low consistency refining of softwood chemical pulp ver...

67
1 Low Consistency Refining of Softwood Chemical Pulp Project Report Ghasem Behfarshad Pulp and Paper Centre, Department of Mechanical Engineering, University of British Columbia November 26, 2012

Upload: others

Post on 13-May-2020

7 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

1""

"

"

Low Consistency Refining of Softwood Chemical Pulp"

"

"

"

Project Report

"

"

"

Ghasem Behfarshad

Pulp and Paper Centre, Department of Mechanical Engineering,

University of British Columbia

November 26, 2012 "

"

"

"

Page 2: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

2""

Table"of"Contents"Abstract………………………………………………………………..

Introduction ………………………………………………………….

Objective of the Research …………………………………………"

Materials and Methods …………………………………………….

Results ………………………………………………………………."

Conclusion ……………………………………………………………"

References …………………………………………………………….

Tables of Reduced Data …………………………………………….

Raw Data Files ………………………………………………………..

"

"

"

"

"

"

"

"

"

"

"

"

"

Page 3: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

3""

"

"

Abstract"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

Page 4: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

4""

Introduction"

Refining"refers"to"the"mechanical"treatment"of"chemical"pulp"in"preparation"for"papermaking." " It" is"

an"important"process"for"improving"pulp"properties.""In"the"process"of"refining,"fibers"are"trapped"in"

the" gaps" between" bars" during" bar" crossings" where" they" are" subjected" to" cyclic" compression" and"

shear" forces"which"modify" the" fiber" properties." [Heymer," 2002]." The"main" target" of" refining" is" to"

modify"surface"characteristics"as"well"as"fiber"flexibility" in"order"to"develop"stronger"and"smoother"

paper"with"good"printing"properties,." In"addition," sometimes"the"purpose" is" to"develop"other"pulp"

properties"such"as"absorbency,"porosity,"or"visual"appearance."[Yan"Li,"2005]."

Low" Consistency" (LC)" refining" at" 3N5%" has"many" benefits" because" the" pulp" suspension" acts" as" an"

incompressible"fluid"and"therefore"may"be"pumped"through"the"refiner"using"an"external"pump."This"

mixture" is"more"homogeneous" than"pulp" at" high" consistency" (30%)" and" consequently" the" refining"

treatment"more"uniform."This"is"evident"in"the"smaller,"more"uniform"gap"between"the"plates,"and"

more"stable"refiner"power"consumption."Another"benefit"of"LC"refining,"related"to"the"above,"is"that"

the"intensity"of""treatment"and"pulp"throughput"are""decoupled,"allowing"them"to"be"independently"

controlled"and"optimized."[Luukkonen,"2011]"

The"possibility"of"having"an"optimum"condition" for" refining" intensity"arises" from"the" fact" that" " low"

intensity"refining"imposes""gentle"refining"effect,"thus"flexibilizing"fibers"through"internal"fibrillation"

without"further"disrupting"the"fiber"structure,"while"on"the"other"hand," "high"intensity"disrupts"the"

fiber" structure" harshly" and" creates" fibre" shortening." " However," the" literature" on" an" optimum"

intensity" is" inconclusive" and" occasionally" contradictory." .Nazhad" et" al" (2001)" studied" the" effect" of"

refining"of"chemical"pulp"on"paper"formation."The"authors"concluded"that"fiber"shortening"caused"by"

refining"had"strong"effect"on"reducing"fiber"flocculation,"thus"improving"formation."The"author"also"

discussed" the" fact" that" the" optimum" refining" intensity" should" vary" depending" on" raw" material"

properties."""

The"refining"process"is"usually"described"by"two"factors,"refining"intensity"and"refining"amount."The"

amount"of"refining"is"represented"by"specific"energy."The"intensity"is"represented"in"different"ways."

One" approach" is" by" a" “machine" intensity”" (Kerekes" 2010)." The" most" used" parameters" for" this" is"

Specific"Edge"Load"(SEL)"(Baker"1995)."Modifications"of"the"specific"edge"load"have"been"suggested,"

for" example" the" Modified" Edge" Load" (MEL)" by" (Melzer" 1995)," Specific" Surface" Load" (Lumiainen"

1995)." Even" more" complex" expressions" were" developed" by" (Joris" 1995)" (Radoslava," Roux" et" al."

1997)]." Another" approach" to" characterizing" intensity" is" by" a" “fibre" intensity" ”." " This" is" based" on"

energy" expended" on" fibre" rather" than" by" bar" crossings" as" is" the" case" for"machine" intensities." An"

example" is" the" CNfactor" (Kerekes" 1990)" which" takes" into" account" the" properties" of" the" fiber"

suspension."However,"apart"from"the"SEL,"none"of"the"other"methods"have"gained"wide"acceptance.""

"

Of" the" simpler"models," Lumiainen" (1994)" studied" the" refining" intensity"on" the"hardwood"pulp."He"

concluded"that"the"lower"the"intensity" is"better"for"fiber"development"and"gives" " lower"the"energy"

consumption." Kerekes" (2010)" compared" tensile" strength" increase" for" hardwoods" and" softwoods"

Page 5: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

5""

using"both" the" SEL" and" the" Specific" Intensity" from" the"CNFactor."He" showed" that" the" that" SEL"had"

limitations,"but"for"Specific"Intensity"the"data"for"both"hardwood"and"softwood"fell"on"one"line,"and"

that"the"optimum!SEL’s! for"each"occurred"at"the"same"Specific" Intensity." "Eileen"Joy"and"Desaeada"

(2010)"concluded"the"ultraNlow"intensity"refining"plate"would"have"benefits"for"hardwood"chemical"

pulps" because" gentle" refining" action" increased" the" specific" surface" area" of" the" fibers" by" internal"

fibrillation," leading" to" greater" strength" development." On" " the" other" hand," Soupajarviel! at," (2009)"reported" higher" refining" intensity" results" fiber" fibrillation" (external)" while" fiber" length" remained"

unchanged"by"using"high"intensity"dispergator"with"LC"refining."

Koskenhely"et!al,"2005"compared"the"fillings"in"refining"of"softwood"and"hardwood"pulp"fibers."Their"

results"showed"a"better"dewateringNtensile"strength"combination"when"SW"was"refined"with"conical"

fillings."Also,"the"reduction"in"fiber"length"was"inversely"proportional"to"gap"size"because"fibers"are"

squeezed"and"crushed"between"the"bars."

Some" work" suggested" that" the" refiner" gap" would" be" better" indication" of" the" ‘effective" refining"

intensity’" than" the" conventional" Specific" Edge" Load" (SEL)" and" that" the" power" –" gap" relationship"

governs"the"refining"result"[Luukkonen,"2011]."Moreover,"changes"in"fiber"length"and"fiber"curl"were"

also"controlled"by"plate"gap"and"can"be"related"to"water"retention"value"(WRV)"better"than"energy"

and"power"in"refining"of"chemical"pulp."[Mohlin,"2002]."

"

Objective of the research"

To"determine"energy"quality"relationship"of"Canfor"Softwood"Chemical"Pulp"by"conducting"a"series"of"pilot"plant"LC"refining."This"work"is"essential"to"the"CRD"Proposal""(Optimal"Low"Consistency"Refining"of"Northern"Softwood"Kraft"Fibre"project)."

"

"

"

"

"

"

"

"

"

"

Page 6: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

6""

Materials"and"Methods"

1 Materials

Raw material pulps play an important role in the refining process. A market softwood bleached kraft pulp from Canfor pulp mill in Northern British Columbia (Canada) was used for this study. This softwood is a mix of 70-80% lodgepole pine (Pinuscontorta), 20-30% of white spruce (Piceaglauca), and 5% sub alpine fir (Abieslasiocarpa). This raw material was produced by using kraft pulping process and modern bleaching and screening systems. Bleaching is done with chlorine dioxide, oxygen and hydrogen peroxide resulting in environmentally superior enhanced ECF pulps. The fiber Length of this kind of pulp was approximately 2.4 – 2.6 mm.

2 Low Consistency Refining Equipment

The Low Consistency (LC) refining facility used for this research is located in the Pulp and Paper Center at the University of British Columbia (Canada). The refining loop was consisted of many elements such as: two mixing tanks each with 4m3 capacity and two mixers, one at the bottom and one upper mixer, a 40KW variable speed centrifugal pump, a 14 inch disk for LC refining overhung with plates of 16 inch in diameter, a 150HP variable speed motor (1800 max rpm) attached to the refiner, and a wide range of FineBarTM refiner plates with a broad range of bar/groove geometries. The fluid and low consistency pulp were injected into the refiner from tank A using the pump and the output ended up in tank B after refining and collecting samples. The refining loop was equipped with several control devices such as: a digital valve for pulp flow control, power meters, plate positioning sensor, input and output pressure and temperature sensors (positioned before and after refiner). The flow within the loop was controlled by actuated valves, plate actuation and variable speed drives on the pump and refiner. The refining system was operated and data collected using a LabView™ interface and the refiner was allowed to operate in a wide range of refining power at different rotational speeds. Figure.1 shows the pilot low consistency refiner and refining facility at UBC-PPC laboratory.

Figure.1- The UBC – PPC Low Consistency refiner and refining facility.

