low temperature catalytic oxidation of h2s over · pdf filefuel(vehicles(( heat( electricity...

30
Low temperature catalytic oxidation of H 2 S over V 2 O 5 /CeO 2 Catalysts DIIN- Department of Industrial Engineering University of Salerno Vincenzo Palma*, Daniela Barba , Paolo Ciambelli *[email protected] December 11-13, 2013 European Fuel Cell Technology & Applications

Upload: vudan

Post on 04-Mar-2018

218 views

Category:

Documents


3 download

TRANSCRIPT

Low temperature catalytic oxidation of H2S

over V2O5/CeO2 Catalysts

DIIN- Department of Industrial Engineering University of Salerno

Vincenzo Palma*, Daniela Barba , Paolo Ciambelli

*[email protected]

December 11-13, 2013

European Fuel Cell Technology & Applications

Biogas  INTRODUCTION  

Renewable  Energy  Source  Agricultural  

Waste   Biomass  

Sewage  Sludge  

Industrial  Waste  Utilization  

Fuel  Vehicles     Heat   Electricity  Fuel  Cell  

Molten  Carbonate  Fuel  Cells      (MCFC)  

CO2  +  ½  O2  +  2e-­‐  →CO32-­‐                            Catode  

 H2  +  CO3

2-­‐  →H2O  +  CO2  +  2e-­‐            Anode  

q  Can lead to the poisoning of the anode and electrolite q  Can deactivate of sites for the oxidation

INTRODUCTION  

Poisoning problem of the cells by H2S

(sulphur content allowed <1 ppm)

Clean-­‐up    Biogas  :  Purification  Processes  

Dry Processes

Chemical Absorption in aqueous solutions

Physical Solvent Membrane Separation

Biological Desulfurization

INTRODUCTION  

Clean-­‐up    Biogas  :  Oxidation    Processes  

Ø     Catalytic  Oxidation:  Claus  Process  

Ø     Selective    Catalytic  Oxidation  at  Low  Temperature:  

T=950-­‐1250°C  

T=170-­‐350°C  

    T=150-­‐250°C  

 

𝟐𝐇↓𝟐 𝐒 + 𝐒𝐎𝟐= 𝟑⁄𝐧 𝐒𝐧+   𝟐𝐇↓𝟐 𝐎

𝐇↓𝟐 𝐒 + 𝟑⁄𝟐 𝐎𝟐=   𝐒𝐎↓𝟐 +   𝐇↓𝟐 𝐎

𝟏⁄𝐧 𝐒↓𝐧  + 𝐎𝟐=   𝐒𝐎↓𝟐  Temperature and catalyst influence the reaction

mechanism and the process selectivity

Innovative  process  for  H2S    abatement  

INTRODUCTION  

Catalysts    Formulation      (2.55%-­‐20%  v2o5)    

Temperature                    (150-­‐250°C)  

Contact  Time    (4-­‐80  ms)  

Aim  of  the  work  Ø Previous  works..      Among  the  others  V/Ce  seems  to  be  most  promising  

Ø  IN  THIS  WORK      IMPROVE  THE  PROCESS  SELECTIVITY  TO  SULFUR  

V2O5/CeO2      Catalysts  

2.55%  

8%  

20% 10%  

5%  

Wet  Impregnation  of  the  support  with  NH4VO3  aqueous  solution    

 Drying  @120°C  overnight  

Calcination  @400°C  for  3h,  dT/dt  =10°C/min  

EXPERIMENTAL  Preparation  Method  

Characterization  Tecniques  

X-RAY

Diffraction

Raman Spectroscopy

Specific Surface

Area

Catalysts  Characterization  

(*) B.E.T. Method, Pretreatment in He @T=150 C for 1h

DECREASE OF THE SPECIFIC AREA UPON V2O5 ADDITION

Sample Fresh  Catalyst  SSA,  m2/g

CeO2   80

2,55%  V2O5/CeO2   75

5%  V2O5/CeO2   57  

8%  V2O5/CeO2   39

10%  V2O5/CeO2   32

20%  V2O5/CeO2   17

Catalysts  Characterization  

CeO2

EXPERIMENTAL  

CeO2

V=O

V2O5

Polyvanadate

Laboratory  Apparatus  Plant  

Feed Section

Analysis Section

Reaction Section

Analysis Section Mass  Spectrometer  

FT-­‐IR  

O2

Atmospheric  Pressure    

Temperature  :  150-­‐250°C  

H2S  Concentration:    200  ppm  

O2/H2S  (mol:mol)  :  0.5  

Total  Flow  Rate  :  600  Ncm3/min  

GHSV  :  180,000  h-­‐1  (τ  :  20  ms)  

