Page 20: Low temperature Silicon RF-PECVD epitaxy for thin film ...jnpv.geeps.centralesupelec.fr/documents/docjnpv2012/Actes/cariou.pdf · Romain Cariou Jean-Louis Gentner & Pere Roca i Cabarrocas

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

Epitaxial layer characterisation

►Epitaxy below < 200°C: [0,1-1]% hydrogen content revealed by SIMS ■ Good defect passivation

20 EBIC: Sebastian Schmitt, Max planck institute for the science of light

1,2 mm

1cm2 cell

1602 µm2

►Threading dislocations density evaluation by EBIC : ~ 1.0 X 105 cm2 (HWCVD ≥ 10-4)*

►EBIC cross section shows charge separation at wafer|epi-Si interface ■ Epitaxy slightly n-type due to residual impurities

■ BSF is needed to separate carriers away from poor wafer/epi interface

*C.W. Teplin et al., Applied Physics Letters 96, 201901 (2010)

Page 21: Low temperature Silicon RF-PECVD epitaxy for thin film ...jnpv.geeps.centralesupelec.fr/documents/docjnpv2012/Actes/cariou.pdf · Romain Cariou Jean-Louis Gentner & Pere Roca i Cabarrocas

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

Chemical texturation

► DI water (89,5mL)|IPA(4,5mL)|KOH (5,9 mL @500g.L-1) - 90°C

► (111) facetted pyramids achieved on (100) wafer: Antireflection + Light trapping effect

► However few µm size motif are needed

21

A: 4 min

Epi-Si 5 µm

P++ c-Si wafer 500 µm

SEM E. Lefeuvre

Page 22: Low temperature Silicon RF-PECVD epitaxy for thin film ...jnpv.geeps.centralesupelec.fr/documents/docjnpv2012/Actes/cariou.pdf · Romain Cariou Jean-Louis Gentner & Pere Roca i Cabarrocas

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

Chemical texturation

22

B: 7 min

A: 4 min ► Short etching time = small light trapping effect

► Longer etching = material waste & poor pyramid shapes (blue shift)

SEM E. Lefeuvre

Page 23: Low temperature Silicon RF-PECVD epitaxy for thin film ...jnpv.geeps.centralesupelec.fr/documents/docjnpv2012/Actes/cariou.pdf · Romain Cariou Jean-Louis Gentner & Pere Roca i Cabarrocas

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

Chemical texturation

23

B: 7 min

A: 4 min Smart light trapping / AR needed for TF-cSi:

- Plasmonic, Nano-photonic, etc. - Large scale compatible (e.g. nano-imprint)

SEM E. Lefeuvre

Page 24: Low temperature Silicon RF-PECVD epitaxy for thin film ...jnpv.geeps.centralesupelec.fr/documents/docjnpv2012/Actes/cariou.pdf · Romain Cariou Jean-Louis Gentner & Pere Roca i Cabarrocas

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

Factor limiting the Voc

Voc mV

Jsc mA.cm-2

FF %

Eff %

HF 537 20.3 79.2 8.0

Piranha 540 19.3 79.3 8.0

24

C-Si wafer

Epi-Si

► Interface quality is not very sensitive to ex-situ cleaning process

►Need for in in-situ oxyde removal

►Or lift off to allow back side processing

Page 25: Low temperature Silicon RF-PECVD epitaxy for thin film ...jnpv.geeps.centralesupelec.fr/documents/docjnpv2012/Actes/cariou.pdf · Romain Cariou Jean-Louis Gentner & Pere Roca i Cabarrocas

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

Outline

►Perspectives ■ Light management

■ Hetero-epitaxy

■ Transfer to foreign substrate

25

Page 26: Low temperature Silicon RF-PECVD epitaxy for thin film ...jnpv.geeps.centralesupelec.fr/documents/docjnpv2012/Actes/cariou.pdf · Romain Cariou Jean-Louis Gentner & Pere Roca i Cabarrocas

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

►Assumptions: - c-Si, AM1.5

- Perfect antireflection

- 100 % IQE

►Single pass abs:

►X10 light trapping:

►Max light trapping*:

Asinglepass = 1 - 𝒆𝒙𝒑(−α𝒅)

AX10 = 1 - 𝒆𝒙𝒑(−𝟏𝟎. α𝒅)

Ayablo. = 1 - 𝟏

𝟏+𝟒𝒏𝟐𝜶𝒅

3µm epi Single pass

3µm epi X10 light trapping

3µm epi max light trapping

Jsc mA/cm2

20.4 35.5 37.7

𝒅

1 - A

How much current for a given thickness 𝒅 ?

