louis research report -rendu

Upload: louis-de-fontenay

Post on 06-Apr-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 Louis Research Report -Rendu

    1/64

    Louis de Fontenay Promotion 2012

    EVALUATION OF MSJC PROVISIONS

    FOR IN-PLANE SHEAR IN

    MASONRY WALLS

    Department of Civil and Environmental Engineering

    WASHINGTON STATE UNIVERSITY- Pullman, 99163 WA

    United States of America

    Engineering internship from August 16th to December 16th, 2010

  • 8/3/2019 Louis Research Report -Rendu

    2/64

    Louis de Fontenay Promotion 2012

    Evaluation of MSJC (Masonry Standards Joint Committee)

    provisions for in-plane shear in Masonry walls

    Washington State University

    Department of Civil & Environmental Engineering

    Advisor and Department Chair: Dr. David McLean

    2

  • 8/3/2019 Louis Research Report -Rendu

    3/64

    Louis de Fontenay Promotion 2012

    Acknowledgments

    I would like to express my gratitude to my advisor Dr. David McLean for all

    his patience, his advice and his backing throughout my internship. He has spent

    countless hours to help me. I really enjoyed my internship working with him.

    Thank you also to my officemate Jake Sherman. I could not have been

    successful without his help, especially in the beginning of my internship.

    Finally, I would like to thank Madam Bouzon from EPF for the efforts she

    made to help the French interns go to WSU for a semester. It has been an

    amazing experience.

    3

  • 8/3/2019 Louis Research Report -Rendu

    4/64

    Louis de Fontenay Promotion 2012

    Abstract

    Title of the internship

    Study different hypothesis to evaluate the accuracy of MSJC (Masonry

    Standards Joint Committee) provisions for in-plane shear in masonry walls.

    Abstract in English

    In this paper, a statistical analysis of MSJC provisions subjected to two new

    different hypothesis were performed in order to improve the accuracy of the

    equation. These shear stresses occur mainly in earthquakes (could be also due to

    wind or any natural force) and predicting the response of walls under these

    forces are particularly important. The statistical analysis is based on different

    parameters: average, standard variation, coefficient of variation,

    minimum/maximum value and 5th percentile. It was performed on a ratio V test/ Vn

    which measures how close the reality (tests) and the predictions are. My work

    during this internship was to do a literature review, perform an analysis on the

    data and do statistics. Finally, I had to present the result of this research and

    write a paper, future basis for incoming researches.

    Titre du stage

    Etude de diffrentes hypothses pour valuer la prcision des

    recommandations du MSJC (comit de normalisation des standards de

    maonnerie) concernant le cisaillement dans les murs de maonnerie.

    Rsum en franais

    Ce document expose lanalyse statistique des recommandations du MSJC,

    mene avec deux nouvelles hypothses dans le but damliorer la prcision de

    lquation prvoyant le comportement de murs de maonnerie sous des forces

    de cisaillement. Ces forces se produisent principalement au cours de sismes.

    Lanalyse statistique est fonde sur diffrents paramtres : moyenne, cart-type,

    coefficient de variation, minimum, maximum et 5me centile. Elle a t effectue

    sur le rapportVtest/ Vn qui mesure la proximit entre la ralit (tests) et les

    recommandations. Mon travail durant ce stage a consist tudier la

    documentation actuelle relative ce sujet, effectuer une analyse des donnes

    et faire lanalyse statistique. A lissue de cette analyse, il ma t demand de

    4

  • 8/3/2019 Louis Research Report -Rendu

    5/64

    Louis de Fontenay Promotion 2012

    prsenter les rsultats de mes recherches, comme pouvant constituer la base

    future de nouvelles recherches plus labores en la matire.

    TABLE OF CONTENTS

    Acknowledgments .................................................................................................. 3

    Abstract .................................................................................................................. 4

    TABLE OF CONTENTS .............................................................................................. 5

    CHAPTER 1 ............................................................................................................. 9

    INTRODUCTION ....................................................................................................... 9

    1.1 Background...................................................................................................9

    1.2 Scope and Objectives.................................................................................10

    1.3 Organization of this report..........................................................................11

    CHAPTER 2 ........................................................................................................... 12

    PRESENTATION OF WASHINGTON STATE UNIVERSITY ..........................................12

    2.1 General presentation and History...............................................................12

    2.2 Quick facts..................................................................................................13

    2.3 Financial situation.......................................................................................14

    2.4 Organization chart.......................................................................................14

    CHAPTER 3 ........................................................................................................... 15

    BACKGROUND AND PREVIOUS RESEARCH ........................................................... 15

    3.1 MSJC Building Code.....................................................................................15

    3.1.1 MSJC Strength Design (SD) .................................................................... 15

    3.1.2 MSJC 2011 ............................................................................................. 19

    3.1.3 Horizontal Reinforcement Ratio ............................................................ 19

    3.1.4 MSJC Notation ........................................................................................ 21

    3.2 Other Codes................................................................................................22

    3.2.1 New Zealand Standards 4230:2004 ...................................................... 22

    3.2.2 New Zealand Standard Notation ........................................................... 23

    5

  • 8/3/2019 Louis Research Report -Rendu

    6/64

    Louis de Fontenay Promotion 2012

    3.2.3 Canadian Standards Association S304.1-04 ..........................................25

    3.2.4 Canadian Standards Notation ................................................................ 26

    3.3 Data tests....................................................................................................26

    3.3.1 Shing et al............................................................................................. 27

    3.3.2 Matsumura ............................................................................................ 27

    3.3.3 Sveinsson et al. ..................................................................................... 28

    3.3.4 Voon and Ingham .................................................................................. 29

    CHAPTER 4 ........................................................................................................... 30

    ANALYSIS OF WALL DATA ..................................................................................... 304.1 Interpretation of Shear Equations...............................................................30

    4.2 First Hypothesis...........................................................................................30

    4.2.1 Results .................................................................................................. 31

    4.2.2 Conclusion ............................................................................................. 33

    4.3 Second Hypothesis......................................................................................33

    4.3.1 Shing et al.s New numbers of bars ..................................................... 34

    4.3.2 Matsumuras New numbers of bars ..................................................35

    4.3.3 Sveinssons New numbers of bars ...................................................... 36

    4.3.4 Voons New numbers of bars ............................................................ 39

    ....................................................................................................................... 39

    4.3.5 Results .................................................................................................. 40

    4.3.6 Conclusion ............................................................................................. 43

    4.4 Other code limitations ................................................................................43

    4.4.1 Results .................................................................................................. 44

    4.4.2 Conclusion ............................................................................................. 44

    CHAPTER 5 ........................................................................................................... 45

    CONCLUSION ........................................................................................................ 45

    REFERENCES ....................................................................................................... 46

    APPENDIX A .......................................................................................................... 48

    6

  • 8/3/2019 Louis Research Report -Rendu

    7/64

    Louis de Fontenay Promotion 2012

    APPENDIX B .......................................................................................................... 50

    RESUME DU STAGE EN FRANCAIS ......................................................................... 58

    Contexte ...........................................................................................................58

