lorentz tests with short-range gravity

48
Lorentz Tests with Short-Range Gravity Indiana University, Bloomington IU Center for Exploration of Energy and Matter (CEEM) Josh Long IUPUI IUB Indiana University Collaborative Research Grant

Upload: others

Post on 21-Jan-2022

17 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lorentz Tests with Short-Range Gravity

Lorentz Tests with Short-Range Gravity

Indiana University, Bloomington IU Center for Exploration of Energy and Matter (CEEM)

Josh Long

IUPUI – IUB

Indiana University Collaborative Research Grant

Page 2: Lorentz Tests with Short-Range Gravity

Outline

Parameterization

Experimental approach

Expected LV signals

Limits on LV coefficients (d=6, 8)

Outlook - optimization

Motivation and existing (non-LV) limits

Experimental challenges

Page 3: Lorentz Tests with Short-Range Gravity

r

m1 m2

mB

Yukawa Interaction

a = strength relative to gravity

Power Law

m1 m2

m=0

m=0

r0 = experimental scale

set limits on bn for n = 2 - 5

Parameterization

/1 2( ) 1 rm mU r G e

r

a

101 2( ) 1

n

n

rm mU r G

r rb

rangeBm c

Page 4: Lorentz Tests with Short-Range Gravity

Search for Lorentz Violation

Source:

http://www.physics.indiana.edu/~kostelec/mov.html

Test for sidereal variation in force signal: Standard Model Extension (SME)

Q. G. Bailey and V. A. Kostelecký, PRD 74 045001 (2006)

V. A. Kostelecký, PRD 69 105009 (2004)

Q. G. Bailey, V. A. Kostelecký, R. Xu, PRD 91 022006 (2015)

V. A. Kostelecký and M. Mewes, PLB 766 137 (2017)

GR LVL L L

ˆˆ ˆ( , , )LVL f s q k

3( )

4,even

ˆ ,...dd

d

s s

Modified field equations

Solution in linearized, non-relativistic limit:

(d = mass dimension)

Expanded to gravitational sector

talks by Q. Bailey (M Th 9:00), J. Tasson (T F 9:00),

M. Mewes (W 9:00), …

𝛿𝑈 𝒓 ∼ 𝐺𝑁𝑚

𝑟𝑑−3𝑑

Page 5: Lorentz Tests with Short-Range Gravity

Short Range Limits and Predictions

Experimental limits:

Theoretical predictions:

Limits still allow forces 1 million times stronger than gravity at 5 microns

Moduli, dilatons: new particles motivated by string models

Vacuum energy: prediction from new field which also keeps cosmological constant small

“Large” extra dimensions

Stanford: A. Geraci et al., PRD 78 022002 (2008)

Casimir: Y.-J. Chen et al., PRL 116 221102 (2016)

Eot-Wash: D. Kapner et al., PRL 98 021101 (2007)

HUST: W.-H. Tan et al., PRL 116 131101 (2016)

Irvine: J. Hoskins et al., PRD 32 3084 (1985)

Torsion Osc: JCL et al., Nature 421 922 (2003)

Irvine, HUST, Eot-Wash, = torsion pendulum experiments

Stanford, IUPUI: MEMS-type experiment

Theory: S. Dimopoulos, A. Geraci, PRD 68 124021 (2003)

Page 6: Lorentz Tests with Short-Range Gravity

Challenge: scaling and backgrounds

m1, 1 m2, 2

~ 2r 3 2

41 2 1 21 22 2

(4 )~

(2 ) 4

Gm m G rF G r

r r

r = 100 m F ≈ 10-17 N

1 = 2 = 20 g/cm3, r = 10 cm F ≈ 10-5 N

Electrostatic:

Magnetic (contaminant):

Casimir:

e0V 2

r2 FE ~

ħc

r 4 FC ~

FM ~

r 4

0 1 2 1 2ˆ ˆ[ 3( )( )]r r

Shielding fails (modes penetrate) below D ~ P ~ 100 nm

D

6

Page 7: Lorentz Tests with Short-Range Gravity

HUST short-range experiment

W.-H. Tan, et al., PRL 116 131101 (2016).