Page 7: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

7""

3 Experimental Methods This experiment mainly focused on studying the effect of power consumption and pulp properties. For this research, the pulp was refined in the pilot LC refiner at different consistency ranging from 3 and 4 percent. In order to start a trial, the pulps were prepared for a constant consistency in tank A and mixed for 4 hours, then refining loop preparation was started by changing the refiner plate and zero setting. The plate used for this study had bar width of 1.6 mm, groove width of 3.2 mm, groove depth of 4.8 mm, bar angle of 15 deg as well as BEL of 2.72 km/rev. The plate has been worn in using abrasive material in a stock suspension before these trials were conducted to ensure plate parallelism. The refining speeds used for this research were 1000, 1200 and 1400 rpm, respectively. Refining conditions are summarized in Table. 1.

Table. 1- Summary of the parameters studied in this experiment. Parameters Condition Consistency 3.0% and 4.0 % Refiner speed 1000, 1200, 1400 rpm Flow rates 233, and 175 l/min No of Gaps Between 8-14 points (≤ 2.5 mm)

Gap size between plates is very important for power measurement in LC refining. The zero point setting for plate position was determined by bringing the plates together and recalibrating the gap sensor before each trial. Then to adjust flow rate, the circulation loop of the LC refiner was started. The refiner speed was adjusted to the desired speed (i.e, 1200rpm) then the refiner gap was changed from 9.0 to 2.5 mm to measure no-load power. It was observed that there is almost no change in power consumption (no refining of fibers) if the gap size between plates of the refiner is greater or equal than 2.5 mm, so the power related to 2.5 mm gap was considered as the no load power. After a few minutes of pulp recirculation and recording the no-load power, refining measurement was started by feeding pulp from tank A to the LC refiner. In order to refine the fibers and investigate the increase in refining power, the gap size was maintained at a certain value(i.e, 1mm) until sample was taken at the sampling position (downstream of the refiner before entering in tank B) for further analysis while running the refiner. While holding the gap at a constant value and start taking sample in a jar (2 litter capacity), other refining process parameters (such as flow rates and refiner speed,) were kept constant. Parameters that required attention when running the refiner at a constant gap were flow rate readings, pressure, temperature, power indicator, gap clearance indicator, valve opening reading, pump frequency reading, and the refiner speed which all were recorded by the LabView™ interface with 3Khz sampling rate. A schematic illustration of the UBC pilot LC refiner loop system used for these trials is shown in Fig. 2.

Page 8: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

8""

Figure 2- Illustration of the UBC pilot LC refiner loop system used for these trials.

Having taken the sample, the new gap was set and after waiting for a certain amount of time (5 seconds) to stabilize the gap size, the previous process for getting new sample was repeated and collecting the samples for several gaps less than 2.5 mm were performed until reaching to a gap size very close to zero (i.e, 0.05 mm). During running the refiner, care was taken on the gap size between plates which should never be fully closed. That would make a critical condition and caused the crush of the two plates and a possible explosion of the pipe system. Then refiner speed was changed when the new condition applied and sampling was carried out for the new settings. It is necessary to mention that the refining temperature was between 20-25 ºC and the refining process could be performed one day for each consistency. The detailed procedure for running the LC refiner is documented on the refiner trial working manual (Darychuk, 2012). Having collected samples for different gaps at a constant condition(constant flow rate and rpm), the properties of the pulp and paper were measured for each sample. Refined fibers from each sample were measured in terms of freeness and fiber length. For fiber strength development, hand-sheets from refined pulp were formed and paper properties (brightness, opacity and scattering, thickness and density, tensile, tear strength, bursting strength) were measured. Summary of each measurement is described below. At first pulp consistency measurement should be performed, so for this purpose speed dryer with temperature control (Fig. 3) was used based on TAPPI method T 412 to find oven dry weight for pulp and hand-sheet paper.

Page 9: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

9""

Figure. 3- Speed dryer.

Canadian Standard Freeness, CSF, (Manufacture by Robert Mitchell Company Ltd, shown in Fig. 4) is a measure of the volume of water collected from a pulp suspension drained from one exit-nozzle in a specialized dewatering cell. The standard procedure used for measuring pulp drainage is based on TAPPI T227 method. Three grams of pulp in 1 liter of distilled water was prepared as a suspension for every freeness measurement. The suspension is drained through a standard screen which captured the fibers.

Figure. 4- Canadian Standard Freeness (CSF).

Fiber length is determined by measuring the length of a large number of individual fibers and then averaging the values as the average fiber length. For fiber length analysis, the HiRes Fiber Quality Analyzer, (FQA), shown in Fig. 5 was used to measure the fiber length. The FQA was controlled by a touch screen with user friendly menus. Then the type of output result could be selected by the operator and mean fiber length as an arithmetic (LN), length weighted (LW), and weight weighted average (LWW), mean fiber width, Curl Index as an arithmetic mean (CIN), length weighted mean (CIW), average Kink Index (KI) and mean kink angle (2) were able to be obtained. Distributions in histograms and tables for each parameter were also obtainable.

Page 10: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

10""

Figure.5- Laboratory Fiber Quality Analyzer (FQA).

For fiber strength development, handsheets from refined pulp were formed for all samples. Handsheets were prepared for 60 g/m2 basis weight, as 1.2 grams in 200 cm2 sheet area. Figure. 6 shows steps for making the handsheets. Pulp disintegration, pulp suspension preparation, hand sheet making, handsheet dewatering using presser are based on TAPPI method 205.

Figure. 6- Handsheet Making Process.

For drying handshhets and measuring paper properties, standard room conditioning and testing atmospheres were applied based on TAPPI method T403. It was preserved below 25°C (77°F) for the room temperature and relative humidity was below 58% but not below 10% as the paper may curl or cockle and change in other respects. Apparatus for measuring paper properties are shown in Fig.7. Technidyne (Brightness & Opacitey Tester) was employed for brightness testing based on TAPPI T452 method. Brightness is the reflectance or brilliance of the paper when measured under a specially calibrated blue light only at wavelength of 457 nm. Opacity is the measure of how much light is kept away from passing through a sheet. The higher the opacity is the less likely that the printing on one side will be visible from the other side.

Page 11: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

11""

For thickness and density measurement, Lorentzen & Wettre, (L&W), Micrometer was used based on TAPPI T411. Density [g/cm3] was calculated from the caliper (i.e. thickness in mm) and basis weight [g/m2] according to TAPPI T500 method. Paper density is related to the resulting paper quality and higher bulk is desired for absorbent papers.

Figure 7- Apparatus for Measuring Paper Propertie.

It is necessary to mention that a 15mm (0.59 in) wide cutter double-knife was used to cut the sheets for physical tests (tensile, tear and burst). A pile of five sheets was placed on the cutting anvil with the diameter of the pile accurately situated along one of the anvil's edges. Sheets were cut as shown in Fig. 8.

Figure 8- Cutting the Handsheets

Tensile strength and tensile index measurement were carried out using Tensile Tester (L&W Tensile Strength Tester) based on TAPPI T494. The tensile index [Nm/g] is the ratio of the tensile strength per unit width [N/m] of a paper sheet to its basis weight [g/m2]. The tensile index is a measure of the ultimate strength of paper. It is normalized to its areal density,

Page 12: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

12""

opposed to its thickness, as the thickness of the paper is highly variable. In this case, the roughness elements of paper are the same order of magnitude as its average thickness. For tearing strength measurement, Elmendorf Tearing Resistance Tester (made by Thwing Albert Instrument Co.) was used based on TAPPI T414. Tear index [mNm2/g] is calculated similarly to the tensile index by dividing the measured tear strength [mN] of the paper sheet normalized by its basis weight [g/m2]. Higher paper tear strength indicates greater resistant to the propagation of a tear. Finally bursting strength test was performed using Mullen Bursting Tester (manufactured by B.F. Perkins, Chicopee, MA, USA) based on TAPPI T403. Bursting strength of a material is defined as the maximum hydrostatic pressure required to produce rupture of the material when a controlled and constantly increasing pressure is applied through a rubber diaphragm to a circular area, 30.5 mm (1.2 in.) diameter. The area of the material under test is initially flat and held rigidly at the circumference but is free to bulge during the test.

Page 13: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

13##

Main Experimental plan for “Low Consistency Refining of Northern Softwood Kraft”

! ! Phase!1 Phase!2 Phase!3 Phase!4 Phase!5 Phase!6 Parameters Pattira’s!