    Introduction.......................................................................................................58

    Premire hypothse..........................................................................................59

    Seconde hypothse...........................................................................................61

    Dautres limitations...........................................................................................63

    Conclusion.........................................................................................................64

    List of tables

    Table 3.1: Provisions............................................................................................22

    Table 3.2: Type Dependent Nominal Strengths (fm in MPa; from NZS, 2004).....23

    Table 4.1: Statistics with Switched term in the equation......................................32

    Table 4.2 : Statitics with a new number of effective bars.....................................41

    Table 4.3 : Statistics with CSA and NZS................................................................44

    Table A-1: Original Wall Data................................................................................49

    Table B-2: MSJC Provisions (0.6 factor).................................................................54

    Table B-3: MSJC Provisions (0.7 factor).................................................................56

    Table B-4: MSJC Provisions (0.8 factor).................................................................58

    7

  • 8/3/2019 Louis Research Report -Rendu

    8/64

  • 8/3/2019 Louis Research Report -Rendu

    9/64

    Louis de Fontenay Promotion 2012

    CHAPTER 1

    INTRODUCTION

    1.1 Background

    Design provisions for shear in masonry structures are different for every

    country in that each one has its own code of requirements. In this report, we will

    look specifically at a few of them, including the Canadian code (CSA S304.1-04),

    the New Zealand code (NZS 4230:2004) and the United States Code (MSJC

    2008). The US design standard is the Building Code Requirements and

    Specifications for Masonry Structures, and it includes provisions for allowable

    stress design (ASD) and for strength design (SD). There are fundamental

    differences resulting in different designs with the two approaches, but

    increasingly the SD method is gaining wider acceptance.

    The current approach for shear design is largely based on tests with

    separate treatment for different types of shear. Most of these experimental

    studies have been conducted over the past 25 years. The shear stresses are

    particularly present in earthquakes stresses; if not appropriately considered, their

    effects on the masonry can be devastating.

    In order to evaluate the accuracy of different code provisions and

    equations for predicting the shear strength of masonry shear walls, Davis (2008)

    performed statistical analyses isolating the effects of many wall parameters on

    shear strength, including level of axial compressive stress, amount of vertical

    reinforcement, masonry compressive strength, amount of shear reinforcement,

    wall aspect ratio and displacement ductility. Davis gathered experimental data

    from four previous studies, consisting of tests of masonry walls by Shing et al

    9

  • 8/3/2019 Louis Research Report -Rendu

    10/64

    Louis de Fontenay Promotion 2012

    (1990), Sveinsson et al (1985), Voon and Ingham (2006) and Voon (2007). Fifty

    six walls were tested, all of which were fully grouted, subjected to in-plane shear

    loading, and failed in shear. The data set included results from clay masonry

    walls and concrete masonry walls.

    Based on her analyses, Davis made recommendations to improve the

    current MSJC provisions. Among others, the current MSJC provisions do not take

    into consideration the loss of masonry shear strength in plastic hinging regions.

    She proposed an factor depending of the ductility ratio which will be added to

    the 2011 MSJC. She also indicated that its appropriate and more accurate to

    combine at the same time the shear contribution from the masonry and the

    contribution from shear reinforcement. Indeed, the MSJC provides a conservative

    equation for the contribution to nominal shear strength from horizontal shear

    reinforcement. This equation (2.2; term with dv)assumes a 45 shear crack which

    results in excessive amount of shear reinforcement for walls with aspect ratio

    greater than 1. She advocated for using the dv/s term given by Paulay and

    Priestley (1992).

    1.2 Scope and Objectives

    The purpose of our research is to improve the MSJC further by

    reconsidering the contribution of the horizontal shear reinforcement based on a

    new hypothesis. This hypothesis consists of more accurately considering the

    number of reinforcing bars contributing to shear strength. In the current MSJC SD

    design equation, there is a 0.5 factor which has no physical explanation. Instead,

    it was derived to appropriately fit the design equation to the test results. In

    other codes around the world, this factor ranges from 0.5 to 0.8. This study then

    10

  • 8/3/2019 Louis Research Report -Rendu

    11/64

    Louis de Fontenay Promotion 2012

    is to re-evaluate this factor in comparison to the test data considering only those

    reinforcing bars that are effective at improving shear strength.

    1.3 Organization of this report

    This report consists of four chapters. In first in this study, a quick

    presentation and a historical of Washington State University developed in

    Chapter 2.

    Chapter 3 provides a basis to understand the purpose of this research,

    details of the walls and a review of the various code provisions.

    Chapter 4 evaluates the contribution of the horizontal reinforcement in

    terms of contributing to shear strength and proposes an improved method for

    defining that contribution.

    Finally, Chapter 5 presents conclusions based on the results of this study

    along with possible recommendations for changes to the in-plane shear provision

    in the MSJC code.

    11

  • 8/3/2019 Louis Research Report -Rendu

    12/64

    Louis de Fontenay Promotion 2012

    CHAPTER 2

    PRESENTATION OF WASHINGTON STATE UNIVERSITY

    A quick presentation and a historical of Washington State University (WSU) will

    be presented and described in this chapter.

    2.1 General presentation and History

    Washington state university is a public research university based in Pullman,

    Washington, in the Palouse region of the Pacific Northwest. Founded in 1890,

    WSU confers bachelors, masters, professional and doctoral degrees, and offers

    more than 200 fields of study (veterinary medicine, agriculture, food science,

    architecture, communications ). The university also has campuses acrossWashington known as WSU Spokane, WSU Tri-Cities, and WSU Vancouver, all

    founded in 1989 (shown in figure II.1). WSUs athletic teams (the Cougars) are a

    member of the Pacific 10 Conference, which participates in the NCAA Division I.

    The schools mascot is Butch T. Cougar and the schools colors are crimson and

    gray.

    WSU is classified as one of 96 U.S. public and private universities with very high

    research activity. U.S News and World Report consistently rank the University

    among the top 60 public universities.

    The current president of the university is Elson S. Floyd, Ph.D.

    12

  • 8/3/2019 Louis Research Report -Rendu

    13/64

    Louis de Fontenay Promotion 2012

    Map of the locations of the campuses of Washington State University.