Laboratory  Apparatus  Plant  

OPERATING CONDITIONS:

Catalytic  Activity  Tests  

H2S  

O2  

SO2  

T=150°C,  60  min  

H2O

sig

nal,

-

H2O  

Catalytic  Activity  Tests  RESULTS  

High    Activity  at  any  temperature    

H2S  conversion  >90%      @T≥200°C  

Catalytic  Activity  Tests  

T,  °C   CeO2   V2O5  

150   1   4  

200   3   14  

244   6   19  

Catalytic  Activity  Tests  

H2S conversion (~100%)

for the 20%V2o5/Ceo2

Minimization of So2 selectivity (~1%) for the 20%V2o5/Ceo2

Catalytic  Activity  Tests  

Decrease of H2S conversion

With the temperature

Increase of SO2 selectivity

With the temperature

SSA  Fresh  Catalyst  =  17  m2/g    

Catalytic  Activity  Tests  

Increase of the surface area

Oxidation of sulphur deposited on the catalyst

surface H2S --> S --> SO2

T=150°C  

Contact  Time,  ms 4 10 20 40 80

xH2S,  %   50   88   94   96   98  

SO2,  ppm 0 2 4 13 14

Y  SO2,% 0 0,5 1 2,7 3

T=150°C  

Increase of SO2 concentration

Conclusion  X-­‐Ray  Diffraction    &    Raman  Spectroscopy    

Ø Good  dispersion  of  V2O5  for  all  the  catalysts  Ø Low  content  of  crystalline  vanadium  on  the  20%V2O5/CeO2    

Influence  of  the  vanadium  loading      

Ø Improvement  of  the  catalytic  activity  to  the  increase  of  V2O5  Ø Highest  H2S  conversion  (~100%)  and  lowest  SO2  selectivity  (1%)  @150°C  for  the  20%V2O5/CeO2  catalyst    

Influence  of  the  Contact  Time    

Ø Effect  on  the  specific  area  and  the  SO2  selectivity  

FUTURE WORKS

Effect  of  Temperature  (<150°C)  with  the  Contact  Time  

Influence  of  the  vanadium  loading  (>20%)  

Identification  of  sulphur  species    

Low temperature catalytic oxidation of H2S over V2O5/CeO2 Catalysts

Vincenzo Palma*, Daniela Barba , Paolo Ciambelli

*[email protected]

DIIN- Department of Industrial Engineering University of Salerno

Piero Lunghi Conference, December 11-13, 2013

0

20

40

60

80

100

0 2 4 6 8 10 12

Gas Velocity, cm/s

H2S

Con

vers

ion,

%

External Diffusion

External  and  Internal  Mass  Transfer  resistance  

T=250°C, H2S=200 ppm, O2/H2S=0.5

Internal    Mass  Transfer  resistance      was  observed  for  size  particles  >  180  μm    

Flow Rate: 200, 300, 400, 800 Ncm3/min

0102030405060708090100

H2S

co

nve

rsio

n,

%

38-180 180-355 355-710

Size Particles, micrometer

Size Particles, µm : • 38-180 • 180-355 • 355-710

Flow  Rate,  Ncm3/min VGAS,  cm/s XH2S,  %

200 2.6 56

300 4 64

400 5.3 67

800 10.6 67

External    Mass  Transfer  resistance                                              was  observed  for  linear  gas  velocity  <  5  cm/s  

t = 2ms

Ø  Pressure: 1 atm 2 atm 3 atm

Ø  H2S Concentration = 200 ppm

Complex Equilibrium : S8 ↔4 S2

3 S8↔4 S6 S6↔3 S2

H2S + O2→ aSO2+ bS2+ cS6+dS8 + eH2O+ fH2

Temperature,°C  

H 2S  Co

nversion

,  %   H2S conversion

Higher at P=1 atm

H2S conversion Higher

At P=3 atm

370°C  

Ø  O2/H2S = 0.5

Thermodynamic    Study  

Thermodynamic    Study  

Ø  Pressure: 1 atm 2 atm 3 atm

Ø  O2/H2S = 0.5 Ø  H2S Concentration = 200 ppm

H2S + O2→ aSO2+ bS2+ cS6+dS8 + eH2O+ fH2

Temperature,°C  

SO2  selecKv

ity,  %

 

