low-cost quad voltage-controlled amplifier...

12
Low-Cost Quad Voltage-Controlled Amplifier V2164D/M 1 1. Overview The V2164M/D contains four independent voltage controlled amplifiers(VCAs) in a single package. High performance(100 dB dynamic range, 0.02% THD) is provided at a very low-cost-per-VCA, resulting in excellent value for cost sensitive gain control applications. Each VCA offers current input and output for maximum design flexibility, and a ground referenced –33 mV/dB control port. The V2164M/D will operate over a wide supply voltage range of ±4 V to ±18 V. Available in 16-pin SOIC packages, the device is guaranteed for operation over the extended industrial temperature range of –40°C to +85°C. The V2164M/D is available for many applications as Remote, Automatic, or Computer Volume Controls, Automotive Volume / Balance/Faders, Audio Mixers, Compressor / Limiters / Compandors, Noise Reduction Systems, Automatic Gain Controls, Voltage Controlled Filters, Spatial Sound Processors, Effects Processors. Its features are: Four High Performance VCAs in a Single Package 0.02% THD No External Trimming 120 dB Gain Range 0.07 dB Gain Matching (Unity Gain) Class A or AB Operation 2. Block Diagram and Pin Description 2.1 Block Diagram Power Supply and 9 8 16 1 13 Iout MODE GND V+ V- 10 7 6 2 3 11 14 15 12 Iout 5 Iout 4 Iout VCA4 VCA3 VCA2 VCA1 Biasing Circuitry VC IIN VC VC IIN IIN VC IIN

Upload: others

Post on 30-Oct-2019

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Low-Cost Quad Voltage-Controlled Amplifier V2164D/Mcoolaudio.com/docs/COOLAUDIO_V2164MD_DATASHEET.pdf · V2164D/M 4 4. Test Circuit 5. Characteristics Curve Figure 1. THD Distribution,

Low-Cost Quad Voltage-Controlled Amplifier

V2164D/M

1

1. Overview

The V2164M/D contains four independent voltage controlled amplifiers(VCAs) in a single package. High performance(100 dB dynamic range, 0.02% THD) is provided at a very low-cost-per-VCA, resulting in excellent value for cost sensitive gain control applications. Each VCA offers current input and output for maximum design flexibility, and a ground referenced –33 mV/dB control port.

The V2164M/D will operate over a wide supply voltage range of ±4 V to ±18 V. Available in 16-pin SOIC packages, the device is guaranteed for operation over the extended industrial temperature range of –40°C to +85°C.

The V2164M/D is available for many applications as Remote, Automatic, or Computer Volume Controls, Automotive Volume / Balance/Faders, Audio Mixers, Compressor / Limiters / Compandors, Noise Reduction Systems, Automatic Gain Controls, Voltage Controlled Filters, Spatial Sound Processors, Effects Processors.

Its features are:• Four High Performance VCAs in a Single Package• 0.02% THD• No External Trimming• 120 dB Gain Range• 0.07 dB Gain Matching (Unity Gain)• Class A or AB Operation

2. Block Diagram and Pin Description

2.1 Block Diagram

Power Supply and

9

8

16

1

13Iout

MODE

GND

V+

V-

107623 11 14 15

12Iout

5Iout

4Iout

VCA4VCA3VCA2VCA1

Biasing Circuitry

VC IIN VC VCIIN IIN VC IIN

Page 2: Low-Cost Quad Voltage-Controlled Amplifier V2164D/Mcoolaudio.com/docs/COOLAUDIO_V2164MD_DATASHEET.pdf · V2164D/M 4 4. Test Circuit 5. Characteristics Curve Figure 1. THD Distribution,

V2164D/M

2

2.2 Pin Description

Pin No. Symbol Function Pin No. Symbol Function

1 MODE Mode select 9 V- negative power supply

2 IIN1 current input 1 10 IIN3 current input 3

3 VC1 voltage controller 1 11 VC3 voltage controller 3

4 IOUT1 current output 1 12 IOUT3 current output 3

5 IOUT2 current output 2 13 IOUT4 current output 4

6 VC2 voltage controller 2 14 VC4 voltage controller 4

7 IIN2 current input 2 15 IIN4 current input 4

8 GND GND 16 V+ positive power supply

3. Electrical Characteristics

3.1 Absolute Maximum Ratings

Unless otherwise specified, Tamb= 25°C

Parameter Symbol Value Unit

Supply voltage Vcc ±18 V

input, output, control voltages Vin, Vout, VCA V- ~ V+ V

Output Short Circuit Duration to GND — Indefinite S

Storage Temperature Range Tstg -65~+150 °C

Operating Temperature Range Topr -40~+85 °C

Junction Temperature Range Tj -65~+150 °C

Lead Temperature Range (Soldering 60 sec) — +300 °C

Page 3: Low-Cost Quad Voltage-Controlled Amplifier V2164D/Mcoolaudio.com/docs/COOLAUDIO_V2164MD_DATASHEET.pdf · V2164D/M 4 4. Test Circuit 5. Characteristics Curve Figure 1. THD Distribution,

V2164D/M

3

3.2 Electrical Characteristics

Unless otherwise specified, Tamb = 25°C, VCC=±15 V, AV=0 dB, VIN=0 dBμ, RIN=ROUT=30 k Ω, f=1 kHz, using Typical Application Circuit (Class AB)

Parameter Symbol ConditionsValue

UnitMin Typ Max

Audio signal path

Noise VNO VIN=GND, BW=20 kHz -94 dBμ

Headroom Hr Clip point=1%THD+N 22 dBμ

Total Harmonic Distortion(2nd and 3rd Harmonics Only)

THD

AV=0dB, Class A 0.02 0.1 %

AV=±20dB, Class A1 0.15 %

AV=0dB, Class AB 0.16 %

AV=±20dB, Class AB1 0.3 %

Channel Separation Sep -110 dB

Unity Gain Bandwidth GB CF=10 pF 500 kHz

Slew Rate SR CF=10 pF 0.7 mA/μs

Input Bias Current IIB ±10 nA

Output Offset Current IIO VIN=0 ±50 nA

Output Compliance VOD ±0.1 V

Control port

Input Impedance Rin 5 kΩ

Gain Constant GC (note 2) -33 mV/dB

Gain Constant Temperature Coefficient

GCT -3300 ppm/°C

Control Feedthrough VCF0 dB to -40 dB Gain Range3 1.5 8.5 mV

Gain Matching, Channel-to-Channel

GMAV=0 dB 0.07

dBAV=-40 dB 0.24

Maximum Attenuation GA -100 dB

Maximum Gain GMAX +20 dB

Power supplies

Supply Voltage Range VCC ±4 ±18 V

Supply Current ICCQ Class AB 6 8 mA

Power Supply Rejection Ratio PSRR 60 Hz 90 dB

Note:

1. -10 dBμ input @ 20 dB gain, +10 dBμ input @ -20 dB gain2. After 60 seconds operation3. +25°C to +85°C

Page 4: Low-Cost Quad Voltage-Controlled Amplifier V2164D/Mcoolaudio.com/docs/COOLAUDIO_V2164MD_DATASHEET.pdf · V2164D/M 4 4. Test Circuit 5. Characteristics Curve Figure 1. THD Distribution,

V2164D/M

4

4. Test Circuit

5. Characteristics Curve

Figure 1. THD Distribution, Class AB Figure 2. THD+N vs Frequency,Class A

Figure 3. THD+N vs Frequency, Class AB Figure 4. THD+N vs Amplitude

Power Supply and

14

15

9 8 16 1

13

Vc

I I

MODEGND V+V-

IN

0.1uF 0.1uF

560pF

100pF

IOUT

-15V +15V

(7.5kΩ Class A)Open Class AB

30kΩ

500Ω

VC4

-

+

30kΩ

VOUT4

1/2OP275

VCA4

Biasing Circuitry

210200190180170160150140130120110100

908070605040302010

0

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

Vs=±15VTa=+25°C1200 Channels

Un

its

Class AVs=±15VLPF=80kHz

1.0

0.1

0.0120 100 1k 10k 20k

Frequency - Hz

THD

+N

- % Av=+20dB

Av=-20dB

Av=0dB

Figure 1 THD Distribution,Class AB Figure 2 THD+N vs. Frequency,Class A

Class ABVs=±15VLPF=80kHz

1.0

0.1

0.01

20 100 1k 10k 20k

Frequency - Hz

THD

+N

- %

Av=+20dB Av=-20dB

Av=0dB

Av=0dBVs=±15V

LPF=22kHz

1.0

0.1

0.01

20 100 1k 10k 20k

Amplitude - Vrms

THD

+N

- %

Class AB

Class A

Figure 3 THD+N vs. Frequency,Class AB Figure 4 THD+N vs. Amplitude 300

280

260

240

220

200

180

160

140

120

100

80

60

40

20

00.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050

Vs=±15VTa=+25°C1200 Channels

-%

Un

its

THD

+N-%

- V

0.00

0.02

0.04

0.06

0.08

0.10

0 ±4 ±8 ±12 ±16 ±20

LPF=80kHz

Figure 5 THD Distribution,Class A Figure 6 THD+N vs. Supply Voltage,Class A

0.010

0.015

0.020

0.025

0.030

0.035

-40 -20 0 20 40 60 80

THD-%

Temperature-

Vs=±15VVin=0dBuAv=0dB

Rbias-Ω

1000

100

10

1k 10k 100k 1M

Vo

ltag

e N

ois

e D

ensi

ty

Vs=±15VTa=+25

Figure 7 THD vs. Temperature, Class A Figure 8 Voltage Noise Density vs. RBIAS

Supply VoltageTHD

-%THD

210200190180170160150140130120110100

908070605040302010

0

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

Vs=±15VTa=+25°C1200 Channels

Un

its

Class AVs=±15VLPF=80kHz

1.0

0.1

0.0120 100 1k 10k 20k

Frequency - Hz

THD

+N

- % Av=+20dB

Av=-20dB

Av=0dB

Figure 1 THD Distribution,Class AB Figure 2 THD+N vs. Frequency,Class A

Class ABVs=±15VLPF=80kHz

1.0

0.1

0.01

20 100 1k 10k 20k

Frequency - Hz

THD

+N

- %

Av=+20dB Av=-20dB

Av=0dB

Av=0dBVs=±15V

LPF=22kHz

1.0

0.1

0.01

20 100 1k 10k 20k

Amplitude - Vrms

THD

+N

- %

Class AB

Class A

Figure 3 THD+N vs. Frequency,Class AB Figure 4 THD+N vs. Amplitude 300

280

260

240

220

200

180

160

140

120

100

80

60

40

20

00.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050

Vs=±15VTa=+25°C1200 Channels

-%

Un

its

THD

+N-%

- V

0.00

0.02

0.04

0.06

0.08

0.10

0 ±4 ±8 ±12 ±16 ±20

LPF=80kHz

Figure 5 THD Distribution,Class A Figure 6 THD+N vs. Supply Voltage,Class A

0.010

0.015

0.020

0.025

0.030

0.035

-40 -20 0 20 40 60 80

THD-%

Temperature-

Vs=±15VVin=0dBuAv=0dB

Rbias-Ω

1000

100

10

1k 10k 100k 1M

Vo

ltag

e N

ois

e D

ensi

ty

Vs=±15VTa=+25

Figure 7 THD vs. Temperature, Class A Figure 8 Voltage Noise Density vs. RBIAS

Supply VoltageTHD

-%THD

210200190180170160150140130120110100

908070605040302010

0

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

Vs=±15VTa=+25°C1200 Channels

Un

its

Class AVs=±15VLPF=80kHz

1.0

0.1

0.0120 100 1k 10k 20k

Frequency - Hz

THD

+N

- % Av=+20dB

Av=-20dB

Av=0dB

Figure 1 THD Distribution,Class AB Figure 2 THD+N vs. Frequency,Class A

Class ABVs=±15VLPF=80kHz

1.0

0.1

0.01

20 100 1k 10k 20k

Frequency - Hz

THD

+N

- %

Av=+20dB Av=-20dB

Av=0dB

Av=0dBVs=±15V

LPF=22kHz

1.0

0.1

0.01

20 100 1k 10k 20k

Amplitude - Vrms

THD

+N

- %

Class AB

Class A

Figure 3 THD+N vs. Frequency,Class AB Figure 4 THD+N vs. Amplitude 300

280

260

240

220

200

180

160

140

120

100

80

60

40

20

00.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050

Vs=±15VTa=+25°C1200 Channels

-%

Un

its

THD

+N-%

- V

0.00

0.02

0.04

0.06

0.08

0.10

0 ±4 ±8 ±12 ±16 ±20

LPF=80kHz

Figure 5 THD Distribution,Class A Figure 6 THD+N vs. Supply Voltage,Class A

0.010

0.015

0.020

0.025

0.030

0.035

-40 -20 0 20 40 60 80

THD-%

Temperature-

Vs=±15VVin=0dBuAv=0dB

Rbias-Ω

1000

100

10

1k 10k 100k 1M

Vo

ltag

e N

ois

e D

ensi

ty

Vs=±15VTa=+25

Figure 7 THD vs. Temperature, Class A Figure 8 Voltage Noise Density vs. RBIAS

Supply VoltageTHD

-%THD

210200190180170160150140130120110100

908070605040302010

0

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

Vs=±15VTa=+25°C1200 Channels

Un

its

Class AVs=±15VLPF=80kHz

1.0

0.1

0.0120 100 1k 10k 20k

Frequency - Hz

THD

+N

- % Av=+20dB

Av=-20dB

Av=0dB

Figure 1 THD Distribution,Class AB Figure 2 THD+N vs. Frequency,Class A

Class ABVs=±15VLPF=80kHz

1.0

0.1

0.01

20 100 1k 10k 20k

Frequency - Hz

THD

+N

- %

Av=+20dB Av=-20dB

Av=0dB

Av=0dBVs=±15V

LPF=22kHz

1.0

0.1

0.01

20 100 1k 10k 20k

Amplitude - Vrms

THD

+N

- %

Class AB

Class A

Figure 3 THD+N vs. Frequency,Class AB Figure 4 THD+N vs. Amplitude 300

280

260

240

220

200

180

160

140

120

100

80

60

40

20

00.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050

Vs=±15VTa=+25°C1200 Channels

-%

Un

its

THD

+N-%

- V

0.00

0.02

0.04

0.06

0.08

0.10

0 ±4 ±8 ±12 ±16 ±20

LPF=80kHz

Figure 5 THD Distribution,Class A Figure 6 THD+N vs. Supply Voltage,Class A

0.010

0.015

0.020

0.025

0.030

0.035

-40 -20 0 20 40 60 80

THD-%

Temperature-

Vs=±15VVin=0dBuAv=0dB

Rbias-Ω

1000

100

10

1k 10k 100k 1M

Vo

ltag

e N

ois

e D

ensi

ty

Vs=±15VTa=+25

Figure 7 THD vs. Temperature, Class A Figure 8 Voltage Noise Density vs. RBIAS

Supply VoltageTHD

-%THD

Page 5: Low-Cost Quad Voltage-Controlled Amplifier V2164D/Mcoolaudio.com/docs/COOLAUDIO_V2164MD_DATASHEET.pdf · V2164D/M 4 4. Test Circuit 5. Characteristics Curve Figure 1. THD Distribution,