    2.2 Quick facts

    WSU enrollment: 25 352

    Pullman enrollment: 17 753

    WSU employees: 6 167

    Out-of-state students: 12%

    International students: 5%

    Multicultural students (excluding international students): 15%

    Masters degree programs: 73

    Doctoral degree programs: 46

    13

    Campus ofWSU

  • 8/3/2019 Louis Research Report -Rendu

    14/64

    Louis de Fontenay Promotion 2012

    2.3 Financial situation

    Operating Budget (2007-2009): $1.7 billion

    Research and development expenditures (2007): $213.3 million

    Private support (2008): $143.6 million

    Endowment (2008): $683.2 million

    Capital Budget (2007-2009): $322.5 million

    Financial Aid and Scholarships (Fiscal Year 2008): More than $207million to17,215 students

    2.4 Organization chart

    14

  • 8/3/2019 Louis Research Report -Rendu

    15/64

    Louis de Fontenay Promotion 2012

    CHAPTER 3

    BACKGROUND AND PREVIOUS RESEARCH

    3.1 MSJC Building Code

    The US design standard Building Code Requirements and Specification for

    Masonry Structures is written by the Masonry Standards Joint Committee (MSJC

    2008). It provides two sets of provisions for shear design: Allowable Stress Design

    (ASD) and Strength Design (SD). The MSJC SD provisions are the same as those

    developed by the National Earthquake Hazards Reduction Program (NEHRP,

    2003). The activities of NEHRP are, among others, to improved design and

    construction methods and practices

    We will focus on SD provisions for reinforced masonry.

    3.1.1 MSJC Strength Design (SD)

    MSJC provisions based on Strength Design (SD) for reinforced masonry are

    given in MSJC Section 3.3.4. Past researchers have established that the shear

    resistance of reinforced masonry is due to several mechanisms, including dowel

    action of vertical reinforcement, tension of horizontal reinforcement, and axial

    compression force. No effective theoretical models have yet been developed to

    predict the shear strength of a wall panel. So, practically, a semi-empirical model

    is used: the nominal shear strength, Vn, is given as the sum of the nominal shear

    15

  • 8/3/2019 Louis Research Report -Rendu

    16/64

    Louis de Fontenay Promotion 2012

    strength provided by the masonry, Vm, and the nominal shear strength provided

    by the shear reinforcement, Vs.

    Vn = Vm + Vs (3.1)

    vyv

    umn

    vu

    un df

    s

    A.P.'A

    dV

    M..V

    ++

    = 5025075104 (3.2)

    The first term in this equation represents the strength contribution from

    the masonry, and the second term represents the shear strength contribution

    from the applied axial compressive load. The third term represents the nominal

    shear strength provided by the shear reinforcement, Vs.

    The wall height-to-length aspect ratio (h/Lw) has an influence on the shear

    strength.

    Assuming a 45 crack caused by an applied force V, walls behavior under

    loading is different in function of the aspect ratio. This is accounted for in the

    design equation.2 as follows:

    Figure 3.1: Aspect ratio

    16

    Lw

    h

    V

  • 8/3/2019 Louis Research Report -Rendu

    17/64

    Louis de Fontenay Promotion 2012

    = (3.3)

    We have to distinguish two heights: the physical height of the wall and the

    effective height of the wall. This consideration depends on the bending of the

    wall, which can be in single bending or in double bending. In this latter case, the

    in-plane force applied to the wall is prevented from rotation by vertical actuators

    (lab test equipment) and the effective height of the wall is equal to the half of the

    physical height.

    Figure 3.2: Single and double bending

    The MSJC limits the nominal shear strength as follows:

    For (3.4)

    For (3.5)

    17

    Single bending Double bending

  • 8/3/2019 Louis Research Report -Rendu

    18/64

    Louis de Fontenay Promotion 2012

    For The maximum value of Vn is linearly interpolated:

    Figure 3.3: Interpolation of the limitation of Vn

    Therefore, based on the interpolation for walls with aspect ratio between 0.25

    and 1.0:

    (3.6)

    The MSJC SD provisions do not make any difference between in-plane and

    out-of-plane shear.

    18

    Front view

    Side view

    In-plane

    load

    Out-of-plane load

  • 8/3/2019 Louis Research Report -Rendu

    19/64

    Louis de Fontenay Promotion 2012

    Figure 3.4: In-plane and out-of-plane load

    3.1.2 MSJC 2011

    Based on Daviss (2008) research, the MSJC modified the design equation for Vn

    as follows:

    vy

    v

    umn

    vu

    u

    ndf

    s

    A0.50.25P'A

    dV

    M1.754.0V

    ++

    =

    The limitations on maximum values of Vn were kept the same as before.

    Alpha is given in Figure 3.5

    0.00

    0.50

    1.00

    1.50

    0.0 2.0 4.0 6.0

    Coefficient

    Ductility Ratio ()

    Figure 3.5: Ductility Reduction Factor

    3.1.3 Horizontal Reinforcement Ratio

    Davis (2008) represented the amount of hoizontal reinforcement present in

    a wall as a horizontal reinforcing ratio .

    For this study, we will change the number of effective bars. Consequently, it will

    change the horizontal reinforcement ratio. So, we need to recalculate the

    19

    (3.7)

  • 8/3/2019 Louis Research Report -Rendu

    20/64

    Louis de Fontenay Promotion 2012

    horizontal reinforcement ratio after having changed rebars. To do it, we will use

    equation 3.8. This equation assumes a even spacing between bars:

    With:

    : Cross-sectional area of one rebar (in)

    : Cross-sectional area of all the rebars (in)

    : Spacing between the rebars (in)

    This equation is verified if you consider the spacing between bars to be the

    average of the spacing.

    Therefore, Vs becomes:

    To understand the performance of the equations prediction, all terms have

    to be understood. is assuming a 45 crack, is the yield strength of the

    horizontal reinforcement, and is the reinforcement factors to define the

    amount of reinforcement. The 0.5 factor has no physical explanation. It is placed

    to better match the code prediction of strength with the experimental results. As

    a comparison, the Canadian code required a 0.6 factor, and the New Zealand

    code 0.8. The value of this coefficient will be studied in the next chapter.

    It is not possible to reinforce indefinitely a wall. In fact, there are two kinds

    of failure: brittle and ductile. A heavy reinforced wall will carry more stresses but

    his failure will be brittle, unfixable and especially unpredictable. Conversely, a

    less reinforced wall will have a ductile failure, fixable (insofar as possible), and

    20

    (3.8)

    (3.9)

  • 8/3/2019 Louis Research Report -Rendu

    21/64

    Louis de Fontenay Promotion 2012

    progressive which allowed people to evacuate the building. A ductile wall is safer

    and is required for design.

    This new hypothesis is based on the number of really efficient horizontal bars.Considering bars who are efficient in carrying shear loads, we can calculate a

    new nominal shear strength and perform a statistical anaylis to try to move the

    theoritical results closer to practicals.