T<200°C Low SO2 Selectivity

200°C  

Complex Equilibrium : S8 ↔4 S2

3 S8↔4 S6 S6↔3 S2

Thermodynamic    Study  

Ø  Pressure: 1 atm 2 atm 3 atm

Ø  O2/H2S = 0.5 Ø  H2S Concentration = 200 ppm

H2S + O2→ aSO2+ bS2+ cS6+dS8 + eH2O+ fH2

Temperature,°C  

S 2  se

lecKvity,  %

 

0

20

40

60

80

100

120

0 200 400 600 800 1000

Temperatura, °C

Sele

ttivi

tà S

2, %

Increase of S2 Selectivity

T>  200°C  

Increase of S8 Selectivity

0

20

40

60

80

100

120

0 200 400 600 800 1000

Temperatura, °C

Sele

ttivi

tà S

8, %

Temperature,°C  

S 8  se

lecKvity,  %

 

T<  200°C  

Adsorption  Test  of  H2S   T = 160°C, H2S = 800 ppm

0

100

200

300

400

500

600

700

800

0 10 20 30 40 50 60 70Time, min

H2S

Con

cent

rati

on, p

pm

0

1E-11

2E-11

3E-11

4E-11

5E-11

6E-11

7E-11

H2O

sig

nal m

/z=

18, t

orr

H2S

H2O

H2S adsorbs and reduces the catalyst producing H2O

OHSH ofg 211)(2 +↔+ θθ

Reaction between H2S adsorbed and O2 of the phase active

After  the  O2  activation  via  adsorption,  the  reoxidation  of  the  previously  reduced  

vanadium  to  the  oxidized  vanadium  occurs  No SO2 , SO3 , H2O formation detected

Kinetics    Mechanism    Study  1/1  

Goodness of fit experimental data to the power law model

T = 200°C, 600 ppm H2S

Langmuir-Hinshelwood Mechanism

Design Equation for a Plug Flow Reactor (PFR)

  ( ) CATSHSH dWrdF ⋅−=− 22

Kinetic Expression

  ooSH Kr 21)(2

θθ ⋅⋅=−

tot

CAT

SHO

inOSHSH

inSH

SHO

inOSHSH

inSH

inSH

SH QdW

)R

X.(PK)X(PK

)R

X(PK)X(PK

CKdX ⋅

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

⎥⎦

⎤⎢⎣

⎡−⋅+−⋅⋅+

−⋅⋅⋅−⋅⋅⋅= 2

2111

211

222222

222222

2

2

=  

2222

22

1 OOSHSH

SHSH

PKPKPK

⋅+⋅+

⋅o1θ

o2θ  

2222

22

1 OOSHSH

OO

PKPKPK

⋅+⋅+

⋅=

RDS

Goodness of fit experimental data to the power law model

Kinetics    Mechanism    Study  2/1  

T = 200°C 600 ppm H2S

0

5

10

15

20

25

30

35

0,000012 0,000022 0,000032 0,000042

W/QTOT, (g min/Ncm3)

H2S

Con

vers

ion

, %

20 ppm O2

40 ppm O2

60 ppm O2

100 ppm O2 Experimental Data

Calculation  Model  

tot

CAT

SHO

inOSHSH

inSH

SHO

inOSHSH

inSH

inSH

SH QdW

)R

X.(PK)X(PK

)R

X(PK)X(PK

CKdX ⋅

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

⎥⎦

⎤⎢⎣

⎡−⋅+−⋅⋅+

−⋅⋅⋅−⋅⋅⋅= 2

2111

211

222222

222222

2

2

Good fitting of the experimental data

with the L-H model

Effect  of  the  CH4    

0

10

20

30

40

50

60

0

50

100

150

200

250

0 20 40 60 80 100 120

CH

4 Con

cent

ratio

n , v

ol%

H2S

Con

cent

ratio

n, p

pm

Time, min

H2S

CH4

x  H2S  =  96%  CH4  FEED  =  30%