26 *E. Yablonovitch and G.D. Cody, IEEE Trans. Electron Devices 29, 300 (1982) M.A. Green, Prog Photovoltaics 10, 235–241 (2002)

Page 27: Low temperature Silicon RF-PECVD epitaxy for thin film ...jnpv.geeps.centralesupelec.fr/documents/docjnpv2012/Actes/cariou.pdf · Romain Cariou Jean-Louis Gentner & Pere Roca i Cabarrocas

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

Advanced design for light management

►Separately RCWA optimized double side nano-cones grating

►Front cones antireflection effect: ■ High aspect ratio: grading index from air to Si

■ Broadband reflection suppression

■ Wide angle efficiency

►Back cones light trapping effect: ■ Excitation of guided resonnances

■ Low coupling/leaking with external channels

27 K.X. Wang et al., Nano Lett. 12, 1616 (2012)

Period Radius Height

Front 500 250 710

Back 1000 475 330

►Feasibility: ■ Langmuir-Blodgett + RIE

Compatible with large scale and lift off process

►34,6 mA/cm2 should be achieved in 2 µm c-Si

2 µm epi-Si is enough to achieve solar cell with Eff > 19 %

Page 28: Low temperature Silicon RF-PECVD epitaxy for thin film ...jnpv.geeps.centralesupelec.fr/documents/docjnpv2012/Actes/cariou.pdf · Romain Cariou Jean-Louis Gentner & Pere Roca i Cabarrocas

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

Silicon epitaxy transfer

► Epi-layers can be detached and transferred to foreign substrates:

■ Need mechanical weak interface as porous silicona

■ Or sacrificial layer and chemical etching

aM. Reuter et al., Sol. Energy Mater. Sol. Cells 93, 704 (2009) bM. Moreno and P. Roca i Cabarrocas, EPJ Photovoltaics 1, 10301 (2010)

► Weak interface epi-Si/c-Si created by plasma treatmentb: ■ Subsequent epi-growth

■ Metal + polymide

■ Curing + annealing

► On going work: - Anode bonding - Epitaxy on sacrificial layers - etc.

28

C-S

i waf

er

Epi-

Si

Page 29: Low temperature Silicon RF-PECVD epitaxy for thin film ...jnpv.geeps.centralesupelec.fr/documents/docjnpv2012/Actes/cariou.pdf · Romain Cariou Jean-Louis Gentner & Pere Roca i Cabarrocas

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

Germanium epitaxy at 175° C by RF-PECVD

29 Submitted to APL (12/2012)

Page 30: Low temperature Silicon RF-PECVD epitaxy for thin film ...jnpv.geeps.centralesupelec.fr/documents/docjnpv2012/Actes/cariou.pdf · Romain Cariou Jean-Louis Gentner & Pere Roca i Cabarrocas

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

Ge epitaxy on c-Si at 175° C by RF-PECVD

► TDD confined close to interface

►Epitaxy improving with thickness

► Low TDD quasi relaxed 150 nm deposited on c-Si residual stress ~0.4%

30 Submitted to APL (12/2012)

Page 31: Low temperature Silicon RF-PECVD epitaxy for thin film ...jnpv.geeps.centralesupelec.fr/documents/docjnpv2012/Actes/cariou.pdf · Romain Cariou Jean-Louis Gentner & Pere Roca i Cabarrocas

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

Multi layer stacks on III-V

31

E.V. Johnson et al., Appl. Phys. Lett. 92, 103108 (2008) M. Labrune et al., EPJ Photovoltaics 3, 30303 (2012)

Page 32: Low temperature Silicon RF-PECVD epitaxy for thin film ...jnpv.geeps.centralesupelec.fr/documents/docjnpv2012/Actes/cariou.pdf · Romain Cariou Jean-Louis Gentner & Pere Roca i Cabarrocas

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

Conclusion

PECVD epitaxy open path to exciting physics and promising solar cell devices

Thank you

Acknowledgements

> LPICM team

> Rosa Ruggeri - TEM > III-V Team

32