Tungsten ( =19) test and source masses: ~ 200 m thick

Minimum gap: 295 m

BeCu membrane shield (not shown): 30 m

Drive frequency: 0.26 mHz

Signal frequency: 2.1 mHz

DtY = 3.4 × 10-17 Nm (a = 0.1, = 1 mm)

DtN = 0.7 × 10-17 Nm

Limits: Scenarios with a ≥ 1 excluded

at 95% CL for ≥ 59 m

rotation

axis x

-y

9cm

Page 8: Lorentz Tests with Short-Range Gravity

Experimental Approach

Source and Detector Oscillators Shield for Background Suppression

~ 5 cm

Planar Geometry - null for 1/r2

Resonant detector with source mass driven on resonance

1 kHz operational frequency - simple, stiff vibration isolation

Stiff conducting shield for background suppression

Double-rectangular torsional detector: high Q, low thermal noise

Page 9: Lorentz Tests with Short-Range Gravity

Central Apparatus

Scale: 1 cm3

detector mass

shield

source mass PZT bimorph

transducer amp box

tilt stage

vibration isolation stacks

Figure: Bryan Christie (www.bryanchristie.com) for Scientific American (August 2000)

Vibration isolation stacks: Brass disks connected by fine wires; soft springs which attenuate at ~1010 at 1 kHz (reason for using 1 kHz)

Readout: capacitive transducer and lock-in amplifier referenced by source drive frequency

Vacuum system: 10-7 torr

Page 10: Lorentz Tests with Short-Range Gravity

Interaction Region

10 m stretched Cu

membrane shield

(shorter ranges

possible)

detector mass

front rectangle

(retracted)

source mass

(retracted)

Thinner shield

60 m thick sapphire plate replaced by 10 m stretched copper membrane

Compliance ~5x better than needed to suppress estimated electrostatic force

Minimum gap reduced from 105 m (2003) to 40 m.

Page 11: Lorentz Tests with Short-Range Gravity

Central Apparatus

~50 cm

Inverted micrometer stages for

full XYZ positioning

Torque rods for micrometer stage control

Vacuum

system

base

plate

Page 12: Lorentz Tests with Short-Range Gravity

Readout – replaced with differential design

• Sensitive to ≈

10 fm thermal

oscillations

• Interleave on

resonance, off

resonance runs

• Typical

session: 8hrs

with 50% duty

cycle

Page 13: Lorentz Tests with Short-Range Gravity

Sensitivity: increase Q and statistics, decrease T

)]/exp(1)][/exp(1)[/)(exp(2)( 2 a dsddsY tttdAGtF

• Signal

Force on detector due to Yukawa interaction with source:

• Thermal Noise

t

kTDFT

4

Q

mD

~ 3 x 10-15 N (for a = 1, = 50 m)

~ 3 x 10-15 N (300 K, Q = 5 x104, 1 day average)

~ 7 x 10-17 N (4 K, Q = 5 x105, 1 day average)

sensitivity

10-13 g

Page 14: Lorentz Tests with Short-Range Gravity

Force Measurement Data – March 2012

19 hours on-resonance data collected over 3 days with interleaved diagnostic data

On-resonance: Detector thermal motion and amplifier noise

Off-resonance: amplifier noise

On Resonance Off Resonance

Page 15: Lorentz Tests with Short-Range Gravity

Force Measurement Data - Detail

off-resonance

on-resonance

Von – Voff = 0.93 ± 0.74 V (1)

Net Signal:

F = 4.0 ± 3.2 fN

Force:

Detector – probe force from ~ nV scale “ground” fluctuations on detector mass

Possible Source:

Page 16: Lorentz Tests with Short-Range Gravity

Upper: 1 day integration time, 50 micron gap, 300 K

Lower: 1 day integration time, 50 micron gap, 4.2 K, factor 50 Q improvement

Current Limits (2) and Projected Sensitivity

Present gap ~ 100 microns; need flatter, more level elements

Page 17: Lorentz Tests with Short-Range Gravity

Search for Lorentz Violation

Source:

http://www.physics.indiana.edu/~kostelec/mov.html

Test for sidereal variation in force signal: Standard Model Extension (SME)