    Statistical analysis of each sequence of walls was performed isolating the effect

    of Vs.

    3.1.4 MSJC Notation

    : Ductility reduction factor

    Ah: cross-sectional area of shear reinforcement (1 rebar) (square

    inches)

    Ah total : total cross-sectional area of shear reinforcement (all rebars)

    (square inches)

    An: net cross sectional area of a member (square inches)

    dv the actual depth of a member in direction of shear considered (inches)

    fm: specified compressive strength of masonry (psi)

    fyh: specified yield strength of steel for reinforcement or anchors (psi)

    h: physical height of the specimen (inch)

    he: effective height of the wall (be aware of double bending) (inches)

    Lw: length of the wall (inches)

    Mu: factored moment (lbs.inch)

    Pu: factored axial load (lbs)

    S: spacing between horizontal reinforcement bars (inches)

    n: axial stress of the wall (psi)

    21

  • 8/3/2019 Louis Research Report -Rendu

    22/64

    Louis de Fontenay Promotion 2012

    Vn : nominal shear strength (shear capacity of the wall) with Vu

  • 8/3/2019 Louis Research Report -Rendu

    23/64

    Louis de Fontenay Promotion 2012

    Table 3 .2: Type Dependent Nominal Strengths (fm in MPa; from NZS,

    2004)

    We will assume in this research that the test walls are a Type A of masonry.

    Therefore, the limitation is:

    In SI Units (3.11)

    So, in US Customary Units:

    (3.12)

    Compared to MSJC Limitations, it does not take into consideration the aspect ratio

    of the specimen.

    3.2.2 New Zealand Standard Notation

    23

  • 8/3/2019 Louis Research Report -Rendu

    24/64

    Louis de Fontenay Promotion 2012

    fm: specified compressive strength of masonry (psi)

    : Total shear stress corresponding to Vn (psi)

    : Nominal shear strength of section (lbs)

    : Distance from extreme compression fiber to centroid of longitudinal

    tension reinforcement, equal to 0.8Lw for walls (figure 0000) (inches)

    : Effective web width (inches)

    : Basic type-dependent shear strength of masonry (psi)

    : Maximum permitted type-dependent total shear stress (psi)

    24

  • 8/3/2019 Louis Research Report -Rendu

    25/64

    Louis de Fontenay Promotion 2012

    Figure 3.5: Effective Areas for shear

    3.2.3 Canadian Standards Association S304.1-04

    25

  • 8/3/2019 Louis Research Report -Rendu

    26/64

    Louis de Fontenay Promotion 2012

    The Canadian Standards Association Design of Masonry Structures (CSA

    S304.1, 2004) provides recommendations in Section 7.10. Like the MSJC and NZS

    codes, unreinforced masonry and reinforced masonry are specified separately,

    but our focus is only on reinforced masonry shear walls.

    For these walls:

    In SI Units (3.13)

    So, in US Customary Units,

    Compared to the MSJC Limitations, the limitation in the Canadian provisions is

    greater.

    3.2.4 Canadian Standards Notation

    Canadians are using different units in their formulas (besides, its in SI

    units) but I switched the Canadian notations by the MSJC reference to make it

    easier.

    3.3 Data tests

    Davis (2008) collected available results from laboratory tests of masonry

    walls. Much of the data were already collected by Voon (2007). She gathered 56

    walls; all were fully grouted, subjected to in-plane loads and failed in shear. The

    walls were tested by four researchers: Shing et al (1990 University of Colorado),

    Matsumura (1987 University of Kanagawa-Japan), Sveinsson et al (1985

    University of Berkeley-California) and Voon & Ingham (2006 University of

    Auckland-NZS). In fact, the researchers tested others walls, but we will consider

    only those that failed in shear. The data set include clay and concrete walls.

    26

    (3.14)

  • 8/3/2019 Louis Research Report -Rendu

    27/64

    Louis de Fontenay Promotion 2012

    3.3.1 Shing et al.

    Shing et al. (1990) tested 22 masonry walls with an aspect ratio keptconstant equal to 1 (72 in. by 72 in.). They were loaded in single bending (see

    Figure 2.2). Only ten of these walls failed in shear. So, our analysis will just take

    data from these 10 walls. Among these, eight specimens were assembled with

    nominal 6 in. x 8 in. x 16 in. concrete blocks. The last two were made with clay

    units (4 in. x 6 in. x 16 in.). Some of these walls were subjected to high axial

    stress which induced severe toe crushing and thereby, reduced flexural ductility.

    The horizontal reinforcing ratios ranged from 0.00122 to 0.00222. Data from thewall tests by Shing are given in Appendix A.

    Figure 3.6: Shing et al. - Test Apparatus and Setup

    3.3.2 Matsumura

    Matsumura (1987) tested 80 masonry walls. Only 18 of them failed in

    shear and were fully grouted. Fourteen were made of concrete blocks (15.4 in. x

    7.48 in. x 7.48 in. and 15.4 in. x 7.48 in. x 5.91 in.) and four were made of clay

    blocks (11.4 in. x 3.5 in. x 7.48 in.). They were subjected to double bending. As

    expected in this study, they failed in shear, accompanied by X-shaped shear

    cracks and the crush of compressive corners of walls. Report to figure 2.7 to see

    the details of the experiment. Aspect ratios ranged from 0.57 to 1.14, and the

    27

  • 8/3/2019 Louis Research Report -Rendu

    28/64

    Louis de Fontenay Promotion 2012

    horizontal reinforcing ratio varied from 0 to 0.0067. Data from the wall tests by

    Matsumura are given in Appendix A.

    Figure 3.7: Matsumura Test Apparatus and Setup

    3.3.3 Sveinsson et al.

    Sveinsson et al. tested 10 concrete walls and 10 clay walls in 1985. There

    were loaded in double bending, which makes the effective wall height, he, equal

    to half of the real height. All these walls are identical in dimensions and had an

    aspect ratio equal of 0.58 with flanges. The horizontal reinforcing ratio varied

    from 0.0008 to 0.0063. Horizontal reinforcing bars contribute three times more

    than vertical reinforcing bars to the shear strength. The loading for failure was 3

    sinusoidal cycles of loading with amplitude gradually increased. See Appendix A

    for more data on these specimens.

    28

  • 8/3/2019 Louis Research Report -Rendu

    29/64

    Louis de Fontenay Promotion 2012

    Figure 3.8: Sveinsson Test Apparatus and Setup

    3.3.4 Voon and Ingham

    For his thesis of PhD in 2003, Voon, advised by Ingham, constructed seven

    walls, all in concrete blocks fully grouted and subjected to single bending. The

    aspect ratios for the walls ranged from 0.6 to 2.0, and the horizontal reinforcing

    ratio varied from 0.0005 to 0.00062. The walls had low axial compressive stress

    levels. See Figure 3.9 and Appendix A for more details.