V2164D/M

5

Figure 5. THD Distribution, Class A Figure 6. THD+N vs Supply Voltage, Class A

Figure 7. THD vs Temperature, Class A Figure 8. Voltage Noise Density vs RBIAS

Figure 9. THD vs Temperature, Class AB Figure 10. THD vs RBIAS

210200190180170160150140130120110100

908070605040302010

0

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

Vs=±15VTa=+25°C1200 Channels

Un

its

Class AVs=±15VLPF=80kHz

1.0

0.1

0.0120 100 1k 10k 20k

Frequency - Hz

THD

+N

- % Av=+20dB

Av=-20dB

Av=0dB

Figure 1 THD Distribution,Class AB Figure 2 THD+N vs. Frequency,Class A

Class ABVs=±15VLPF=80kHz

1.0

0.1

0.01

20 100 1k 10k 20k

Frequency - Hz

THD

+N

- %

Av=+20dB Av=-20dB

Av=0dB

Av=0dBVs=±15V

LPF=22kHz

1.0

0.1

0.01

20 100 1k 10k 20k

Amplitude - Vrms

THD

+N

- %

Class AB

Class A

Figure 3 THD+N vs. Frequency,Class AB Figure 4 THD+N vs. Amplitude 300

280

260

240

220

200

180

160

140

120

100

80

60

40

20

00.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050

Vs=±15VTa=+25°C1200 Channels

-%

Un

its

THD

+N-%

- V

0.00

0.02

0.04

0.06

0.08

0.10

0 ±4 ±8 ±12 ±16 ±20

LPF=80kHz

Figure 5 THD Distribution,Class A Figure 6 THD+N vs. Supply Voltage,Class A

0.010

0.015

0.020

0.025

0.030

0.035

-40 -20 0 20 40 60 80

THD-%

Temperature-

Vs=±15VVin=0dBuAv=0dB

Rbias-Ω

1000

100

10

1k 10k 100k 1M

Vo

ltag

e N

ois

e D

ensi

ty

Vs=±15VTa=+25

Figure 7 THD vs. Temperature, Class A Figure 8 Voltage Noise Density vs. RBIAS

Supply VoltageTHD

-%THD

210200190180170160150140130120110100

908070605040302010

0

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

Vs=±15VTa=+25°C1200 Channels

Un

its

Class AVs=±15VLPF=80kHz

1.0

0.1

0.0120 100 1k 10k 20k

Frequency - Hz

THD

+N

- % Av=+20dB

Av=-20dB

Av=0dB

Figure 1 THD Distribution,Class AB Figure 2 THD+N vs. Frequency,Class A

Class ABVs=±15VLPF=80kHz

1.0

0.1

0.01

20 100 1k 10k 20k

Frequency - Hz

THD

+N

- %

Av=+20dB Av=-20dB

Av=0dB

Av=0dBVs=±15V

LPF=22kHz

1.0

0.1

0.01

20 100 1k 10k 20k

Amplitude - Vrms

THD

+N

- %

Class AB

Class A

Figure 3 THD+N vs. Frequency,Class AB Figure 4 THD+N vs. Amplitude 300

280

260

240

220

200

180

160

140

120

100

80

60

40

20

00.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050

Vs=±15VTa=+25°C1200 Channels

-%

Un

its

THD

+N-%

- V

0.00

0.02

0.04

0.06

0.08

0.10

0 ±4 ±8 ±12 ±16 ±20

LPF=80kHz

Figure 5 THD Distribution,Class A Figure 6 THD+N vs. Supply Voltage,Class A

0.010

0.015

0.020

0.025

0.030

0.035

-40 -20 0 20 40 60 80

THD-%

Temperature-

Vs=±15VVin=0dBuAv=0dB

Rbias-Ω

1000

100

10

1k 10k 100k 1M

Vo

ltag

e N

ois

e D

ensi

ty

Vs=±15VTa=+25

Figure 7 THD vs. Temperature, Class A Figure 8 Voltage Noise Density vs. RBIAS

Supply VoltageTHD

-%THD

210200190180170160150140130120110100

908070605040302010

0

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

Vs=±15VTa=+25°C1200 Channels

Un

its

Class AVs=±15VLPF=80kHz

1.0

0.1

0.0120 100 1k 10k 20k

Frequency - Hz

THD

+N

- % Av=+20dB

Av=-20dB

Av=0dB

Figure 1 THD Distribution,Class AB Figure 2 THD+N vs. Frequency,Class A

Class ABVs=±15VLPF=80kHz

1.0

0.1

0.01

20 100 1k 10k 20k

Frequency - Hz

THD

+N

- %

Av=+20dB Av=-20dB

Av=0dB

Av=0dBVs=±15V

LPF=22kHz

1.0

0.1

0.01

20 100 1k 10k 20k

Amplitude - Vrms

THD

+N

- %

Class AB

Class A

Figure 3 THD+N vs. Frequency,Class AB Figure 4 THD+N vs. Amplitude 300

280

260

240

220

200

180

160

140

120

100

80

60

40

20

00.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050

Vs=±15VTa=+25°C1200 Channels

-%

Un

its

THD

+N-%

- V

0.00

0.02

0.04

0.06

0.08

0.10

0 ±4 ±8 ±12 ±16 ±20

LPF=80kHz

Figure 5 THD Distribution,Class A Figure 6 THD+N vs. Supply Voltage,Class A

0.010

0.015

0.020

0.025

0.030

0.035