Work Trial.1 Trial.2 Trial!3 Trial!4 Trial!5 Trial!6 Trial!7 Trial!8 Trial!9 Trial!10 Trial!11 Trial!12 Trial!13 Trial!14 Trial!15 Consistency

% 3.5 3.5 3.5 3.0 4.0 3.0 4.0 3.0 3.5 4.0 3.0 3.5 4.0 3.0 3.5 4.0 Plate(s)BEL (Km/rev) 2.74,#2.01 2.74 2.74 2.74 2.74 2.01 2.01 0.99 0.99 0.99 5.59 5.59 5.59 7.21 7.21 7.21

RPM 1000, 1200, 1400

1200, 1200, 1000,#1200,#1400

1000,#1200,#1400

1000,#1200,#1400

1000,#1200,#1400

1000#1200#1400

1000,#1200,#1400

1000,#1200,#1400

1000,#1200,#1400

1000,#1200,#1400

1000,#1200,#1400

1000,#1200,#1400

1000,#1200,#1400

1000,#1200,#1400

Gap(s)!Range (mm) G<2.5 G<2.5 G<2.5 G<2.5 G<2.5 G<2.5 G<2.5 G<2.5 G<2.5 G<2.5 G<2.5 G<2.5 G<2.5 G<2.5 G<2.5 G<2.5

Gaps (mm)

2.5, 0.5, 0.3, 0.2, 0.1, 0.05, 0.03

2.5 #1.0, 0.625 #0.5# 0.4 0.33 #0.28 0.25 0.22 0.2 0.18 0.16 0.14 0.125 0.111 0.1 0.08 0.06 0.05 0.04

2.5 #1.0, 0.625 #0.5# 0.4 0.33 #0.28 0.25 0.22 0.2 0.18 0.16 0.14 0.125 0.111 0.1 0.08 0.06 0.05 0.04

2.5 #1.0, 0.625 #0.5# 0.4 0.33# 0.28 0.25 0.22 0.2 0.18 0.16 0.14 0.125 0.111 0.1 0.08 0.06 0.05 0.04

2.5# 1.0, 0.625 #0.5# 0.4 0.33# 0.28 0.25 0.22 0.2 0.18 0.16 0.14 0.125 0.111 0.1 0.08 0.06 0.05 0.04

2.5 #1.0, 0.625 #0.5# 0.4 0.33 #0.28 0.25 0.22 0.2 0.18 0.16 0.14 0.125 0.111 0.1 0.08 0.06 0.05 0.04

2.5# 1.0, 0.625 #0.5# 0.4 0.33 #0.28 0.25 0.22 0.2 0.18 0.16 0.14 0.125 0.111 0.1 0.08 0.06 0.05 0.04

2.5 #1.0, 0.625 #0.5# 0.4 0.33 #0.28 0.25 0.22 0.2 0.18 0.16 0.14 0.125 0.111 0.1 0.08 0.06 0.05 0.04

2.5# 1.0, 0.625 #0.5# 0.4 0.33 #0.28 0.25 0.22 0.2 0.18 0.16 0.14 0.125 0.111 0.1 0.08 0.06 0.05 0.04

2.5# 1.0, 0.625 #0.5# 0.4 0.33# 0.28 0.25 0.22 0.2 0.18 0.16 0.14 0.125 0.111 0.1 0.08 0.06 0.05 0.04

2.5 #1.0, 0.625 #0.5# 0.4 0.33# 0.28 0.25 0.22 0.2 0.18 0.16 0.14 0.125 0.111 0.1 0.08 0.06 0.05 0.04

2.5 #1.0, 0.625 #0.5# 0.4 0.33# 0.28 0.25 0.22 0.2 0.18 0.16 0.14 0.125 0.111 0.1 0.08 0.06 0.05 0.04

2.5 #1.0, 0.625 #0.5# 0.4 0.33# 0.28 0.25 0.22 0.2 0.18 0.16 0.14 0.125 0.111 0.1 0.08 0.06 0.05 0.04

2.5# 1.0, 0.625 #0.5# 0.4 0.33 #0.28 0.25 0.22 0.2 0.18 0.16 0.14 0.125 0.111 0.1 0.08 0.06 0.05 0.04

2.5# 1.0, 0.625 #0.5# 0.4 0.33 #0.28 0.25 0.22 0.2 0.18 0.16 0.14 0.125 0.111 0.1 0.08 0.06 0.05 0.04

2.5# 1.0, 0.625 #0.5# 0.4 0.33# 0.28 0.25 0.22 0.2 0.18 0.16 0.14 0.125 0.111 0.1 0.08 0.06 0.05 0.04

VFR (l/min) 200 400 600 233 175 233 175 233 200 175 233 200 175 233 200 175

Page 14: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

14##

Trials performed to date from main experimental plan ! ! ! Phase!1 Phase!2

Parameters Pattira’s!Work Dimas’s!Work Trial.1 Trial.2 Trial!3 Trial!4

Consistency %

3.5 3.5 3.5 3.5 3.0 4.0

Plate(s)BEL (Km/rev)

2.74,!2.01 2.74 2.74 2.74 2.74 2.74

RPM 1000, 1200, 1400

1200 !

1200 1200 1000, !1200,! 1400

1000, !1200,! 1400

Gaps (mm)

2.5, 0.5, 0.3, 0.2, 0.1, 0.05, 0.03

2.5! 1.0, 0.625 !0.5! 0.4 0.33! 0.28 0.25 0.22 0.2 0.18 0.16 0.14 0.125 0.111 0.1 0.08 0.06 0.05 0.04

2.5! 1.0, 0.625 !0.5! 0.4 0.33! 0.28 0.25 0.22 0.2 0.18 0.16 0.14 0.125 0.111 0.1 0.08 0.06 0.05 0.04

2.5! 1.0, 0.625 !0.5! 0.4 0.33 !0.28 0.25 0.22 0.2 0.18 0.16 0.14 0.125 0.111 0.1 0.08 0.06 0.05 0.04

2.5! 1.0, 0.625 !0.5! 0.4 0.33! 0.28 0.25 0.22 0.2 0.18 0.16 0.14 0.125 0.111 0.1 0.08 0.06 0.05 0.04

2.5 !1.0, 0.625 !0.5! 0.4 0.33! 0.28 0.25 0.22 0.2 0.18 0.16 0.14 0.125 0.111 0.1 0.08 0.06 0.05 0.04

VFR (l/min)

200 200 400 600 233 175

Page 15: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

15##

Results##

Part#1-#Effect#of#Flow#Rate#

In the first section of this report, the results of the effect of flow rate (400 and 600 l/min at 1200 RPM for C=3.5%) will be shown first. At first these results are compared with Pattira’s work(200 l/min).

In continue, the results of 3 and 4% consistency will be presented. It is necessary to mention that for these trials, flow rate was changed somehow to keep the SRE constant. Most of the results obtained in this part will be compared with Pattira’s work.