Q. G. Bailey and V. A. Kostelecký, PRD 74 045001 (2006)

V. A. Kostelecký, PRD 69 105009 (2004)

Q. G. Bailey, V. A. Kostelecký, R. Xu, PRD 91 022006 (2015)

V. A. Kostelecký and M. Mewes, PLB 766 137 (2017)

GR LVL L L

ˆˆ ˆ( , , )LVL f s q k

3( )

4,even

ˆ ,...dd

d

s s

Modified field equations

Solution in non-relativistic limit:

3( ) ~ N

dd

G mU r

r

(d = mass dimension)

Expanded to gravitational sector

(talks by Q. Bailey, M Th 9:00, …)

Page 18: Lorentz Tests with Short-Range Gravity

y (east)

x

(south)

(zenith)

z

q

f

Ms

Mt

r

SME gravitational potential correction

( )lab

3( ) ( , ) N dN s t

jm jmddjm

G M MU Y k

r q f

r

SME lab frame

d ≥ 4, even = mass dimension of LV operator

j = d - 2 or d - 4

m = -j, …, j

= Newtonian, spherical coefficients of Lorentz

violation in the SME standard lab frame

( )labN djmk

⇒ Dependence on orientation in lab, sidereal time

d FORCE correction

(1/r d-2 )

# of coefficients

(4d-10)

k units

(lengthd-4)

4 1/r2 6 1

6 1/r4 14 length2

8 1/r6 22 length4

.

.

. V. A. Kostelecký and M. Mewes, PLB 766 137 (2017)

→Test with large gravity signal (“g”)

(superseded by absence of

gravitational Cerenkov radiation)

Page 19: Lorentz Tests with Short-Range Gravity

Mt

[1] Q. G. Bailey, V. A. Kostelecký, R. Xu, PRD 91 022006 (2015).

3

2 4

ˆˆ ( , )( , ) ( )

jjj

N

k TRg T G d r

Rr r

r r r r

ˆwhere ( ) / , R r r r r

eff eff

105ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( ) 45( )2

j k l m n j k l

j klmn klmnk T k R R R R R k R R R R

Acceleration of test mass (at r) due to source mass density ( ) r

[2] J. C. Long, V. A. Kostelecký, PRD 91 092003 (2015).

Example: SME d=6 force (cartesian)

eff eff eff

9 ˆ ˆ ˆ ˆ ˆ( ) 30( ) 18( )2

j k l m k

klkl jklm jkllk R k R R R k R

y (east)

x

(south)

(zenith)

z

Ms R

SME lab frame

= cartesian coefficients of Lorentz violation in the SME standard lab frame eff( ) jklmk

ˆ jR = projection of unit vector along R in jth direction

r r

Page 20: Lorentz Tests with Short-Range Gravity

y

x

z

q

f

m1

m2

R

Angular dependence of lab frame force

1 2

4ˆ ˆ ˆ( , , )jklm jklmN

z iklm z x y z

G m mF k R R R

R

• equal contributions of

F > 0, F < 0

over half-sphere

(each component)

(Fz only)

Γz(θ,f)

f

q = π/2

q = 0

(zenith)

H. Meyer, IU

Page 21: Lorentz Tests with Short-Range Gravity

y

x

q

f

m1

m2

R

Lab frame point-plane force

• fundamental dependence = 1/d2

max max

11 4 2

0 0

( , )( , ) sin cos

jklmjklm jklmNz

z N jklm z

G mF G m k dm d d

R d

qq

q q q q

z

• Fz vanishes for infinite area plate (q, f cover half-sphere)

d

• optimal distance? (small d and but small solid angle)

• Not (Newtonian) “edge effect,” where F > 0 but does not depend on d unless any (finite)

plate edges are aligned

H. Meyer, IU

Page 22: Lorentz Tests with Short-Range Gravity

Calculation of the Fitting Function

[1] V. A. Kostelecký and M. Mewes, PRD 66 056005 (2002)

• Transform to sun-centered frame [1]:

= sidereal frequency, c = colatitude = 0.89,

ignore boost

eff eff( ) ( ) ( )jJ kK lL mM

jklm JKLMk T R R R R k

d FORCE correction

(1/r d-2 )

# of coefficients

(4d-10)

k units

(lengthd-4)

# signals

(2d-3)

4 1/r2 6 1 5

6 1/r4 14 length2 9

8 1/r6 22 length4 13

2 experiments:

4d-6

( > # of coefficients)

Page 23: Lorentz Tests with Short-Range Gravity

y

x

z

q

f

m1

m2

R

Angular, time dependence of z-force

eff( ) 1

XXYYk

colatitude = 0.89 (IUB)

q = 0.89

Γz(θ,f)

f

q = π/2

q = 0

(zenith)

Page 24: Lorentz Tests with Short-Range Gravity

Calculation of the Fitting Function

[1] V. A. Kostelecký and M. Mewes, PRD 66 056005 (2002).