    Figure 3.9: Voon - Test Apparatus and Setup

    29

  • 8/3/2019 Louis Research Report -Rendu

    30/64

    Louis de Fontenay Promotion 2012

    CHAPTER 4

    ANALYSIS OF WALL DATA

    4.1 Interpretation of Shear Equations

    As explained earlier, the purpose of this research is to reevaluate the

    current MSJC design provisions for possible improvements. The evaluation

    consisted of determining the specific predicted wall strength for in-plane shear,

    Vn, and to then compared the strength to the test data. Statistical comparisons

    were performed to achieve this comparison and to enable conclusions to be

    drawn in regard to two hypotheses. These comparisons provide a measure of the

    effective of the different design provisions considered in this study.

    4.2 First Hypothesis

    The first hypothesis is more correctly consider the wall aspect ratio in

    terms of influencing shear strength. The current equation for the shear strength,

    Vn, is modified as follows:

    The original equation (3.9) is given as:

    As noted before, this equation assumes a 45 shear crack (not real but

    conservative), with a horizontal projection of Lw. However, if we consider a wall

    whose aspect ratio is lesser than 1, that is the wall is wider than it is tall, the

    representation of the horizontal projection of the assumed 45 crack with L w is

    incorrect. This case could consider that there are bars in the footing.

    So, to consider the reality for walls with aspect ratio lesser than 1, we will

    performed statistical analysis switching Lw by h in the equation (3.9) for this

    kind of walls.

    This situation is illustrated in Figure 4.1.

    30

    (3.9)

  • 8/3/2019 Louis Research Report -Rendu

    31/64

    Louis de Fontenay Promotion 2012

    Figure 4.1: The impact of using the incorrect horizontalprojection

    4.2.1 Results

    To see the performance of this first hypothesis, we will use a reference

    (MSJC) and make a statistical analysis using mean, standard deviation, coefficient

    of variation on the ratio .

    Secondly, as said in the introduction, we are interested in improving the

    0.5 factor which is in the equation to fit reality and theory. To do that, we are

    going to change this factor by 0.6, 0.7 and 0.8 and look at the effect on the

    statistics.

    STATISTICSMean

    Vtest/Vn

    Standa

    rd

    Deviati

    on

    Coeff.

    Of

    variatio

    n

    Minimu

    m

    Value

    Maximu

    m

    Value

    5th

    Percent

    ile

    MSJC (0.5) 1,157 0,177 15,33% 0,770 1,547 0,908

    31

    Lw

    Lw

    Projection

    Incorrect

    h

    4

    5

  • 8/3/2019 Louis Research Report -Rendu

    32/64

    Louis de Fontenay Promotion 2012

    0.5 Switched w/

    lim1,153 0,236 20.5% 0,770 1,547 0,901

    0.6 Switched w/

    lim1,145 0,175 15,30% 0,758 1,547 0,901

    0.7 Switched w/

    lim1,137 0,178 15,69% 0,747 1,547 0,894

    0.8 Switched w/

    lim1,130 0,183 16,17% 0,736 1,547 0,870

    Table 4.1: Statistics with Switched term in the equation

    32

  • 8/3/2019 Louis Research Report -Rendu

    33/64

    Louis de Fontenay Promotion 2012

    Figure 4.2: Effectiveness of Switched hypothesis

    4.2.2 Conclusion

    The results of this hypothesis do not seem to be significant. Indeed, the

    statistical analysis does not give really better results than the reference.

    However, using the 0.8 coefficient improves noticeably the fit between V test and

    Vn.

    4.3 Second Hypothesis

    This second hypothesis evaluated in this study is that, in a wall subjected

    to shear loads, the horizontal reinforcement bars placed in this wall are not all

    fully effective in terms of contributing to shear strength. Bars in the middle of this

    wall will be more effective at carrying loads than bars near the top and the

    bottom of the wall. As an explanation for this behavior, consider a 45 shear

    crack existing in the wall and see Figure 4.3. The issue is lack of sufficient

    anchorage exists in bars that are crossed by the crack near the ends of the bars.

    33

  • 8/3/2019 Louis Research Report -Rendu

    34/64

    Louis de Fontenay Promotion 2012

    Figure 4.3: Location of cracking and bars

    The effectiveness of each bar is based on the location of cracking in the bar. A

    bar in which the crack is within an estimated 10% of the end of the bar

    should be considered ineffective.

    This is important because, in the equation (3.9),

    s

    Ah =

    h

    Ahtotaldefines the number of horizontal reinforcing bars that contribute

    to shear strength (assuming a 45 degree crack and that s is the average

    spacing of the bars).

    4.3.1 Shing et al.s New numbers of bars

    Figure 4.4: Shings Walls

    34

  • 8/3/2019 Louis Research Report -Rendu

    35/64

    Louis de Fontenay Promotion 2012

    So, applying this hypothesis to Shings walls, it is determined that the top

    bar is not effective, yielding 4 bars contributing to the shear strength.

    4.3.2 Matsumuras New numbers of bars

    In a similar manner, the hypothesis was applied to Matsumuras walls,

    yielding the total number of bars contributing to shear strength as given in the

    following figures.

    35

    Wall 11 : 3 effective Walls 12-13: 3

    Wall 14 : 3 effective Wall 15 : No bar

  • 8/3/2019 Louis Research Report -Rendu

    36/64

    Louis de Fontenay Promotion 2012

    4.3.3 Sveinssons New numbers of bars

    In Sveinssons tests, it can be noticed that, because the bars are placed

    mainly in the middle of the wall, there is no significant difference in the number

    of effective bars from the total bars.

    36

    Walls 29-30 :3 Wall 31 : 3 Wall 32 : 3 bars

    Figure 4.5: Matsumuras walls

    Walls 16-17-18-19-20-21-22-23-

    24: 3 effective bars

    Wall 25 : No bar

    Walls 26-27-28 : 3 effective

  • 8/3/2019 Louis Research Report -Rendu

    37/64

    Louis de Fontenay Promotion 2012

    37

    Wall 34-37-38 : 2Wall 33 : 2 bars Wall 35 : 4 Dur-O-

    Wall 36 : 4 DOW +2 Wall 39 : 2 bars Wall 40 : 5 bars

  • 8/3/2019 Louis Research Report -Rendu

    38/64

    Louis de Fontenay Promotion 2012

    38

    Wall 41 : 2 Wall 42 : 5 Wall 43 : 2

    Wall 44 : 5 Wall 45 : 2 Wall 46 : 5

    Wall 47 : 4 Wall 48 : 6 Wall 49 : 4

    Figure 4.6: Sveinssons

  • 8/3/2019 Louis Research Report -Rendu

    39/64

    Louis de Fontenay Promotion 2012

    4.3.4 Voons New numbers of bars

    Considering the second hypothesis, Voons walls have been evaluated to

    determine the effectiveness of bars. For most of them, top and bottom bars are

    not effective. See Figure 4.7 below for details.