-40 -20 0 20 40 60 80

THD-%

Temperature-

Vs=±15VVin=0dBuAv=0dB

Rbias-Ω

1000

100

10

1k 10k 100k 1M

Vo

ltag

e N

ois

e D

ensi

ty

Vs=±15VTa=+25

Figure 7 THD vs. Temperature, Class A Figure 8 Voltage Noise Density vs. RBIAS

Supply VoltageTHD

-%THD

210200190180170160150140130120110100

908070605040302010

0

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

Vs=±15VTa=+25°C1200 Channels

Un

its

Class AVs=±15VLPF=80kHz

1.0

0.1

0.0120 100 1k 10k 20k

Frequency - Hz

THD

+N

- % Av=+20dB

Av=-20dB

Av=0dB

Figure 1 THD Distribution,Class AB Figure 2 THD+N vs. Frequency,Class A

Class ABVs=±15VLPF=80kHz

1.0

0.1

0.01

20 100 1k 10k 20k

Frequency - Hz

THD

+N

- %

Av=+20dB Av=-20dB

Av=0dB

Av=0dBVs=±15V

LPF=22kHz

1.0

0.1

0.01

20 100 1k 10k 20k

Amplitude - Vrms

THD

+N

- %

Class AB

Class A

Figure 3 THD+N vs. Frequency,Class AB Figure 4 THD+N vs. Amplitude 300

280

260

240

220

200

180

160

140

120

100

80

60

40

20

00.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050

Vs=±15VTa=+25°C1200 Channels

-%

Un

its

THD

+N-%

- V

0.00

0.02

0.04

0.06

0.08

0.10

0 ±4 ±8 ±12 ±16 ±20

LPF=80kHz

Figure 5 THD Distribution,Class A Figure 6 THD+N vs. Supply Voltage,Class A

0.010

0.015

0.020

0.025

0.030

0.035

-40 -20 0 20 40 60 80

THD-%

Temperature-

Vs=±15VVin=0dBuAv=0dB

Rbias-Ω

1000

100

10

1k 10k 100k 1M

Vo

ltag

e N

ois

e D

ensi

ty

Vs=±15VTa=+25

Figure 7 THD vs. Temperature, Class A Figure 8 Voltage Noise Density vs. RBIAS

Supply VoltageTHD

-%THD

0.10

0.15

0.20

0.25

0.30

THD-%

Temperature-

Vs=±15VVin=0dBuAv=0dB

1000

100

101k 10k 100k 1M

THD

-%

Rbias-Ω

Ta=+25Vs=±15V

Figure 9 THD vs. temperature, Class AB Figure 10 THD vs. RBIAS

10

-5

-201k 10k 100k 1M

Co

nrto

lFee

dth

roug

h-

mV

Rbias-Ω

Ta=+25Vs=±15V

-15

-10

0

5

1 10 100 1k 10k 100k0

100

200

300

400

500

-Hz

No

ise

Rin=Rf=30kΩTa=+25

Figure 11 Control Feedthrough vs. RBIAS Figure 12 Voltage Noise Density vs. Frequency,Class AB

Page 5 of 10

Vs=±15V

Ta=25

1 10 100 100010k

100k

1M

10M

-3d

B B

W -

Hz

15

0

-15

1k 10k 100k 1M

Gai

n-

dB

-10

-5

5

10

Ta=+25Vs=±15V

Av=0dBCf=10pF

10M

Phase

Gain

Figure 13 –3 dB Bandwidth vs. I-to-V Feedback Capacitor Figure 14 Gain/Phase vs. Frequency

OP275 Output Amplifier

±Slew RateVs=±15VTa=+25

5

10

15

20

25

30

0

I to V Feedback Capacitor - pF

Slew

Rat

e-V

/µS

0.2

-0.1

-0.4

10 100 1k 10k

Gai

n-

dB

-0.3

-0.2

0

0.1Ta=+25Vs=±15V

Av=0dB

100k

Cf=10pF

Cf=100pF

Figure 15 Slew Rate vs. I-to-V Feedback Capacitor Figure 16 Gain Flatness vs. Frequency

-40 20 0 20 40 60 80

Frequency

I to V feedback capacitor — pF Frequency — Hz

Frequency — Hz1 10 10

0.10

0.15

0.20

0.25

0.30

THD-%

Temperature-

Vs=±15VVin=0dBuAv=0dB

1000

100

101k 10k 100k 1M

THD

-%

Rbias-Ω

Ta=+25Vs=±15V

Figure 9 THD vs. temperature, Class AB Figure 10 THD vs. RBIAS

10

-5

-201k 10k 100k 1M

Co

nrto

lFee

dth

roug

h-

mV

Rbias-Ω

Ta=+25Vs=±15V

-15

-10

0

5

1 10 100 1k 10k 100k0

100

200

300

400

500

-Hz

No

ise

Rin=Rf=30kΩTa=+25

Figure 11 Control Feedthrough vs. RBIAS Figure 12 Voltage Noise Density vs. Frequency,Class AB

Page 5 of 10

Vs=±15V

Ta=25

1 10 100 100010k

100k

1M

10M

-3d

B B

W -

Hz

15

0

-15

1k 10k 100k 1M

Gai

n-

dB

-10

-5

5

10

Ta=+25Vs=±15V

Av=0dBCf=10pF

10M

Phase

Gain

Figure 13 –3 dB Bandwidth vs. I-to-V Feedback Capacitor Figure 14 Gain/Phase vs. Frequency

OP275 Output Amplifier

±Slew RateVs=±15VTa=+25

5

10

15

20

25

30

0

I to V Feedback Capacitor - pF

Slew

Rat

e-V

/µS

0.2

-0.1

-0.4

10 100 1k 10k

Gai

n-

dB

-0.3

-0.2

0

0.1Ta=+25Vs=±15V

Av=0dB

100k

Cf=10pF

Cf=100pF

Figure 15 Slew Rate vs. I-to-V Feedback Capacitor Figure 16 Gain Flatness vs. Frequency