• Transform to sun-centered frame [1]:

• Detector has distributed mass:

x = mode shape from finite element model [2]

= sidereal frequency, c = colatitude = 0.89,

ignore boost

31( ) ( ) ( , )z

PF T d r F T

zx r r

[2] H Yan, et al., Class. Quantum Grav. 31 205007 (2014)

Need Fz only

eff eff( ) ( ) ( )jJ kK lL mM

jklm JKLMk T R R R R k

Page 25: Lorentz Tests with Short-Range Gravity

C, S functions of test mass geometry,

• Force:

eff( )JKLMk (sun frame)

Calculation of the Fitting Function

4

01

sin( ) cos( )p m mm

F C S m T C m T

0 eff eff eff[ (1.8 2.3)( ) (1.8 2.3)( ) (3.6 4.7)( )

XXXX YYYY XXYYC k k k

0 eff eff eff[ 1.8( ) 1.8( ) 3.6( )

XXXX YYYY XXYYC k k k

eff eff13.5( ) 13.5( ) ] nN

XXZZ YYZZk k

eff eff(13.5 7.5)( ) (13.5 7.5)( ) ] nN

XXZZ YYZZk k

eff eff eff[5.0( ) 3.6( ) 12.2( )

XXXZ YYYZ ZZZXS k k k

eff eff eff14.1( ) 3.6( ) 5.0( ) ] nN

ZZZY XXYZ YYXZk k k

eff eff eff[3.6( ) 5.0( ) 14.1( )

XXXZ YYYZ ZZZXC k k k

eff eff eff12.2( ) 5.0( ) 3.6( ) ] nN

ZZZY XXYZ YYXZk k k

→ Limits on 𝑘 eff ≈force sensitivity(noise)

Λ≈10 fN

10 nN/m2≈ 10−6m2

C, S eff( )i ii

k

Page 26: Lorentz Tests with Short-Range Gravity

Data – time series

• 21 hrs of data accumulated over 3 days in March 2012

• On-resonance (signal) data accumulated in 14 minute sets (off-resonance, diagnostic data in

between)

• T0 = 2000 vernal equinox

PRD 80 016002 (2009)

Atom interferometer data for small g:

• Include old data: 22 hrs accumulated over 5 days in August 2002

(Boulder, CO: colatitude = 0.872 [Bloomington: 0.887]; same orientation in lab)

2002 2012

Page 27: Lorentz Tests with Short-Range Gravity

• Signal estimate: discrete Fourier transforms:

2

( )cosm i ii

c F T m TN

2

( )sinm i ii

s F T m TN

Ti, F(Ti) = points from data plot

Measured signals

• Fourier amplitudes (1 stat errors):

Page 28: Lorentz Tests with Short-Range Gravity

Measured signals

• Continuous transforms

(fN, ± 1):

Page 29: Lorentz Tests with Short-Range Gravity

18

eff eff1

[( ) ] [( ) ]JKLM i JKLMi

P k p k

2 2eff theory measured ( , )[( ) ] exp (( , ) ( , ) ) / 2

i ii JKLM i i i i C Sp k C S C S

eff eff eff[( ) ] [( ) ] (all other )XXXX JKLMP k P k d k

• Probability for all k̅eff

• Data are Gaussian

• Estimate of individual k̅eff

Constraints on k̅eff

Page 30: Lorentz Tests with Short-Range Gravity

Systematic Errors (2012)

(m) (m)