    39

    Wall 50 : 3 bars Wall 51 : 0 bar Wall 52 : 1 bar

    Wall 53 : 3 bars Wall 54 : 3 bars

  • 8/3/2019 Louis Research Report -Rendu

    40/64

    Louis de Fontenay Promotion 2012

    4.3.5 Results

    Statistics

    Mean

    Vtest/

    Vn

    Standar

    d

    Deviatio

    n

    Coeff. Of

    variatio

    n

    Minimu

    m Value

    Maximu

    m Value

    5th

    Percenti

    le

    MSJC 1,157 0,177 15,33% 0,770 1,547 0,908

    0.5

    Changed

    w/lim

    1,171 0,169 14,40% 0,797 1,547 0,929

    0,6

    Changed

    w/lim

    1,163 0,168 14,48% 0,790 1,547 0,914

    0.7

    Changed

    w/lim

    1,156 0,169 14,61% 0,783 1,547 0,906

    0.8

    Changed

    w/lim

    1,150 0,170 14,81% 0,776 1,547 0,901

    40

    Wall 55 : 5Wall 56 : 3 bars

    Figure 4.7: Voons walls

  • 8/3/2019 Louis Research Report -Rendu

    41/64

    Louis de Fontenay Promotion 2012

    Table 4.2 : Statitics with a new number of effective bars

    41

  • 8/3/2019 Louis Research Report -Rendu

    42/64

    Louis de Fontenay Promotion 2012

    42

  • 8/3/2019 Louis Research Report -Rendu

    43/64

    Louis de Fontenay Promotion 2012

    Figure 4.8: Effectiveness of the coefficient with a newnumber of bars

    4.3.6 Conclusion

    We can see that the change in the determination of effective bars does not

    have a significant impact on the final statistics. Nevertheless, I would say that the

    coefficient 0.8 is the best. Our conclusions are not so significant because the

    contribution of Vs on Vnmax (without limitation) is not that important (between 18%

    and 26% depending on what factor we use). Therefore, if Vs changes by 20% (for

    example), the impact on Vnmax is between 3.6% and 5.2%.

    Besides, if we consider that more than 30(on 56) Vnmax values encounter

    the MSJC Limitation, the final modification o, Vs negligible on Vn . To illustrate this,

    in the statistical analysis, a change of 30% on Vs leads to a modification of less

    than 2% on Vn.

    4.4 Other code limitations

    As we saw, the MSJC limitations on Vn,max prevent an evaluation of the two

    hypothesis. We will see if, using other limitations like the New Zealand and

    Canadian limitations, we can improve our model. For this, we just took the

    original factor 0.5.

    As we saw in Chapter 2, New Zealand and Canadian limitations do not take

    the aspect ratio in consideration and are, in general slightly lesser than MSJClimitation.

    43

  • 8/3/2019 Louis Research Report -Rendu

    44/64

    Louis de Fontenay Promotion 2012

    4.4.1 Results

    Statistic

    s

    Mean

    Vtest/Vn

    Standar

    d

    Deviatio

    n

    Coeff. Of

    variation

    Minimu

    m Value

    Maximu

    m Value

    5th

    Percentile

    MSJC 1,157 0,177 15,33% 0,770 1,547 0,908

    NZS

    Switched1,244 0,177 14,22% 0,715 1,737 0,934

    CSA

    Switched1,355 0,304 22,41% 0,715 1,954 0,952

    NZS with

    change1,263 0,226 17,87% 0,797 1,737 0,937

    CSA with

    change1,372 0,289 21,08% 0,797 1,954 0,959

    Table 4.3 : Statistics with CSA and NZS

    4.4.2 Conclusion

    The change of limitation does not seem to have a good result on our Vs. Its

    the exact opposite. Indeed, 34 walls fell upon NZS limitation and 40 upon CSA

    limitation.

    44

  • 8/3/2019 Louis Research Report -Rendu

    45/64

    Louis de Fontenay Promotion 2012

    CHAPTER 5

    CONCLUSION

    So, the result of this research is that the conclusions are not significant.

    We lack data for having significant results in our switched hypothesis and the

    MSJC limitations are so predominant that it dilutes any change on Vs.

    Nevertheless, based on our 56 walls, our statistical analysis shows that a 0.8

    factor, associated to a news number of efficient bars are a little bit better than

    the reference we took.

    During this semester, I learned how the work in a laboratory is and how a

    university in the United States of America operates. I improve my knowledge of

    the works world and the way of life of the American people. I improve also my

    English by working everyday with American people.

    In this internship, I have had the opportunity to see a different mode of work and

    teach. Indeed, I followed some class in this university; and I have realized that

    the way to approach the class was very different. The American educationsystem is different on a lot of point in comparison to France. I think that it is

    45

  • 8/3/2019 Louis Research Report -Rendu

    46/64

    Louis de Fontenay Promotion 2012

    really an opportunity to me and my career that live such experience. And it is for

    this I want to go back to the United States of America for my masters degree.

    This research and the work at the WSU have really enriched me. I encountered afew difficulties during my internship here. The most important has been to

    understand all the physical meaning of my work and to analyze the data after the

    experiment done. But I learned to organize my work and my schedule. I also

    learned how a scientific research article is done.

    To conclude, this internship has given me the desire to work with people who

    have a culture, traditions, a language, a way of life and points-of-view different

    because it enriches me professionally and personally.

    REFERENCES

    - Courtney Lynn Davis (2008), Evaluation of Design Provisions for In-

    plane Shear in Masonry Walls

    - Canadian Standards Association (2004). S304.1-04 Design of Masonry

    Structures. Mississauga, Ontario, Canada, pp. 34-55.

    - New Zealand Standard 4230:2004, Design of reinforced Concrete Masonry

    Structures, Standards Association of New Zealand, Wellington.

    - TMS 402-08/ACI 530-08/ASCE 6-08. (2002), Building Code Requirements and

    Specification for Masonry Structures, Masonry Standards Joint Committee

    - Matsumura, A. (1987), Shear Strength of reinforced Hollow Unit Masonry

    Walls, Proceedings of the 4th North American Masonry Conference, Paper No.50,

    Los Angeles, CA, pp.50-150-16

    46

  • 8/3/2019 Louis Research Report -Rendu

    47/64

    Louis de Fontenay Promotion 2012

    - Paulay, Thomas, and M. J. Priestley. Seismic Design of Reinforced Concrete and

    Masonry Buildings. New York: Wiley-Interscience, 1992.