-10#

0#

10#

20#

30#

40#

50#

60#

70#

0# 0.5# 1# 1.5# 2# 2.5# 3#

FR=400#l/min#

FR=600#l/min#

Gap#(mm)#

Pnet##(kw)#

Effect&of&Flow&Rate&on&Net&Power&vs&Gap&(C=3.5%,&BEL=&2.74,&RPM=1200)#

Page 16: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

16##

-10#

0#

10#

20#

30#

40#

50#

60#

70#

80#

0# 0.5# 1# 1.5# 2# 2.5# 3#

FR=400#l/min#FR=600#l/min#

Gap#(mm)#

SRE#(KWh/T)#

Effect&of&Flow&Rate&on&SRE&vs&Gap&(C=3.5%,&BEL=&2.74,&RPM=1200)#

-0.2#

0#

0.2#

0.4#

0.6#

0.8#

1#

1.2#

0# 0.5# 1# 1.5# 2# 2.5# 3#

FR=400#l/min#

FR=600#l/min#

Gap#(mm)#

SEL#(J/m)#

Effect&of&Flow&Rate&on&SEL&vs&Gap&(C=3.5%,&BEL=&2.74,&RPM=1200)#

Page 17: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

17##

0#10#20#30#40#50#60#70#80#90#

0# 0.5# 1# 1.5# 2# 2.5# 3#

FR=400#l/min#

FR=600#l/min#

Effect&of&Flow&Rate&on&Tensile&Index&vs&Gap&(C=3.5%,&BEL=&2.74,&RPM=1200)#

Gap#(mm)#

Tensile#Index#

(KNm/Kg)#

0#

5#

10#

15#

20#

25#

30#

0# 0.5# 1# 1.5# 2# 2.5# 3#

FR=400#l/min#

FR=600#l/min#

Effect&of&Flow&Rate&on&Tear&Index&&vs&Gap&(C=3.5%,&BEL=&2.74,&RPM=1200)#

Gap#(mm)#

Tear#Index#(mNm2/g)#

Page 18: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

18##

0#

20#

40#

60#

80#

100#

120#

0# 0.5# 1# 1.5# 2# 2.5# 3#

FR=400#l/min#

FR=600#l/min#

Gap#(mm)#

TEA#(J/m2)#

Effect&of&Flow&Rate&on&TEA&vs&Gap&(C=3.5%,&BEL=&2.74,&RPM=1200)#

0#

1#

2#

3#

4#

5#

6#

7#

0# 0.5# 1# 1.5# 2# 2.5# 3#

FR=400#l/min#

FR=600#l/min#

Burst#Index#(kPam2/g)#

Gap#(mm)#

Effect&of&Flow&Rate&on&Burst&Index&vs&Gap&(C=3.5%,&BEL=&2.74,&RPM=1200)#

Page 19: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

19##

0#

100#

200#

300#

400#

500#

600#

700#

0# 0.5# 1# 1.5# 2# 2.5# 3#

FR=400#l/min#

FR=600#l/min#

Effect&of&Flow&Rate&on&Freeness&vs&Gap&(C=3.5%,&BEL=&2.74,&RPM=1200)#

Gap#(mm)#

FN#(csf)#

2#

2.1#

2.2#

2.3#

2.4#

2.5#

2.6#

2.7#

2.8#

0# 0.5# 1# 1.5# 2# 2.5# 3#

FR=400#l/min#

FR=600#l/min#

Gap#(mm)#

Effect&of&Flow&Rate&on&Fiber&Length&vs&Gap&(C=3.5%,&BEL=&2.74,&RPM=1200)#

Fiber#Length#(mm)#

Page 20: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

20##

20#

22#

24#

26#

28#

30#

32#

34#

36#

0# 0.5# 1# 1.5# 2# 2.5# 3#

FR=400#l/min#

FR=600#l/min#

Gap#(mm)#

Fine#(%)#

Effect&of&Flow&Rate&on&Fine&Index&vs&Gap&(C=3.5%,&BEL=&2.74,&RPM=1200)#

0#0.2#0.4#0.6#0.8#1#

1.2#1.4#1.6#1.8#

0# 0.5# 1# 1.5# 2# 2.5# 3#

FR=400#l/min#

FR=600#l/min#

Gap#(mm)#

Kink#Index#

Effect&of&Flow&Rate&on&Kink&Index&vs&Gap&(C=3.5%,&BEL=&2.74,&RPM=1200)#

Page 21: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

21##

0#

0.02#

0.04#

0.06#

0.08#

0.1#

0.12#

0.14#

0.16#

0# 0.5# 1# 1.5# 2# 2.5# 3#

FR=400#l/min#

FR=600#l/min#

Gap#(mm)#

Effect&of&Flow&Rate&on&Kurl&Index&vs&Gap&(C=3.5%,&BEL=&2.74,&RPM=1200)#

Kerl#Index#

-10#

0#

10#

20#

30#

40#

50#

60#

0# 0.5# 1# 1.5# 2# 2.5# 3#

Effect&of&&Pnet&vs&Gap&for&C=3%&&(BEL=&2.74,&FR=233&l/m)&

1400#RPM#

1200#RPM#

1000#RPM#Pnet&(Kw)&#Pnet&(Kw)&#

G&(mm&)&

Page 22: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

22##

-0.005#

0#

0.005#

0.01#

0.015#

0.02#

0.025#

0.03#

0.035#

0.04#

0.0000# 0.5000# 1.0000# 1.5000# 2.0000# 2.5000# 3.0000#

Pnet/w

3&

Gap&(mm)&

Effect&of&Pnet/w3&vs&Gap&for&different&RPM,&(&C=3%,&BEL=2.74,&FR=233&l/min)&

1400#RPM#

1200#RPM#

1000#RPM#

-20.00#

0.00#

20.00#

40.00#

60.00#

80.00#

100.00#

120.00#

0.0000# 0.5000# 1.0000# 1.5000# 2.0000# 2.5000# 3.0000#

SRE&(kWh/T)&

Gap(mm)&

Comparison&of&SRE&for&different&RPM,&&(BEL=2.74,&C=3%,&FR=233&l/m)&

1400#RPM,#FR=233#l/m#

1200#RPM,#FR=233#l/m#

1000#RPM,#FR=233#l/m#

Page 23: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

23##

-0.10#0.00#0.10#0.20#0.30#0.40#0.50#0.60#0.70#0.80#0.90#1.00#

0.0000# 0.5000# 1.0000# 1.5000# 2.0000# 2.5000# 3.0000#

SEL&(J/m

)&

Gap(mm)&

Comparison&of&SRE&for&different&RPM,&&(BEL=2.74,&C=3%,&FR=233&l/m)&

1400#RPM,#FR=233#l/m#

1200#RPM,#FR=233#l/m#

1000#RPM,#FR=233#l/m#

0.00#10.00#20.00#30.00#40.00#50.00#60.00#70.00#80.00#90.00#100.00#

0.0000# 0.5000# 1.0000# 1.5000# 2.0000# 2.5000# 3.0000#

Tensile&In

dex&(kNm/kg)&

Gap&(mm)&

Comparison&of&Tensile&Index&for&different&RPM.&(BEL=2.74,&C=3%,&FR=233&l/m)&

1400#RPM#

1200#RPM#

1000#RPM#

Page 24: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

24##

0.00#

5.00#

10.00#

15.00#

20.00#

25.00#

30.00#

0.0000# 0.5000# 1.0000# 1.5000# 2.0000# 2.5000# 3.0000#

Tear&In

dex&(m

Nm2/g)&&

Gap&(mm)&

Comparison&of&Tear&Index&for&different&RPM.&(BEL=2.74,&C=3%,&FR=233&l/m)&

1400#RPM#

1200#RPM#

1000#RPM#

0.00#

20.00#

40.00#

60.00#

80.00#

100.00#

120.00#

0.0000# 0.5000# 1.0000# 1.5000# 2.0000# 2.5000# 3.0000#

TEA&(J/m

2)&

Gap&(mm)&

Comparison&of&TEA&for&different&RPM&(BEL=2.74,&C=3%,&FR=233&l/m)&

1400#RPM#

1200#RPM#

1000#RPM#

Page 25: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

25##

0.00#

100.00#

200.00#

300.00#

400.00#

500.00#

600.00#

700.00#

0.0000# 0.5000# 1.0000# 1.5000# 2.0000# 2.5000# 3.0000#

FN&(csf)&

Gap&(mm)&

Comparison&of&Freeness&for&different&PRM.&&(BEL=2.74,&FR=233&l/m,&C=3%)&&

1000#RPM,#FR=233#l/m,#C=3%#(Sam)#

1200#RPM,#FR=233#l/m,#C=3%#(Sam)#

1400#RPM,#FR=233#l/m,#C=3%#(Sam)#

2.000#

2.100#

2.200#

2.300#

2.400#

2.500#

2.600#

2.700#

2.800#

0.0000# 0.5000# 1.0000# 1.5000# 2.0000# 2.5000# 3.0000#

Fibe

r&Len

gth&(m

m)&

Gap&(mm)&

Comparison&of&fiber&length&for&different&RPM,&&(BEL=2.74,&C=&3%,&FR=233&l/min)&&

1400#RPM,#FR=233#l/m#

1200#RPM,#FR=233#l/m#

1000#RPM,#FR=233#l/m#

Page 26: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

26##

0.000#

5.000#

10.000#

15.000#

20.000#

25.000#

30.000#

35.000#

40.000#

0.0000# 0.5000# 1.0000# 1.5000# 2.0000# 2.5000# 3.0000#

Fine

&(%)&

Gap(mm)&

Comparison&of&Fine&for&different&RPM,&&(BEL=2.74,&C=&3%,&FR=233&l/min)&&

1400#RPM,#FR=233#l/m#

1200#RPM,#FR=233#l/m#

1000#RPM,#FR=233#l/m#

0.000#

0.200#

0.400#

0.600#

0.800#

1.000#

1.200#

1.400#

1.600#

0.0000# 0.5000# 1.0000# 1.5000# 2.0000# 2.5000# 3.0000#

Kink

&Inde

x&

Gap&(mm)&

Comparison&of&Kink&Index&for&different&RPM,&&(BEL=2.74,&C=&3%,&FR=233&l/min)&

1400#RPM,#FR=233#l/m#

1200#RPM,#FR=233#l/m#

1000#RPM,#FR=233#l/m#

Page 27: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

27##

0.000#

0.020#

0.040#

0.060#

0.080#

0.100#

0.120#

0.140#

0.160#

0.0000# 0.5000# 1.0000# 1.5000# 2.0000# 2.5000# 3.0000#

Curl&Inde

x&

Gap&(mm)&

Comparison&of&Curl&Index&for&different&RPM,&&(BEL=2.74,&C=&3%,&FR=233&l/min)&&

1400#RPM,#FR=233#l/m#

1200#RPM,#FR=233#l/m#

1000#RPM,#FR=233#l/m#

-10#

0#

10#

20#

30#

40#

50#

60#

70#

80#

0# 0.5# 1# 1.5# 2# 2.5# 3#

1000#RPM#

1200#RPM#

1400#RPM#

Pnet&(Kw)&#

Effect&of&RPM&on&Pnet&vs&Gap&for&C=4%&&(BEL=&2.74,&FR=175&l/m)#

Pnet&(Kw)&#

G&(mm&)&

Page 28: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

28##

-0.01#

0#

0.01#

0.02#

0.03#

0.04#

0.05#

0.0000# 0.5000# 1.0000# 1.5000# 2.0000# 2.5000# 3.0000#

Pnet/w

3&

Gap&(mm)&

Effect&of&Pnet/w3&vs&Gap&for&different&RPM,&&(&C=4%,&BEL=2.74,&FR=175&l/m)&

1400#RPM#

1200#RPM#

1000#RPM#

-20.00#

0.00#

20.00#

40.00#

60.00#

80.00#

100.00#

120.00#

0.0000# 0.5000# 1.0000# 1.5000# 2.0000# 2.5000# 3.0000#

SRE&(kWh/T)&

Gap&(mm)&

Comparison&of&SRE&for&different&RPM,&&

(BEL=2.74,&C=&4%,&FR=175&l/min)&&1400#RPM#

1200#RPM#

1000#RPM#

Page 29: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

29##

-0.20#

0.00#

0.20#

0.40#

0.60#

0.80#

1.00#

1.20#

1.40#

0.0000# 0.5000# 1.0000# 1.5000# 2.0000# 2.5000# 3.0000#

SEL&(J/m

)&

Gap&(mm)&

Comparison&of&SEL&for&different&RPM,&&(BEL=2.74,&C=&4%,&FR=175&l/min)&&

1400#RPM#

1200#RPM#

1000#RPM#

-10#

0#

10#

20#

30#

40#

50#

60#

0# 0.5# 1# 1.5# 2# 2.5# 3#

C=3%,#FR=233#l/min#

C=4#%,#FR=175#l/min#

Pnet&(Kw)&#

Effect&of&Consistency&on&Pnet&vs&Gap&(BEL=&2.74,&RPM=1000)#

G&(mm&)&

Page 30: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

30##

-10.00#

0.00#

10.00#

20.00#

30.00#

40.00#

50.00#

60.00#

0.0000# 0.5000# 1.0000# 1.5000# 2.0000# 2.5000# 3.0000#

C=3%,#FR=233#l/min#C=4#%,#FR=175#l/min#

G&(mm&)&

Effect&of&Consistency&on&Pnet&vs&Gap&(BEL=&2.74,&RPM=1200)#

Pnet&(Kw)&#

-10.00#

0.00#

10.00#

20.00#

30.00#

40.00#

50.00#

60.00#

70.00#

80.00#

0.0000# 0.5000# 1.0000# 1.5000# 2.0000# 2.5000# 3.0000#

C=3#%,#FR=175#l/min#C=4#%,#FR=175#l/min#

G&(mm&)&

Pnet&(Kw)&#

Effect&of&Consistency&on&Pnet&vs&Gap&(BEL=&2.74,&RPM=1400)#

Page 31: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

31##

Conclusion-#Part#1#

Increasing flow rate did not play a very big role in increasing net power, but increased fibre’s freeness, kink and curl index.

Increasing flow rate caused tear index to increase and tensile index and burst to decrease.

Increasing pulp consistency and RPM caused more net power consumption in refining.

Based on the result on flow rate effects, a presentation has been given to 62nd Canadian Chemical Engineering Conference in October 14-17, 2012 in Vancouver British Columbia.