-40 20 0 20 40 60 80

Frequency

I to V feedback capacitor — pF Frequency — Hz

Frequency — Hz1 10 10

Page 6: Low-Cost Quad Voltage-Controlled Amplifier V2164D/Mcoolaudio.com/docs/COOLAUDIO_V2164MD_DATASHEET.pdf · V2164D/M 4 4. Test Circuit 5. Characteristics Curve Figure 1. THD Distribution,

V2164D/M

6

Figure 11. Control Feedthrough vs RBIAS Figure 12. Voltage Noise Density vs Frequency, Class AB

Figure 13. –3 dB Bandwidth vs I-to-V Feedback Capacitor Figure 14. Gain/Phase vs Frequency

Figure 15. Slew Rate vs I-to-V Feedback Capacitor Figure 16. Gain Flatness vs Frequency

0.10

0.15

0.20

0.25

0.30

THD-%

Temperature-

Vs=±15VVin=0dBuAv=0dB

1000

100

101k 10k 100k 1M

THD

-%

Rbias-Ω

Ta=+25Vs=±15V

Figure 9 THD vs. temperature, Class AB Figure 10 THD vs. RBIAS

10

-5

-201k 10k 100k 1M

Co

nrto

lFee

dth

roug

h-

mV

Rbias-Ω

Ta=+25Vs=±15V

-15

-10

0

5

1 10 100 1k 10k 100k0

100

200

300

400

500

-Hz

No

ise

Rin=Rf=30kΩTa=+25

Figure 11 Control Feedthrough vs. RBIAS Figure 12 Voltage Noise Density vs. Frequency,Class AB

Page 5 of 10

Vs=±15V

Ta=25

1 10 100 100010k

100k

1M

10M

-3d

B B

W -

Hz

15

0

-15

1k 10k 100k 1M

Gai

n-

dB

-10

-5

5

10

Ta=+25Vs=±15V

Av=0dBCf=10pF

10M

Phase

Gain

Figure 13 –3 dB Bandwidth vs. I-to-V Feedback Capacitor Figure 14 Gain/Phase vs. Frequency

OP275 Output Amplifier

±Slew RateVs=±15VTa=+25

5

10

15

20

25

30

0

I to V Feedback Capacitor - pF

Slew

Rat

e-V

/µS

0.2

-0.1

-0.4

10 100 1k 10k

Gai

n-

dB

-0.3

-0.2

0

0.1Ta=+25Vs=±15V

Av=0dB

100k

Cf=10pF

Cf=100pF

Figure 15 Slew Rate vs. I-to-V Feedback Capacitor Figure 16 Gain Flatness vs. Frequency

-40 20 0 20 40 60 80

Frequency

I to V feedback capacitor — pF Frequency — Hz

Frequency — Hz1 10 10

0.10

0.15

0.20

0.25

0.30

THD-%

Temperature-

Vs=±15VVin=0dBuAv=0dB

1000

100

101k 10k 100k 1M

THD

-%

Rbias-Ω

Ta=+25Vs=±15V

Figure 9 THD vs. temperature, Class AB Figure 10 THD vs. RBIAS

10

-5

-201k 10k 100k 1M

Co

nrto

lFee

dth

roug

h-

mV

Rbias-Ω

Ta=+25Vs=±15V

-15

-10

0

5

1 10 100 1k 10k 100k0

100

200

300

400

500

-Hz

No

ise

Rin=Rf=30kΩTa=+25

Figure 11 Control Feedthrough vs. RBIAS Figure 12 Voltage Noise Density vs. Frequency,Class AB

Page 5 of 10

Vs=±15V

Ta=25

1 10 100 100010k

100k

1M

10M

-3d

B B

W -

Hz

15

0

-15

1k 10k 100k 1MG

ain-

dB

-10

-5

5

10

Ta=+25Vs=±15V

Av=0dBCf=10pF

10M

Phase

Gain

Figure 13 –3 dB Bandwidth vs. I-to-V Feedback Capacitor Figure 14 Gain/Phase vs. Frequency

OP275 Output Amplifier

±Slew RateVs=±15VTa=+25

5

10

15

20

25

30

0

I to V Feedback Capacitor - pF

Slew

Rat

e-V

/µS

0.2

-0.1

-0.4

10 100 1k 10k

Gai

n-

dB

-0.3

-0.2

0

0.1Ta=+25Vs=±15V

Av=0dB

100k

Cf=10pF

Cf=100pF

Figure 15 Slew Rate vs. I-to-V Feedback Capacitor Figure 16 Gain Flatness vs. Frequency

-40 20 0 20 40 60 80

Frequency

I to V feedback capacitor — pF Frequency — Hz

Frequency — Hz1 10 10

0.10

0.15

0.20

0.25

0.30

THD-%

Temperature-

Vs=±15VVin=0dBuAv=0dB

1000

100

101k 10k 100k 1M

THD

-%

Rbias-Ω

Ta=+25Vs=±15V

Figure 9 THD vs. temperature, Class AB Figure 10 THD vs. RBIAS

10

-5

-201k 10k 100k 1M

Co

nrto

lFee

dth

roug

h-

mV

Rbias-Ω

Ta=+25Vs=±15V

-15

-10

0

5

1 10 100 1k 10k 100k0

100

200

300

400

500

-Hz

No

ise

Rin=Rf=30kΩTa=+25

Figure 11 Control Feedthrough vs. RBIAS Figure 12 Voltage Noise Density vs. Frequency,Class AB

Page 5 of 10

Vs=±15V

Ta=25

1 10 100 100010k

100k

1M

10M

-3d

B B

W -

Hz

15

0

-15

1k 10k 100k 1M

Gai

n-

dB

-10

-5

5

10

Ta=+25Vs=±15V

Av=0dBCf=10pF

10M

Phase

Gain

Figure 13 –3 dB Bandwidth vs. I-to-V Feedback Capacitor Figure 14 Gain/Phase vs. Frequency

OP275 Output Amplifier

±Slew RateVs=±15VTa=+25

5

10

15

20

25

30

0

I to V Feedback Capacitor - pF

Slew

Rat

e-V

/µS

0.2

-0.1

-0.4

10 100 1k 10k

Gai

n-

dB

-0.3

-0.2

0

0.1Ta=+25Vs=±15V

Av=0dB

100k

Cf=10pF

Cf=100pF

Figure 15 Slew Rate vs. I-to-V Feedback Capacitor Figure 16 Gain Flatness vs. Frequency