    - Shing, P. B.,Schuller, M., and Hoskere,V. S. (1990a),In-plane Resistance ofReinforced Masonry Shear Walls, ASCE Journal of Structural Engineering,

    Vol.116, No.3, pp.619-640

    - Shing, P. B.,Schuller, M., and Hoskere,V. S. (1990b),Strength and Ductility of

    Reinforced Masonry Shear Walls, Proceedings of the 5th North American Masonry

    Conference, University of Illinois, Urbana-Champaign, pp.309-320

    - Voon, K. C., In-plane Seismic Design of Concrete Masonry Structures, Thesis

    (PhD-Civil and Environmental Engineering)-University of Auckland, 2007

    - Sveinsson, B.I., Mayes, R.L., and McNiven, H.D. (1985), Cyclic Loading of

    Masonry Single Piers, Volume 4, Report No.UCB.EERC-85/15, Earthquake

    Engineering Research centre, University of California, Berkeley

    47

  • 8/3/2019 Louis Research Report -Rendu

    48/64

    Louis de Fontenay Promotion 2012

    APPENDIX A

    48

    *Specimenswithgra

    ysh

    ading

    werecons

    tructedwit h

    Clay

    MasonryU

    nits

  • 8/3/2019 Louis Research Report -Rendu

    49/64

    Louis de Fontenay Promotion 2012

    Table A-1: Original Wall Data

    49

    *Specimenswithgra

    yshading

    werecons

    tructedwithClay

    MasonryU

    nits

  • 8/3/2019 Louis Research Report -Rendu

    50/64

    Louis de Fontenay Promotion 2012

    APPENDIX B

    50

  • 8/3/2019 Louis Research Report -Rendu

    51/64

    Louis de Fontenay Promotion 2012

    51

  • 8/3/2019 Louis Research Report -Rendu

    52/64

    Louis de Fontenay Promotion 2012

    ble B-1: MSJC Provisions and MSJC , NZS and CSA Limits (0.5 factor)

    52

  • 8/3/2019 Louis Research Report -Rendu

    53/64

    Louis de Fontenay Promotion 2012

    53

  • 8/3/2019 Louis Research Report -Rendu

    54/64

    Louis de Fontenay Promotion 2012

    Table B-2: MSJC Provisions (0.6 factor)

    54

  • 8/3/2019 Louis Research Report -Rendu

    55/64

    Louis de Fontenay Promotion 2012

    55

  • 8/3/2019 Louis Research Report -Rendu

    56/64

    Louis de Fontenay Promotion 2012

    T able B-3: MSJC Provisions (0.7 factor)

    56

  • 8/3/2019 Louis Research Report -Rendu

    57/64

    Louis de Fontenay Promotion 2012

    57

  • 8/3/2019 Louis Research Report -Rendu

    58/64

    Louis de Fontenay Promotion 2012

    Table B-4: MSJC Provisions (0.8 factor)

    RESUME DU STAGE EN FRANCAIS

    Contexte

    Jai effectu mon stage lve-ingnieur dans un laboratoire de recherche

    de luniversit de Washington State, plus prcisment dans le dpartement de

    lingnierie civil. Ce stage a t supervis par le Dr. David Mc Lean, qui est un

    professeur-chercheur de luniversit.

    Pendant ce stage, jai suivi une classe de conception des structures en

    bton arm que mon tuteur donnait. Cela tait dans le but de me permettre de

    mieux comprendre le domaine dans lequel je travaillais. En effet, le sujet de mon

    stage concernait le renforcement en acier de murs en bton.

    Introduction

    Les normes de conception dans les structures de maonnerie sont

    diffrentes dans tous les pays. Aux Etats-Unis, cest le MSJC 2008(Masonry

    58

  • 8/3/2019 Louis Research Report -Rendu

    59/64

    Louis de Fontenay Promotion 2012

    Standards Joint Committee) qui fait rfrence quand le CSA S304.1-04 et le NZS

    4230 :2004 sont les rfrences, respectivement au Canada et en Nouvelle-

    Zlande.

    Les approches actuelles pour les efforts de cisaillement sont largement

    fondes sur des tests car il nexiste aucune thorie fiable pour en prdire les

    effets. Les recherches des 25 dernires annes ont permis dtablir un modle

    semi-empirique afin de concevoir les structures devant rsister des contraintes

    de cisaillement. Ces contraintes de cisaillement sont particulirement prsentes

    lors de sismes et, mal considres, les effets peuvent tre dvastateurs.

    Dans le but dvaluer la prcision de diffrentes normes internationalespour prdire les efforts de cisaillement, Davis (2008) a compar statistiquement

    les diffrentes recommandations en isolant diffrents paramtres. Pour cela, elle

    a runi des donnes exprimentales concernant 56 murs, entirement couls,

    soumis des contraintes de cisaillement et qui ont succombs en cisaillement.

    Elle a pu ainsi faire des recommandations pour amliorer les normes du MSJC.

    En me basant sur son analyse, le sujet de ma recherche tait galement

    de faire des recommandations sous de nouvelles hypothses. Ces hypothses

    consistent en une rvaluation du renforcement horizontal des murs.

    Renforcement horizontal en acier qui est la principale contribution la rsistance

    au cisaillement du mur. Pour cela, jai men une analyse statistique sur les

    donnes de Davis en considrant un autre niveau de renforcement.

    Premire hypothse

    La premire hypothse pour mieux considrer le renforcement horizontal

    des murs en bton arm consiste mieux considrer le rapport daspect du mur

    (rapport de la hauteur sur la largeur du mur). Les phnomnes ne sont pas les

    mmes si le mur est 2 fois plus haut que large ou linverse. La thorie du

    cisaillement estime que le crack caus par les forces est inclin de 45. Il sagit

    dun thorie conservatrice mais pas relle avec une projection horizontale de la

    longueur du mur. Ainsi, si on regarde un mur de rapport daspect infrieur 1,

    c'est--dire que le mur est plus large que haut, le crack irait dans les fondations

    du mur. La figure 1 rsume lenjeu :

    59

  • 8/3/2019 Louis Research Report -Rendu

    60/64

    Louis de Fontenay Promotion 2012

    Figure 1: Projection du crack de 45

    Par consquent, pour les murs dans ce cas, nous avons considr la

    hauteur au lieu de la projection horizontale de la largeur et voir si les statistiques

    donnent des rsultats plus proches des tests.