Page 32: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

32##

Part#2-#Comparison#with#Pattira’s#Work#

#

#

#

#

#

-10#

0#

10#

20#

30#

40#

50#

60#

70#

0# 0.5# 1# 1.5# 2# 2.5# 3#

FR=200#l/min#(Pa[ra)#FR=400#l/min#FR=600#l/min#

Gap#(mm)#

Pnet##(kw)#

Effect&of&Flow&Rate&on&Net&Power&vs&Gap&(C=3.5%,&BEL=&2.74,&RPM=1200)#

-0.000005#

0#

0.000005#

0.00001#

0.000015#

0.00002#

0.000025#

0.00003#

0.000035#

0# 0.5# 1# 1.5# 2# 2.5# 3#

FR=200#l/min#(Pa[ra)#FR=400#l/min#FR=600#l/min#

Gap#(mm)#

Pnet/w3&&

Effect&of&Flow&Rate&on&Pnet/(w3)&vs&Gap&(C=3.5%,&BEL=&2.74,&RPM=1200).#

Page 33: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

33##

#

#

#

#

-0.02#0#

0.02#0.04#0.06#0.08#0.1#

0.12#0.14#0.16#0.18#

0# 0.5# 1# 1.5# 2# 2.5# 3#

FR=200#l/min#(Pa[ra)#

FR=400#l/min#

FR=600#l/min#

Gap#(mm)#

Power&Number&[Pnet/

(pw3D5)]&&

Effect&of&Flow&Rate&on&Power&Number&vs&Gap&(C=3.5%,&BEL=&2.74,&RPM=1200).#

-20#

0#

20#

40#

60#

80#

100#

120#

140#

0# 0.5# 1# 1.5# 2# 2.5# 3#

FR=200#l/min#(Pa[ra)#

FR=400#l/min#

FR=600#l/min#

Gap#(mm)#

SRE#(KWh/T)#

Effect&of&Flow&Rate&on&SRE&vs&Gap&(C=3.5%,&BEL=&2.74,&RPM=1200)#

Page 34: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

34##

#

#

#

#

-0.2#

0#

0.2#

0.4#

0.6#

0.8#

1#

1.2#

0# 0.5# 1# 1.5# 2# 2.5# 3#

FR=200#l/min#(Pa[ra)#

FR=400#l/min#

FR=600#l/min#

Gap#(mm)#

SEL#(J/m)#

Effect&of&Flow&Rate&on&SEL&vs&Gap&(C=3.5%,&BEL=&2.74,&RPM=1200)#

0#

100#

200#

300#

400#

500#

600#

700#

0# 0.5# 1# 1.5# 2# 2.5# 3#

FR=200#l/min#(Pa[ra)#

FR=400#l/min#

FR=600#l/min#

Effect&of&Flow&Rate&on&Freeness&vs&Gap&(C=3.5%,&BEL=&2.74,&RPM=1200)#

Gap#(mm)#

FN#(csf)#

Page 35: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

35##

#

#

#

0#

20#

40#

60#

80#

100#

120#

0# 0.5# 1# 1.5# 2# 2.5# 3#

FR=200#l/min#(Pa[ra)#

FR=400#l/min#

FR=600#l/min#

Effect&of&Flow&Rate&on&Tensile&Index&vs&Gap&(C=3.5%,&BEL=&2.74,&RPM=1200)#

Gap#(mm)#

Tensile#index#

(KNm/Kg)#

0#

5#

10#

15#

20#

25#

30#

0# 0.5# 1# 1.5# 2# 2.5# 3#

FR=200#l/min#(Pa[ra)#FR=400#l/min#FR=600#l/min#

Effect&of&Flow&Rate&on&Tear&Index&&vs&Gap&(C=3.5%,&BEL=&2.74,&RPM=1200)#

Gap#(mm)#

Tear#Index#(mNm2/g)#

Page 36: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

36##

#

#

#

#

0#

20#

40#

60#

80#

100#

120#

140#

0# 0.5# 1# 1.5# 2# 2.5# 3#

FR=200#l/min#(Pa[ra)#FR=400#l/min#FR=600#l/min#

Gap#(mm)#

TEA#(J/m2)#

Effect&of&Flow&Rate&on&TEA&vs&Gap&(C=3.5%,&BEL=&2.74,&RPM=1200)#

0#

1#

2#

3#

4#

5#

6#

7#

0# 0.5# 1# 1.5# 2# 2.5# 3#

FR=400#l/min#

FR=600#l/min#

Burst#Index#(kPam2/g)#

Gap#(mm)#

Effect&of&Flow&Rate&on&Burst&Index&vs&Gap&(C=3.5%,&BEL=&2.74,&RPM=1200)#

(Note:#Pa[ra#did#not#have#any#tests#on#Bursts.)#

Page 37: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

37##

#

#

#

#

2#

2.1#

2.2#

2.3#

2.4#

2.5#

2.6#

2.7#

2.8#

0# 0.5# 1# 1.5# 2# 2.5# 3#

FR=200#l/min#(Pa[ra)#

FR=400#l/min#

FR=600#l/min#

Gap#(mm)#

Effect&of&Flow&Rate&on&Fiber&Length&vs&Gap&(C=3.5%,&BEL=&2.74,&RPM=1200)#

Fiber#Length#(mm)#

25#26#27#28#29#30#31#32#33#34#35#

0# 0.5# 1# 1.5# 2# 2.5# 3#

FR=200#l/min#(Pa[ra)#FR=400#l/min#FR=600#l/min#

Gap#(mm)#

Fine#(%)#

Effect&of&Flow&Rate&on&Fine&Index&vs&Gap&(C=3.5%,&BEL=&2.74,&RPM=1200)#

Page 38: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

38##

#

#

#

#

0#0.2#0.4#0.6#0.8#1#

1.2#1.4#1.6#1.8#

0# 0.5# 1# 1.5# 2# 2.5# 3#

FR=200#l/min#(Pa[ra)#FR=400#l/min#FR=600#l/min#

Gap#(mm)#

Kink#Index#

Effect&of&Flow&Rate&on&Kink&Index&vs&Gap&(C=3.5%,&BEL=&2.74,&RPM=1200)#

0#

0.02#

0.04#

0.06#

0.08#

0.1#

0.12#

0.14#

0.16#

0# 0.5# 1# 1.5# 2# 2.5# 3#

FR=200#l/min#(Pa[ra)#FR=400#l/min#FR=600#l/min#

Gap#(mm)#

Effect&of&Flow&Rate&on&Kurl&Index&vs&Gap&(C=3.5%,&BEL=&2.74,&RPM=1200)#

Kerl#Index#

Page 39: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

39##

#

#

#

#

-10#

0#

10#

20#

30#

40#

50#

60#

0# 0.5# 1# 1.5# 2# 2.5# 3#

C=3%,#FR=233#l/min#

C=3.5%,#FR=200#l/min#(Pa[ra)#

C=4#%,#FR=175#l/min#Pnet&(Kw)&#

Effect&of&Consistency&on&Pnet&vs&Gap&&(BEL=&2.74,&RPM=1000)#

G&(mm&)&

-10.00#

0.00#

10.00#

20.00#

30.00#

40.00#

50.00#

60.00#

0.0000# 0.5000# 1.0000# 1.5000# 2.0000# 2.5000# 3.0000#

C=3%,#FR=233#l/min#

C=3.5%,#FR=200#l/min#(Pa[ra)#

C=4#%,#FR=175#l/min#

G&(mm&)&

Effect&of&Consistency&on&Pnet&vs&Gap&(BEL=&2.74,&RPM=1200)#

Pnet&(Kw)&#

Page 40: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

40##

#

#

#

#

-10.00#

0.00#

10.00#

20.00#

30.00#

40.00#

50.00#

60.00#

70.00#

80.00#

0.0000# 0.5000# 1.0000# 1.5000# 2.0000# 2.5000# 3.0000#

C=3#%,#FR=175#l/min#

C=3.5%,#FR=200#l/min#(Pa[ra)#

C=4#%,#FR=175#l/min#

G&(mm&)&

Pnet&(Kw)&#