-40 20 0 20 40 60 80

Frequency

I to V feedback capacitor — pF Frequency — Hz

Frequency — Hz1 10 10

0.10

0.15

0.20

0.25

0.30

THD-%

Temperature-

Vs=±15VVin=0dBuAv=0dB

1000

100

101k 10k 100k 1M

THD

-%

Rbias-Ω

Ta=+25Vs=±15V

Figure 9 THD vs. temperature, Class AB Figure 10 THD vs. RBIAS

10

-5

-201k 10k 100k 1M

Co

nrto

lFee

dth

roug

h-

mV

Rbias-Ω

Ta=+25Vs=±15V

-15

-10

0

5

1 10 100 1k 10k 100k0

100

200

300

400

500

-Hz

No

ise

Rin=Rf=30kΩTa=+25

Figure 11 Control Feedthrough vs. RBIAS Figure 12 Voltage Noise Density vs. Frequency,Class AB

Page 5 of 10

Vs=±15V

Ta=25

1 10 100 100010k

100k

1M

10M

-3d

B B

W -

Hz

15

0

-15

1k 10k 100k 1M

Gai

n-

dB

-10

-5

5

10

Ta=+25Vs=±15V

Av=0dBCf=10pF

10M

Phase

Gain

Figure 13 –3 dB Bandwidth vs. I-to-V Feedback Capacitor Figure 14 Gain/Phase vs. Frequency

OP275 Output Amplifier

±Slew RateVs=±15VTa=+25

5

10

15

20

25

30

0

I to V Feedback Capacitor - pF

Slew

Rat

e-V

/µS

0.2

-0.1

-0.4

10 100 1k 10k

Gai

n-

dB

-0.3

-0.2

0

0.1Ta=+25Vs=±15V

Av=0dB

100k

Cf=10pF

Cf=100pF

Figure 15 Slew Rate vs. I-to-V Feedback Capacitor Figure 16 Gain Flatness vs. Frequency

-40 20 0 20 40 60 80

Frequency

I to V feedback capacitor — pF Frequency — Hz

Frequency — Hz1 10 10

0.10

0.15

0.20

0.25

0.30

THD-%

Temperature-

Vs=±15VVin=0dBuAv=0dB

1000

100

101k 10k 100k 1M

THD

-%

Rbias-Ω

Ta=+25Vs=±15V

Figure 9 THD vs. temperature, Class AB Figure 10 THD vs. RBIAS

10

-5

-201k 10k 100k 1M

Co

nrto

lFee

dth

roug

h-

mV

Rbias-Ω

Ta=+25Vs=±15V

-15

-10

0

5

1 10 100 1k 10k 100k0

100

200

300

400

500

-Hz

No

ise

Rin=Rf=30kΩTa=+25

Figure 11 Control Feedthrough vs. RBIAS Figure 12 Voltage Noise Density vs. Frequency,Class AB

Page 5 of 10

Vs=±15V

Ta=25

1 10 100 100010k

100k

1M

10M

-3d

B B

W -

Hz

15

0

-15

1k 10k 100k 1M

Gai

n-

dB

-10

-5

5

10

Ta=+25Vs=±15V

Av=0dBCf=10pF

10M

Phase

Gain

Figure 13 –3 dB Bandwidth vs. I-to-V Feedback Capacitor Figure 14 Gain/Phase vs. Frequency

OP275 Output Amplifier

±Slew RateVs=±15VTa=+25

5

10

15

20

25

30

0

I to V Feedback Capacitor - pF

Slew

Rat

e-V

/µS

0.2

-0.1

-0.4

10 100 1k 10k

Gai

n-

dB

-0.3

-0.2

0

0.1Ta=+25Vs=±15V

Av=0dB

100k

Cf=10pF

Cf=100pF

Figure 15 Slew Rate vs. I-to-V Feedback Capacitor Figure 16 Gain Flatness vs. Frequency

-40 20 0 20 40 60 80

Frequency

I to V feedback capacitor — pF Frequency — Hz

Frequency — Hz1 10 10

0.10

0.15

0.20

0.25

0.30

THD-%

Temperature-

Vs=±15VVin=0dBuAv=0dB

1000

100

101k 10k 100k 1M

THD

-%

Rbias-Ω

Ta=+25Vs=±15V

Figure 9 THD vs. temperature, Class AB Figure 10 THD vs. RBIAS

10

-5

-201k 10k 100k 1M

Co

nrto

lFee

dth

roug

h-

mV

Rbias-Ω

Ta=+25Vs=±15V

-15

-10

0

5

1 10 100 1k 10k 100k0

100

200

300

400

500

-Hz

No

ise

Rin=Rf=30kΩTa=+25

Figure 11 Control Feedthrough vs. RBIAS Figure 12 Voltage Noise Density vs. Frequency,Class AB

Page 5 of 10

Vs=±15V

Ta=25

1 10 100 100010k

100k

1M

10M

-3d

B B

W -

Hz

15

0

-15

1k 10k 100k 1M

Gai

n-

dB

-10

-5

5

10

Ta=+25Vs=±15V

Av=0dBCf=10pF

10M

Phase

Gain

Figure 13 –3 dB Bandwidth vs. I-to-V Feedback Capacitor Figure 14 Gain/Phase vs. Frequency

OP275 Output Amplifier

±Slew RateVs=±15VTa=+25

5

10

15

20

25

30

0

I to V Feedback Capacitor - pF

Slew

Rat

e-V

/µS

0.2

-0.1

-0.4

10 100 1k 10k

Gai

n-

dB

-0.3

-0.2

0

0.1Ta=+25Vs=±15V

Av=0dB

100k

Cf=10pF

Cf=100pF

Figure 15 Slew Rate vs. I-to-V Feedback Capacitor Figure 16 Gain Flatness vs. Frequency

-40 20 0 20 40 60 80

Frequency

I to V feedback capacitor — pF Frequency — Hz

Frequency — Hz1 10 10

Page 7: Low-Cost Quad Voltage-Controlled Amplifier V2164D/Mcoolaudio.com/docs/COOLAUDIO_V2164MD_DATASHEET.pdf · V2164D/M 4 4. Test Circuit 5. Characteristics Curve Figure 1. THD Distribution,