    De plus, pour avoir plus quun rsultat et parce que nous ne pouvons

    modifier le renforcement qu la baisse, nous avons modifi le coefficient

    arbitraire (0.5) de lquation ci-dessous. Ce coefficient na aucune explication

    physique (contrairement au reste de la formule) et est diffrent dans dautres

    codes comme le NZS o il vaut 0.8. Dans le but de tester diffrents coefficients,

    nous avons test la premire hypothse avec un coefficient de 0.5, 0.6, 0.7 et

    0.8.

    60

    Lw

    Lw

    Projection

    Incorrect

    h

    4

    5

  • 8/3/2019 Louis Research Report -Rendu

    61/64

    Louis de Fontenay Promotion 2012

    Statistiques

    Moyenn

    e

    Vtest/Vn

    Ecart

    Type

    Coeff.d

    e

    variatio

    n

    Minimu

    m

    Maximu

    m

    5me

    Centile

    MSJC (0.5) 1,157 0,177 15,33% 0,770 1,547 0,908

    0.5 w/ lim 1,153 0,236 20.5% 0,770 1,547 0,901

    0.6 w/ lim 1,145 0,175 15,30% 0,758 1,547 0,901

    0.7 w/ lim 1,137 0,178 15,69% 0,747 1,547 0,894

    0.8 w/ lim 1,130 0,183 16,17% 0,736 1,547 0,870

    On observe donc une amlioration de la prcision de la formule avec la

    nouvelle hypothse de 2.3% de moyenne pour le coefficient 0.8. Par contre,

    lcart type qui mesure la dispersion de la srie autour de la moyenne augmente

    lgrement (+3.4% dans le cas 0.8), ce qui est lgrement contre-productif. Les

    rsultats ne sont donc pas trs signifiants.

    Seconde hypothse

    La seconde hypothse value dans ce rapport concerne toujours le

    renforcement horizontal mais il sagit ici de dterminer le nombre exact de

    barres horizontales en acier qui sont rellement efficaces pour la rsistance du

    mur. En considrant encore un crack de 45%, la location de la charge et celles

    des barres, nous avons donc dtermin pour chaque mur un nouveau nombre de

    barres. Pour cela, nous avons estim quune barre dont le crack a lieu moins de

    10% de lextrmit de la barre sera inefficace par manque dancrage dans le

    bton cet endroit. La figure 2 rsume la situation.

    Avec la mme ide que pour la premire hypothse, les coefficients 0.6,

    0.7, 0.8 ont t tests statistiquement

    61

  • 8/3/2019 Louis Research Report -Rendu

    62/64

    Louis de Fontenay Promotion 2012

    Figure 2 : Lieu du crack et barres

    Statistiqu

    es

    Moyen

    ne

    Vtest/

    Vn

    Ecart

    Type

    Coeff.

    de

    variatio

    n

    Minimu

    m

    Maximu

    m

    5th

    Centile

    MSJC 1,157 0,177 15,33% 0,770 1,547 0,908

    0.5 w/lim 1,171 0,169 14,40% 0,797 1,547 0,929

    0,6 w/lim 1,163 0,168 14,48% 0,790 1,547 0,914

    0.7 w/lim 1,156 0,169 14,61% 0,783 1,547 0,906

    0.8 w/lim 1,150 0,170 14,81% 0,776 1,547 0,901

    De faon similaire, le changement du nombre de bars constitutif de la seconde

    hypothse na pas des rsultats trs significatifs. Avec le mme coefficient 0.8,

    nous avons pu augmenter la moyenne de 0.6% dans le mme temps que lcart

    type (0.4%) et que le coefficient de variation (-3.4%). Cela reste nanmoins

    insuffisant pour tre sr de lefficacit de la seconde hypothse.

    62

  • 8/3/2019 Louis Research Report -Rendu

    63/64

    Louis de Fontenay Promotion 2012

    Dautres limitations

    Comme nous lavons vu dans les conclusions ci-dessus, les rsultats ne

    sont pas trs significatifs et ne permettent pas de tirer des conclusions claires et

    nettes. Cependant, comme le montre lannexe B, de nombreuses quations, lors

    des calculs, sont limites par les limitations du MSJC. Dans le but damliorer les

    rsultats, une analyse statistique considrant les limites des codes canadiens et

    no-zlandais a galement t effectue avec lutilisation du coefficient dorigine

    (0.5).

    .

    Statistiq

    ues

    Moyenn

    e

    Vtest/Vn

    Ecart

    type

    Coeff.

    de

    variatio

    n

    Minimu

    m

    Maximu

    m

    5th

    Centile

    MSJC 1,157 0,177 15,33% 0,770 1,547 0,908

    NZS 1re

    Hypoths

    e

    1,244 0,177 14,22% 0,715 1,737 0,934

    CSA 1re

    Hypoths

    e

    1,355 0,304 22,41% 0,715 1,954 0,952

    NZS 2nd

    Hypoths

    e

    1,263 0,226 17,87% 0,797 1,737 0,937

    CSA 2nd

    Hypoths

    e

    1,372 0,289 21,08% 0,797 1,954 0,959

    Dans ce dernier cas, les rsultats sont assez mdiocres. Aucune

    amlioration nest observe. Cependant, nous pouvons en dduire que les

    limitations du MSJC sont plus performantes mme si elles affectent plus de murs.

    63

  • 8/3/2019 Louis Research Report -Rendu

    64/64

    Louis de Fontenay Promotion 2012

    Au final, quel que soit lhypothse, les rsultats ne sont pas trs

    concluants. Je ne peux donc faire aucune recommandation formelle quant

    lamlioration du MSJC.

    Conclusion

    Durant ce stage lve-ingnieur, jai effectu de nombreuses analyses

    statistiques en utilisant principalement le logiciel Excel. Les rsultats finaux ne se

    sont pas rvls tre la hauteur de mon attente mais ils mont permis

    dadopter une mthodologie stricte et rigoureuse. Mon travail reste nanmoins

    une base pour de futures recherches plus avances ncessitant des donnes et

    des connaissances plus importantes. En effet, lchantillon de mon tude

    statistique tait assez limit (56 murs). Limportant, pour mon tuteur, tait de

    tester deux nouvelles hypothses et confirmer le potentiel de celles-ci ; ce qui est

    chose faite maintenant.

    Afin de pouvoir tre efficace dans mon travail, jai d complter ma

    formation EPF en lisant de nombreuses thses et publications. Jai ainsi pu tre

    trs autonome dans mon travail et cette autonomie sest rvle prcieuse

    lorsque mon tuteur sabsentait pour un voyage daffaire.

    Ce stage ma permis de voir un mode de travail et denseignement

    diffrent, qui mont apport un point de vue supplmentaire sur la manire

    daborder et de raliser mon travail. Cela a t une exprience enrichissant aussi

    bien professionnellement que personnellement. Cest pour cela que je dsire y

    retourner en 5m anne pour un masters degree.