Effect&of&Consistency&on&Pnet&vs&Gap&(BEL=&2.74,&RPM=1400)#

0.00#

20.00#

40.00#

60.00#

80.00#

100.00#

120.00#

0.0000# 0.5000# 1.0000# 1.5000# 2.0000# 2.5000# 3.0000#

SRE&(kWh/T)&

Gap(mm)&

Comparison&of&SRE&between&two&pulps&for&1000&RPM.&(BEL=2.74)&

FR=175#l/m,#C=4%#(Sam)#

FR=200#l/m,#C=3.5%#(Pa[ra)#

FR=233#l/m,#C=3%#(Sam)#

Page 41: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

41##

#

#

#

#

-20.00#

0.00#

20.00#

40.00#

60.00#

80.00#

100.00#

120.00#

140.00#

0.0000# 0.5000# 1.0000# 1.5000# 2.0000# 2.5000# 3.0000#

SRE&(kWh/T)&

Gap&(mm)&

Comparison&of&SRE&between&two&pulps&for&1200&RPM.&(BEL=2.74)&

FR=175,#C=4%#(Sam)#

FR=200#l/m,#C=3.5%#(Pa[ra)#

FR=233#l/m,#C=3%#(Sam)#

-20.00#0.00#20.00#40.00#60.00#80.00#100.00#120.00#140.00#160.00#180.00#200.00#

0.0000# 0.5000# 1.0000# 1.5000# 2.0000# 2.5000# 3.0000#

SRE&(kWh/T)&

Gap&(mm)&

Comparison&of&SRE&between&two&pulps&for&1400&RPM.&(BEL=2.74)&

FR=175,#C=4%#(Sam)#

FR=200#l/m,#C=3.5%#(Pa[ra)#

FR=233#l/m,#C=3%#(Sam)#

Page 42: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

42##

#

#

#

#

-0.20#

0.00#

0.20#

0.40#

0.60#

0.80#

1.00#

1.20#

1.40#

0.0000# 0.5000# 1.0000# 1.5000# 2.0000# 2.5000# 3.0000#

SEL&(J/m

)&

Gap(mm)&

Comparison&of&SEL&between&two&pulps&for&1000&RPM.&(BEL=2.74)&

FR=175#l/m,#C=4%#(Sam)#

FR=200#l/m,#C=3.5%#(Pa[ra)#

FR=233#l/m,#C=3%#(Sam)#

-0.20#

0.00#

0.20#

0.40#

0.60#

0.80#

1.00#

0.0000# 0.5000# 1.0000# 1.5000# 2.0000# 2.5000# 3.0000#

SEL&(J/m

)&

Gap&(mm)&

Comparison&of&SEL&between&two&pulps&for&1200&RPM.&(BEL=2.74)&

Fr=175#l/m,#C=4%#(Sam)#

FR=200#l/m,#C=3.5%#(Pa[ra)#

FR=233#l/m,#C=3%#(Sam)#

Page 43: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

43##

#

#

#

#

-0.20#

0.00#

0.20#

0.40#

0.60#

0.80#

1.00#

1.20#

0.0000# 0.5000# 1.0000# 1.5000# 2.0000# 2.5000# 3.0000#

SEL&(J/m

)&

Gap&(mm)&

Comparison&of&SEL&between&two&pulps&for&1400&RPM.&(BEL=2.74)&

FR=175#l/m,#C=4%#(Sam)#

FR=200#l/m,#C=3.5%#(Pa[ra)#

FR=233#l/m,#C=3%#(Sam)#

0.00#

20.00#

40.00#

60.00#

80.00#

100.00#

120.00#

0.00# 0.50# 1.00# 1.50# 2.00# 2.50# 3.00#

Tensile&In

dex&(kNm/kg)&

Gap&(mm)&

Comparison&of&Tensile&Index&for&two&pulps&at&1000&RPM.&(BEL=2.74)&

FR=200#l/m,C=3.5%#(Pa[ra)#

FR=233#l/m,#C=3%#(Sam)#

Page 44: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

44##

#

#

#

#

0.00#

20.00#

40.00#

60.00#

80.00#

100.00#

120.00#

0.00# 0.50# 1.00# 1.50# 2.00# 2.50# 3.00#

Tensile&In

dex&(kNm/kg)&

Gap&(mm)&

Comparison&of&Tensile&Index&for&two&pulps&at&1200&RPM.&(BEL=2.74)&

FR=200#l/m,#C=3.5%#(Pa[ra)#

Fr=233#l/m,#C=3%#(Sam)#

0.00#

20.00#

40.00#

60.00#

80.00#

100.00#

120.00#

0.00# 0.50# 1.00# 1.50# 2.00# 2.50# 3.00#

Tensile&In

dex&(kNm/kg)&

Gap&(mm)&

Comparison&of&Tensile&Index&for&two&pulps&at&1400&RPM.&(BEL=2.74)&

FR=200#l/m,#C=3%#(Pa[ra)#

FR=233#l/m,#C=3%#(Sam)#

Page 45: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

45##

#

#

#

#

0.00#

5.00#

10.00#

15.00#

20.00#

25.00#

30.00#

0.00# 0.50# 1.00# 1.50# 2.00# 2.50# 3.00#

Tear&In

dex&(m

Nm2/g)&&

Gap&(mm)&

Comparison&of&Tear&Index&for&two&pulps&at&1000&RPM.&(BEL=2.74)&

FR=200l/m,#C=3.5%#(Pa[ra)#

FR=233#l/m,#C=3%#(Sam)#

0.00#

5.00#

10.00#

15.00#

20.00#

25.00#

30.00#

0.00# 0.50# 1.00# 1.50# 2.00# 2.50# 3.00#

Tear&In

dex&(m

Nm2/g)&

Gap&(mm)&&

Comparison&of&Tear&Index&for&two&pulps&at&1200&RPM.&(BEL=2.74)&

FR=200#l/m,#C=3.5%#(Pa[ra)#

FR=233#l/m,#C=3%#(Sam)#

Page 46: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

46##

#

#

#

#

0.00#

5.00#

10.00#

15.00#

20.00#

25.00#

0.00# 0.50# 1.00# 1.50# 2.00# 2.50# 3.00#

Tear&In

dex&(m

Nm2/g)&

Gap&(mm)&

Comparison&of&Tear&Index&for&two&pulps&at&1400&RPM.&(BEL=2.74)&

FR=200#l/m,#C=3.5%#(Pa[ra)#

FR=233#l/m,#C=3%#(Sam)#

2.00#

2.10#

2.20#

2.30#

2.40#

2.50#

2.60#

2.70#

2.80#

0.0000# 0.5000# 1.0000# 1.5000# 2.0000# 2.5000# 3.0000#

Fibe

r&Len

gth&(m

m)&

Gap&(mm)&

Comparison&of&Fiber&Length&between&two&pulps.&&(BEL=2.74)&&

1000#RPM,#FR=233#l/m,#C=3%#(Sam)#1200#RPM,#FR=233#l/m,#C=3%#(Sam)#1400#RPM,#FR=233#l/m,#C=3%#(Sam)#1000#rpm,#FR=200#l/m,#C=3.5%#(Pa[ra)#1200#rpm,#FR=200#l/m,#C=3.5%#(Pa[ra)#1400#rpm,#FR=200#l/m,#C=3.5%#(Pa[ra)#

Page 47: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

47##

#

#

#

#

0.00#

100.00#

200.00#

300.00#

400.00#

500.00#

600.00#

700.00#

0.0000# 0.5000# 1.0000# 1.5000# 2.0000# 2.5000# 3.0000#

FN&(csf)&

Gap&(mm)&

Comparison&of&Freeness&between&two&pulps.&&(BEL=2.74)&&

1000#RPM,#FR=233#l/m,#C=3%#(Sam)#1200#RPM,#FR=233#l/m,#C=3%#(Sam)#1400#RPM,#FR=233#l/m,#C=3%#(Sam)#1000#rpm,#FR=200#l/m,#C=3.5%#(Pa[ra)#1200#rpm,#FR=200#l/m,#C=3.5%#(Pa[ra)#1400#rpm,#FR=200#l/m,#C=3.5%#(Pa[ra)#