V2164D/M

7

Figure 17. Bandwidth vs Gain Figure 18. Control Feedthrough vs Frequency

Figure 19. PSRR vs Frequency Figure 20. Supply Current vs RBIAS

Figure 21. Gain Constant vs Temperature

Page 6 of 10

60

0

-60100 1k 10k 100k

Gai

n -dB

-40

-20

20

40Ta=+25°C

Vs=±15V

Cf=10pF

1M 10M

Av=+20dB

Av=0dB

Av=-20dB

40

-20

-80

100 1k 10k 100k

-dB

-60

-40

0

20Ta=+25°CVs=±15V

Vin=0V

1M

Rf=Rin=30kΩ

Figure 17 Bandwidth vs. Gain Figure 18 Control Feedthrough vs. Frequency

20

-40

-10010 100 1k 10k

PSRR-

dB

-80

-60

-20

0Ta=+25°C

Vs=±15V

100k 1M

+PSRR

-PSRR

30

15

0

1k 10k 100k 1M

Sup

ply

Cur

ren

t-m

A

Ta=+25°C

Vs=±15V

5

10

20

25

+ISY

-ISY

Figure 19 PSRR vs. Frequency Figure 20 Supply Current vs. RBIAS

Gai

n C

ons

tan

t -m

V/d

B

Temperature-

-20

-25

-30

-35

-40

-45

0 ±4 ±8 ±12 ±16 ±2

Class A and Class ABVs=±15V

Figure 21 Gain Constant vs. Temperature

Frequency — Hz Frequency — Hz

Frequency — Hz

Rbias — Ω

Co

ntr

ol F

eed

thro

ug

h

Page 6 of 10

60

0

-60100 1k 10k 100k

Gai

n -dB

-40

-20

20

40Ta=+25°C

Vs=±15V

Cf=10pF

1M 10M

Av=+20dB

Av=0dB

Av=-20dB

40

-20

-80

100 1k 10k 100k

-dB

-60

-40

0

20Ta=+25°CVs=±15V

Vin=0V

1M

Rf=Rin=30kΩ

Figure 17 Bandwidth vs. Gain Figure 18 Control Feedthrough vs. Frequency

20

-40

-10010 100 1k 10k

PSRR-

dB

-80

-60

-20

0Ta=+25°C

Vs=±15V

100k 1M

+PSRR

-PSRR

30

15

0

1k 10k 100k 1MSu

ppl

y C

urre

nt-

mA

Ta=+25°C

Vs=±15V

5

10

20

25

+ISY

-ISY

Figure 19 PSRR vs. Frequency Figure 20 Supply Current vs. RBIAS

Gai

n C

ons

tan

t -m

V/d

B

Temperature-

-20

-25

-30

-35

-40

-45

0 ±4 ±8 ±12 ±16 ±2

Class A and Class ABVs=±15V

Figure 21 Gain Constant vs. Temperature

Frequency — Hz Frequency — Hz

Frequency — Hz

Rbias — Ω

Co

ntr

ol F

eed

thro

ug

h

Page 6 of 10

60

0

-60100 1k 10k 100k

Gai

n -dB

-40

-20

20

40Ta=+25°C

Vs=±15V

Cf=10pF

1M 10M

Av=+20dB

Av=0dB

Av=-20dB

40

-20

-80

100 1k 10k 100k

-dB

-60

-40

0

20Ta=+25°CVs=±15V

Vin=0V

1M

Rf=Rin=30kΩ

Figure 17 Bandwidth vs. Gain Figure 18 Control Feedthrough vs. Frequency

20

-40

-10010 100 1k 10k

PSRR-

dB

-80

-60

-20

0Ta=+25°C

Vs=±15V

100k 1M

+PSRR

-PSRR

30

15

0

1k 10k 100k 1M

Sup

ply

Cur

ren

t-m

A

Ta=+25°C

Vs=±15V

5

10

20

25

+ISY

-ISY

Figure 19 PSRR vs. Frequency Figure 20 Supply Current vs. RBIAS

Gai

n C

ons

tan

t -m

V/d

B

Temperature-

-20

-25

-30

-35

-40

-45

0 ±4 ±8 ±12 ±16 ±2

Class A and Class ABVs=±15V

Figure 21 Gain Constant vs. Temperature

Frequency — Hz Frequency — Hz

Frequency — Hz

Rbias — Ω

Co

ntr

ol F

eed

thro

ug

h

Page 6 of 10

60

0

-60100 1k 10k 100k

Gai

n -dB

-40

-20

20

40Ta=+25°C

Vs=±15V

Cf=10pF

1M 10M

Av=+20dB

Av=0dB

Av=-20dB

40

-20

-80

100 1k 10k 100k

-dB

-60

-40

0

20Ta=+25°CVs=±15V

Vin=0V

1M

Rf=Rin=30kΩ

Figure 17 Bandwidth vs. Gain Figure 18 Control Feedthrough vs. Frequency

20

-40

-10010 100 1k 10k

PSRR-

dB

-80

-60

-20

0Ta=+25°C

Vs=±15V

100k 1M

+PSRR

-PSRR

30

15

0

1k 10k 100k 1M

Sup

ply

Cur

ren

t-m

A

Ta=+25°C

Vs=±15V

5

10

20

25

+ISY

-ISY

Figure 19 PSRR vs. Frequency Figure 20 Supply Current vs. RBIAS

Gai

n C

ons

tan

t -m

V/d

B

Temperature-

-20

-25

-30

-35

-40

-45

0 ±4 ±8 ±12 ±16 ±2

Class A and Class ABVs=±15V

Figure 21 Gain Constant vs. Temperature

Frequency — Hz Frequency — Hz

Frequency — Hz

Rbias — Ω

Co

ntr

ol F

eed

thro

ug

h

Page 6 of 10

60

0

-60100 1k 10k 100k

Gai

n -dB

-40

-20

20

40Ta=+25°C

Vs=±15V

Cf=10pF

1M 10M

Av=+20dB

Av=0dB

Av=-20dB

40

-20

-80

100 1k 10k 100k

-dB

-60

-40

0

20Ta=+25°CVs=±15V

Vin=0V

1M

Rf=Rin=30kΩ

Figure 17 Bandwidth vs. Gain Figure 18 Control Feedthrough vs. Frequency

20

-40

-10010 100 1k 10k

PSRR-

dB

-80

-60

-20

0Ta=+25°C

Vs=±15V

100k 1M

+PSRR

-PSRR

30

15

0

1k 10k 100k 1M

Sup

ply

Cur

ren

t-m

A

Ta=+25°C

Vs=±15V

5

10

20

25

+ISY

-ISY

Figure 19 PSRR vs. Frequency Figure 20 Supply Current vs. RBIAS

Gai

n C

ons

tan

t -m

V/d

B

Temperature-

-20

-25

-30

-35

-40

-45

0 ±4 ±8 ±12 ±16 ±2

Class A and Class ABVs=±15V

Figure 21 Gain Constant vs. Temperature

Frequency — Hz Frequency — Hz

Frequency — Hz

Rbias — Ω

Co

ntr

ol F

eed

thro

ug

h

Page 8: Low-Cost Quad Voltage-Controlled Amplifier V2164D/Mcoolaudio.com/docs/COOLAUDIO_V2164MD_DATASHEET.pdf · V2164D/M 4 4. Test Circuit 5. Characteristics Curve Figure 1. THD Distribution,

V2164D/M

8

6. Application Circuit and Information

6.1 Basic VCA Configuration

This is the basic application circuit of V2164M/D. Each of the four channels is configured identically. A 30 k Ω resistor converts the input voltage to an input current for the VCA. Additionally, a 500 Ω resistor in series with a 560 pF capacitor must be added from each input to ground to ensure stable operation. The output current pin should be maintained at a virtual ground using an external amplifier.