0#

10#

20#

30#

40#

50#

60#

0# 0.5# 1# 1.5# 2# 2.5# 3#

FR=200&l/min&(Dimas)&

FR=200&l/min&(Pa]ra)&

Gap#(mm)#

Pnet##(kw)#

Comparison&of&results&of&other&researchers&on&Net&Power&vs&Gap&(C=3.5%,&BEL=&2.74,&RPM=1200)#

Page 48: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

48##

#

#

#

#

-10#

0#

10#

20#

30#

40#

50#

60#

0# 0.5# 1# 1.5# 2# 2.5# 3#

C=3%,&FR=233&l/min&

C=3.5%,&FR=200&l/m&(Dimas)&

C=4&%,&FR=175&l/min&

G&(mm&)&

Effect&of&Consistency&on&Pnet&vs&Gap&(BEL=&2.74,&RPM=1200)#

Pnet&(Kw)&#

-10#

0#

10#

20#

30#

40#

50#

60#

0# 0.5# 1# 1.5# 2# 2.5# 3#

C=3%,&FR=233&l/min&

C=3.5%,&FR=200&l/min&(Pa]ra)&

C=3.5%,&FR=200&l/m&(Dimas)&

C=4&%,&FR=175&l/min&

G&(mm&)&

Effect&of&Consistency&on&Pnet&vs&Gap&(BEL=&2.74,&RPM=1200)#

Pnet&(Kw)&#

Page 49: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

49##

#

#

#

#

0#

20#

40#

60#

80#

100#

120#

0# 20# 40# 60# 80# 100# 120# 140# 160# 180# 200#

Tensile&In

dex&(kNm/kg)&

SRE&(kWh/T)&

Comparison&of&Tensile&Index&vs&SRE&for&two&pulps,&(BEL=2.74).&

1000#RPM,#Fr=233#l/m,#C=3%#(Sam)#1200#RPM,#FR=233#l/m,#C=3%#(Sam)#1400#RPM,#FR=233#l/m,#C=3%#(Sam)#1000#RPM,#FR=200#l/m,#C=3.5%#(Pa[ra)#1200#RPM,#FR=200#l/m,#C=3.5%#(Pa[ra)#1400#RPM,#FR=200#l/m,#C=3.5%#(Pa[ra)#

0#

20#

40#

60#

80#

100#

120#

0# 10# 20# 30# 40# 50# 60# 70# 80# 90# 100#

Tensile&In

dex&(kNm/kg)&

SRE&(kWh/T)&

Comparison&of&Tensile&Index&vs&SRE&for&two&pulps&at&1000&RPM,&(BEL=2.74).&

1000#RPM,#Fr=233#l/m,#C=3%#(Sam)#

1000#RPM,#FR=200#l/m,#C=3.5%#(Pa[ra)#

Page 50: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

50##

#

#

#

#

0#

20#

40#

60#

80#

100#

120#

0# 20# 40# 60# 80# 100# 120# 140#

Tensile&In

dex&(kNm/kg)&

SRE&(kWh/T)&

Comparison&of&Tensile&Index&vs&SRE&for&two&pulps&at&1200&RPM,&(BEL=2.74).&

1200#RPM,#FR=233#l/m,#C=3%#(Sam)#

1200#RPM,#FR=200#l/m,#C=3.5%#(Pa[ra)#

0#

20#

40#

60#

80#

100#

120#

0# 20# 40# 60# 80# 100# 120# 140# 160# 180# 200#

Tensile&In

dex&(kNm/kg)&

SRE&(kWh/T)&

Comparison&of&Tensile&Index&vs&SRE&for&two&pulps&at&1400&RPM,&(BEL=2.74).&

1400#RPM,#FR=233#l/m,#C=3%#(Sam)#

1400#RPM,#FR=200#l/m,#C=3.5%#(Pa[ra)#

Page 51: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

51##

#

#

#

#

0#

20#

40#

60#

80#

100#

120#

0# 20# 40# 60# 80# 100# 120# 140#

Tensile&Index&(kNm/kg)&

SRE&(kWh/T)&

Comparison&of&Tensile&Index&vs&SRE&for&two&pulps&at&

different&flow&rates,&(BEL=2.74,&1200&RPM,&C=3.5%).&

1200#rpm,#FR=200#l/m,#C=3.5%#(Pa[ra)#

1200#RPM,#FR=400#l/m,#C=3.5%#(Sam)#

0#

5#

10#

15#

20#

25#

30#

20# 30# 40# 50# 60# 70# 80# 90# 100# 110# 120#

Tear&Index&(mNm2/g)&

Tensile&Index&(kNm/kg)&

Comparison&of&Tear&Index&vs&Tensile&Index&for&

two&pulps,&(BEL=2.74).&1000#RPM,#FR=200#l/m,#C=3.5%#(Pa[ra)#1200#RPM,#FR=200#l/m,#C=3.5%#(Pa[ra)#1400#RPM,#FR=200#l/m,#C=3.5%#(Pa[ra)#

Page 52: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

52##

#

#

#

#

0#

5#

10#

15#

20#

25#

30#

20# 30# 40# 50# 60# 70# 80# 90# 100# 110#

Tear&In

dex&(m

Nm2/g)&

Tensile&Index&(kNm/kg)&

Comparison&of&Tear&Index&vs&Tensile&Index&for&two&pulps&at&

&1000&RPM&,&(BEL=2.74).&

1000#RPM,#FR=200#l/m,#C=3.5%#(Pa[ra)#

0#

5#

10#

15#

20#

25#

30#

20# 30# 40# 50# 60# 70# 80# 90# 100# 110#

Tear&In

dex&(m

Nm2/g)&

Tensile&Index&(kNm/kg)&

Comparison&of&Tear&Index&vs&Tensile&Index&for&two&pulps&at&&

1200&RPM,&(BEL=2.74).&

1200#RPM,#FR=200#l/m,#C=3.5%#(Pa[ra)#1200#RPM,#FR=233#l/m,#C=3%#(Sam)#

Page 53: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

53##

#

#

#

#

0#

5#

10#

15#

20#

25#

20# 30# 40# 50# 60# 70# 80# 90# 100# 110# 120#

Tear&Index&(m

Nm2/g)&

Tensile&Index&(kNm/kg)&

Comparison&of&Tear&Index&vs&Tensile&Index&for&two&pulps&at&&

1400&RPM,&(BEL=2.74).&

1400#RPM,#FR=200#l/m,#C=3.5%#(Pa[ra)#1400#RPM,#FR=233#l/m,#C=3%#(Sam)#

0#

5#

10#

15#

20#

25#

30#

20# 30# 40# 50# 60# 70# 80# 90# 100# 110#

Tear&Index&(m

Nm2/g)&

Tensile&Index&(kNm/kg)&

Comparison&of&Tear&Index&vs&Tensile&Index&at&different&flow&rates,&(BEL=2.74,&1200&RPM,&C=3.5%).&

1200#RPM,#FR=600#l/m,#C=3.5%#(Sam)#

1200#RPM,#FR=400#l/m,#C=3.5%#(Sam)#

Page 54: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

54##

#

#

#

#

0#

20#

40#

60#

80#

100#

120#

0# 100# 200# 300# 400# 500# 600# 700#

Tensile&Index&(kNm/kg)&

FN&(csf)&

Comparison&of&Tensile&vs&Freeness&for&two&pulps&at&different&RPM,&(BEL=2.74)&

1000#RPM,#FR=200#l/m,#C=3.5%#(Pa[ra)#1200#RPM,#Fr=200#l/m,#C=3.5%#(Pa[ra)#1400#RPM,#FR=200#l/m,#C=3.5%#(Pa[ra)#1000#RPM,#FR=233#l/m,#C=3%#(Sam)#

0#

20#

40#

60#

80#

100#

120#

0# 100# 200# 300# 400# 500# 600# 700#

Tensile&Index&(kNm/kg)&

FN&(csf)&

Comparison&of&Tensile&vs&Freeness&for&two&pulps&at&1000&RPM,&(BEL=2.74)&

1000#RPM,#FR=200#l/m,#C=3.5%#(Pa[ra)#1000#RPM,#FR=233#l/m,#C=3%#(Sam)#

Page 55: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

55##

#

#

#

#

0#

20#

40#

60#

80#

100#

120#

0# 100# 200# 300# 400# 500# 600# 700#

Tensile&In

dex&(kNm/kg)&

FN&(csf)&

Comparison&of&Tensile&vs&Freeness&for&two&pulps&at&1200&RPM,&(BEL=2.74)&

1200#RPM,#Fr=200#l/m,#C=3.5%#(Pa[ra)#

1200#RPM,#FR=233#l/m,#C=3%#(Sam)#

0#

20#

40#

60#

80#

100#

120#

0# 100# 200# 300# 400# 500# 600# 700#

Tensile&In

dex&(kNm/kg)&

FN&(csf)&

Comparison&of&Tensile&vs&Freeness&for&two&pulps&at&1400&RPM,&(BEL=2.74)&

1400#RPM,#FR=200#l/m,#C=3.5%#(Pa[ra)#1400#RPM,#FR=233#l/m,#C=3%#(Sam)#

Page 56: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

56##

#

#

#

#

0#

20#

40#

60#

80#

100#

120#

0# 100# 200# 300# 400# 500# 600# 700#

Tensile&In

dex&(kNm/kg)&

FN&(csf)&

Comparison&of&Tensile&vs&Freeness&at&different&flow&rates,&(BEL=2.74,&1200&RPM,&C=3.5%).&

1200#RPM,#FR=600#l/m,#C=3.5%#(Sam)#

1200#RPM,#FR=400#l/m,#C=3.5%#(Sam)#

1200#RPM,#Fr=200#l/m,#C=3.5%#(Pa[ra)#

0#

20#

40#

60#

80#

100#

120#

0# 0.5# 1# 1.5# 2# 2.5#

Tensile&In

dex&(kNm/kg)&

Bulk&(cm3/g)&

Comparison&of&Tensile&Index&vs&Bulk&for&different&&pulps,&&(BEL=2.74)&

1400#RPM,#Fr=233#l/m,#C=3%#(Sam)#

1200#RPM,#FR=233#l/m,#C=3%#(Sam)#

1000#RPM,#FR=233#l/m,#C=3%#(Sam)#

1400#RPM,#FR=200#l/m,#C=3.5%#(Pa[ra)#

1200#RPM,#FR=200#l/m,#C=3.5%#(Pa[ra)#

1000#RPM,#FR=200#l/m,#C=3.5%#(Pa[ra)#

Page 57: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

57##

#

#

#

#

0#

20#

40#

60#

80#

100#

120#

1.5# 1.55# 1.6# 1.65# 1.7# 1.75# 1.8#

Tensile&In

dex&(kNm/kg)&

Bulk&(cm3/g)&

Comparison&of&Tensile&Index&vs&Bulk&for&two&pulps&at&1000&RPM,&&(BEL=2.74).&

1000#RPM,#FR=233#l/m,#C=3%#(Sam)#

1000#RPM,#FR=200#l/m,#C=3.5%#(Pa[ra)#

0#

20#

40#

60#

80#

100#

120#

1.5# 1.55# 1.6# 1.65# 1.7# 1.75# 1.8# 1.85#

Tensile&In

dex&(kNm/kg)&

Bulk&(cm3/g)&

Comparison&of&Tensile&Index&vs&Bulk&for&two&pulps&at&1200&RPM,&&(BEL=2.74)&

1200#RPM,#FR=233#l/m,#C=3%#(Sam)#

1200#RPM,#FR=200#l/m,#C=3.5%#(Pa[ra)#

Page 58: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

58##

#

#

#

#

#

0#

20#

40#

60#

80#

100#

120#

0# 0.5# 1# 1.5# 2# 2.5#

Tensile&Index&(kNm/kg)&

Bulk&(cm3/g)&

Comparison&of&Tensile&Index&vs&Bulk&for&two&pulps&at&1400&RPM,&&(BEL=2.74)&

1400#RPM,#Fr=233#l/m,#C=3%#(Sam)#

1400#RPM,#FR=200#l/m,#C=3.5%#(Pa[ra)#

0#

20#

40#

60#

80#

100#

120#

1.5# 1.55# 1.6# 1.65# 1.7# 1.75# 1.8# 1.85#

Tensile&Index&(kNm/kg)&

Bulk&(cm3/g)&

Comparison&of&Tensile&Index&vs&Bulk&for&different&&flow&rates,&(BEL=2.74,&1200&RPM,&

C=3.5%).&

1200#RPM,#Fr=600#l/m,#C=3.5%#(Sam)#

1200#RPM,#FR=400#l/m,#C=3.5%#(Sam)#

1200#RPM,#FR=200#l/m,#C=3.5%#(Pa[ra)#

Page 59: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

59##

The results show that most probably Pattira’s pulp is different from the pulp I received for my trials.

Page 60: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

60##

Part#3-#Effect#of#Consistency#

0.0#100.0#200.0#300.0#400.0#500.0#600.0#700.0#800.0#

0.0000# 0.5000# 1.0000# 1.5000# 2.0000# 2.5000# 3.0000#

FN&(csf)&

Gap&(mm)&

Comparison&of&Freeness&vs&Gap&for&different&&RPM,&(BEL=2.74,&FR=175&l/m,&C=4%).&

1000#RPM,#FR=175#l/m,#C=4%#

1200#RPM,#175#l/m,#C=4%#

1400#RPM,#175#l/m,#C=4%#

2.000#

2.200#

2.400#

2.600#

2.800#

3.000#

0.0000# 2.0000# 4.0000# 6.0000# 8.0000# 10.0000#

Fibe

r&Len

gth&(m

m)&

Gap&(mm)&

Comparison&of&Fiber&Length&vs&Gap&for&different&&RPM,&(BEL=2.74,&FR=175&l/m,&C=4%).&

&

1000#RPM,#FR=175#l/m,#C=4%#

1200#RPM,#175#l/m,#C=4%#

1400#RPM,#175#l/m,#C=4%#

Page 61: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

61##

25.000#

27.000#

29.000#

31.000#

33.000#

35.000#

37.000#

39.000#

0.0000# 0.5000# 1.0000# 1.5000# 2.0000# 2.5000# 3.0000#

Fine

&(%)&

Gap&(mm)&

Comparison&of&Fine&vs&Gap&for&different&&RPM,&(BEL=2.74,&FR=175&l/m,&C=4%).&

1000#RPM,#FR=175#l/m,#C=4%#

1200#RPM,#175#l/m,#C=4%#

1400#RPM,#175#l/m,#C=4%#

1.000#1.100#1.200#1.300#1.400#1.500#1.600#1.700#1.800#1.900#2.000#

0.0000# 2.0000# 4.0000# 6.0000# 8.0000# 10.0000#

Kink

&Inde

x&

Gap&(mm)&

Comparison&of&Kink&Index&vs&Gap&for&different&&RPM,&(BEL=2.74,&FR=175&l/m,&C=4%).&

1000#RPM,#175#l/m,#C=4%#1200#RPM,#175#l/m,#C=4%#1400#RPM,#175#l/m,#C=4%#

Page 62: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

62##

0.0000#0.0200#0.0400#0.0600#0.0800#0.1000#0.1200#0.1400#0.1600#0.1800#0.2000#

0.0000# 0.5000# 1.0000# 1.5000# 2.0000# 2.5000# 3.0000#

Curl&Inde

x&&

Gap&(mm)&

Comparison&of&Curl&Index&vs&Gap&for&different&&RPM,&(BEL=2.74,&FR=175&l/m,&C=4%).&

1000#RPM,#175#l/m,#C=4%#

1200#RPM,#175#l/m,#C=4%#

1400#RPM,#175#l/m,#C=4%#

0.00#10.00#20.00#30.00#40.00#50.00#60.00#70.00#80.00#90.00#100.00#

0.0000# 0.5000# 1.0000# 1.5000# 2.0000# 2.5000# 3.0000#

Tensile&In

dex&(KNm/Kg)&

Gap&(mm)&

Comparison&of&Tensile&Index&vs&Gap&for&different&&RPM,&(BEL=2.74,&FR=175&l/m,&C=4%).&

1000#RPM,#175#l/m,#C=4%#

1200#RPM,#175#l/m,#C=4%#

1400#RPM,#175#l/m,#C=4%#

Page 63: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

63##

0.00#

5.00#

10.00#

15.00#

20.00#

25.00#

30.00#

35.00#

0.0000# 0.5000# 1.0000# 1.5000# 2.0000# 2.5000# 3.0000#

Tear&In

dex&(m

Nm2/g)&

Gap&(mm0&

Comparison&of&tear&Index&vs&Gap&for&different&&RPM,&(BEL=2.74,&FR=175&l/m,&C=4%).&

1000#RPM,#175#l/m,#C=4%#

1200#RPM,#175#l/m,#C=4%#

1400#RPM,#175#l/m,#C=4%#

0.00#

20.00#

40.00#

60.00#

80.00#

100.00#

120.00#

140.00#

0.0000# 0.5000# 1.0000# 1.5000# 2.0000# 2.5000# 3.0000#

TEA&(J/m

2&)&

Gap&(mm)&

Comparison&of&TEA&vs&Gap&for&different&&RPM,&(BEL=2.74,&FR=175&l/m,&C=4%).&

1000#RPM,#175#l/m,#C=4%#

1200#RPM,#175#l/m,#C=4%#

1400#RPM,#175#l/m,#C=4%#

Page 64: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

64##

0.000#

1.000#

2.000#

3.000#

4.000#

5.000#

6.000#

7.000#

0.0000# 0.5000# 1.0000# 1.5000# 2.0000# 2.5000# 3.0000#

Burst&Ind

ex&(K

Pam2/g)&

Gap&(mm)&

Comparison&of&Burst&Index&vs&Gap&for&different&&RPM,&(BEL=2.74,&FR=175&l/m,&C=4%).&

1000#RPM,#175#l/m,#C=4%#1200#RPM,#175#l/m,#C=4%#1400#RPM,#175#l/m,#C=4%#

Page 65: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

65##

Page 66: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

66##

References##

Page 67: Low Consistency Refining of Softwood Chemical Pulp ver 2turbulence-initiated.sites.olt.ubc.ca/Files/2013/02/Sam.pdfcarried out for the new settings. It is necessary to mention that

67##

#