Power Supply and

14

15

9 8 16 1

13

Vc

I Iout

MODEGND V+V-

IN

0.1uF 0.1uF

-15V 15V

(7.5kΩ Class A)

11

10 12

Vc

I IoutIN

6

7 5

Vc

I IoutIN

3

2 4

Vc

I IoutIN

560pF

30kΩ

500Ω

VIN1

0.1uF

100kΩ

+8V

+

560pF

30kΩ

500Ω

VIN2

0.1uF

100kΩ

+8V

+

560pF

30kΩ

500Ω

VIN3

0.1uF

100kΩ

+8V

+

560pF

30kΩ

500Ω

VIN4

0.1uF

100kΩ

+8V

+

-

+

100pF

30kΩ

1/4 OP482 Vout1

-

+

100pF

30kΩ

1/4 OP482 Vout1

-

+

100pF

30kΩ

1/4 OP482 Vout1

-

+

100pF

30kΩ

1/4 OP482 Vout1

Open Class AB

VCA1

VCA2

VCA3

VCA4

Biasing Circuitry

Page 9: Low-Cost Quad Voltage-Controlled Amplifier V2164D/Mcoolaudio.com/docs/COOLAUDIO_V2164MD_DATASHEET.pdf · V2164D/M 4 4. Test Circuit 5. Characteristics Curve Figure 1. THD Distribution,

V2164D/M

9

6.2 Low Cost, Four-Channel Mixer

The four VCAs in a single package can be configured to create a simple four-channel mixer. The inputs and control ports are configured the same as for the basic VCA, but the outputs are summed into a single output amplifier.

Additional V2164M/D could be added to increase the number of mixer channels by simply summing their outputs into the same output amplifier. Another possible configuration is to use a dual amplifier such as the OP275 to create a stereo, two channel mixer with a single V2164M/D. If additional V2164M/Ds are added, the 100 pF capacitor may need to be increased to ensure stability of the output amplifier. Most op amps are sensitive to capacitance on their inverting inputs. The capacitance forms a pole with the feedback resistor, which reduces the high frequency phase margin. As more V2164M/D’s are added to the mixer circuit, their output capacitance and the parasitic trace capacitance add, increasing the overall input capacitance. Increasing the feedback capacitor will maintain the stability of the output amplifier.

Power Supply and

14

15

9 8 16 1

13

Vc

I Iout

MODEGND V+V-

IN

0.1uF 0.1uF

-15V 15V

(7.5kΩ for class A)

11

10 12

Vc

I IoutIN

6

7 5

Vc

I IoutIN

3

2 4

Vc

I IoutIN

560pF

30kΩ

500 Ω

VIN1

560pF

30kΩ

500 Ω

VIN2

560pF

30kΩ

500 Ω

VIN3

560pF

30kΩ

500 Ω

VIN4

-

+

100pF

30kΩ

OP176 Vout1

Open for Class AB

VCA1

VCA2

VCA3

VCA4

Biasing Circuitry

Page 10: Low-Cost Quad Voltage-Controlled Amplifier V2164D/Mcoolaudio.com/docs/COOLAUDIO_V2164MD_DATASHEET.pdf · V2164D/M 4 4. Test Circuit 5. Characteristics Curve Figure 1. THD Distribution,

V2164D/M

10

6.3 Digital Control of the V2164M/D

Using a voltage output digital-to-analog converter such as DAC8426 also can control the gain and attenuation of the V2164M/D. In Digitally Controlled system, its simple 8-bit parallel interface can easily be connected to a microcontroller or microprocessor, The coltage output of D/A provedes a low impenence drive to the V2164M/D, so the attenuation can be controlled accurately. The input and output configuration for the V2164M/D is the same as for the basic VCA circuit shown. The 4-to-1 mixer configuration could also be used.

10V Reference

Latch A

Latch B

Latch C

Latch D

Logic

DAC A

DAC B

DAC C

DAC D

-

+

-

+

-

+

-

+

Vss AGND DGND

Vout A

Vout B

Vout C

Vout D

VrefOUT+10V Vod

MSB

LAB

___

A1A0

+15V

WR

7

14

151617

3 5 6

19

20

1

2

4 18

Power Supply and

14

15

9 8 16 1

13

Vc

I Iout

MODEGND V+V-

IN

0.1uF 0.1uF

-15V 15V

(7.5kΩ Class A)

11

10 12

Vc

I IoutIN

6

7 5

Vc

I IoutIN

3

2 4

Vc

I IoutIN

DAC8426

Data Bus

Control

Biasing Circuitry

Open Class AB

Page 11: Low-Cost Quad Voltage-Controlled Amplifier V2164D/Mcoolaudio.com/docs/COOLAUDIO_V2164MD_DATASHEET.pdf · V2164D/M 4 4. Test Circuit 5. Characteristics Curve Figure 1. THD Distribution,

V2164D/M

11

6.4 V2164M/D Single Supply Operation

The V2164M/D can easily be operated from a single power supply as low as +8 V or as high as +36 V. The key to using a single supply is to reference all groung connection to a voltage midway between the supplyand ground, as shown above. The OP176 is used to create a pseude-ground reference for the V2164M/D. Both the OP482 and OP176 are single supply amplifiers and can operate over the same voltage range as the V2164M/D, with little or no change in performance.

V+

MODE

GND

V-

V+=+8V

Rb1.8kΩ for class Aopen for class B

Rb

100pF

Vout-

+1/4 OP482

-

+

-

+

OP176V+/2

to additional OP482

V+

10kΩ

10kΩ10uF

V+Vc

0dB gain at Vc=V+/2

560pF

30kΩ

500ΩVIN

10uF

+

Page 12: Low-Cost Quad Voltage-Controlled Amplifier V2164D/Mcoolaudio.com/docs/COOLAUDIO_V2164MD_DATASHEET.pdf · V2164D/M 4 4. Test Circuit 5. Characteristics Curve Figure 1. THD Distribution,

V2164D/M

12

7. Package Dimensions

19.4 max

10.8 max 3.9

6±0.2A

1.8±

0.2

0.705 Typ

V2164D

1.27

0.2

1.05

0.55

0.2

16

1

9

8

1.0 1.4 0.5±0.070.25±0.057.70~8.80

16

1

9

8

2.54

7.62±0.25

0.43±0.1

3.3

3.5

7.3

max

1.75

max

6.4±

0.15

V2164D