Page 31: Lorentz Tests with Short-Range Gravity

18

eff eff1

[( ) ] [( ) ]JKLM i JKLMi

P k p k

2 2eff theory measured ( , )[( ) ] exp (( , ) ( , ) ) / 2

i ii JKLM i i i i C Sp k C S C S

eff eff eff[( ) ] [( ) ] (all other )XXXX JKLMP k P k d k

• Probability for all k̅eff

• Data are Gaussian

• Estimate of individual k̅eff

Independent coefficient values

(2, units 10-5 m2)

Constraints on k̅eff

eff effmax min

1[( ) ] [( ) ] ( )JKLM JKLMP k P k x d x

x x

D DD D

• Include systematic uncertainties (average over 1000 configs.)

e.g., overlap Dx:

Page 32: Lorentz Tests with Short-Range Gravity

eff eff14.0( ) 14.0( ) ] nNm

XXZZ YYZZk k

0 eff eff eff[4.4( ) 4.4( ) 8.7( )

XXXX YYYY XXYYC k k k

eff eff eff[ 5.3( ) 1.7( ) 5.3( ) ]nNm

YYYZ ZZZY XXYZS k k k

eff eff eff[ 5.3( ) 1.7( ) 5.3( ) ]nNm

XXXZ ZZZX YYXZC k k k

• Fourier components (fNm, ± 1) [1]: • SME theoretical torque

Combined analysis: HUST short-range experiment

[1] C.-G. Shao, et al., PRL 117 071102 (2016)

→ Limits on 𝑘 eff ≈torque sensitivity

Λ≈10 aNm

10 nNm/m2≈ 10−9m2

Page 33: Lorentz Tests with Short-Range Gravity

Combined analysis: constraints on k̅eff

Independent coefficient values

(2, units 10-9 m2)

C.-G. Shao, et al., PRL 117 071102 (2016)

Page 34: Lorentz Tests with Short-Range Gravity

Independent coefficient values

(2, units 10-9 m2) [1]

[1] C.-G. Shao, et al., PRL 117 071102 (2016)

N(6)eff eff43

5Re 2 3

7 XXXZ XYYZk k k

Combined analysis: constraints on [2] (6)N

jmk

[2] V. A. Kostelecký and M. Mewes, PLB 766 137 (2017)

No overlap

with vacuum

coefficients (or

G-wave

constraints)

Page 35: Lorentz Tests with Short-Range Gravity

Combined analysis: constraints on fundamental (6) (6)

1 2,k k

Constraints (2, units 10-9 m2) on 59 independent coefficients k1, one at a time

C.-G. Shao, et al., PRL 117 071102 (2016)

Page 36: Lorentz Tests with Short-Range Gravity

Constraints (2, units 10-9 m2) on 72 independent coefficients k2, one at a time

Combined analysis: constraints on fundamental (6) (6)

1 2,k k

C.-G. Shao, et al., PRL 117 071102 (2016)

Page 37: Lorentz Tests with Short-Range Gravity

y (east)

x

(south)

z

q

f Ms

Mt

r

d=8 analysis (spherical)

(8)lab

5( ) ( , ) NN s t

jm jm

jm

G M MU Y k

r q f r

(8) lab ( ) (8)( )im TN j N

jm mm jmm

k e d k c

*( )( ) ( 1)m

jm j mk k

6

061

( ) sin( ) cos( )s tLV m m

m

GM MdF U c s m T c m T

r

r

1 13 4,1 14 4,1 15 6,1 16 6,1Re Im Re Imc k k k ka a a a

1 14 4,1 13 4,1 16 6,1 15 6,1Re Im Re Ims k k k ka a a a

3 17 4,3 18 4,3 19 6,3 20 6,3Re Im Re Imc k k k ka a a a

3 18 4,3 17 4,3 20 6,3 19 6,3Re Im Re Ims k k k ka a a a

5 21 6,5 22 6,5Re Imc k ka a

5 22 6,5 21 6,5Re Ims k ka a

0 1 4,0 2 6,0c k ka a

2 3 4,2 4 4,2 5 6,2 6 6,2Re Im Re Imc k k k ka a a a

2 4 4,2 3 4,2 6 6,2 5 6,2Re Im Re Ims k k k ka a a a

4 7 4,4 8 4,4 9 6,4 10 6,4Re Im Re Imc k k k ka a a a

4 8 4,4 7 4,4 10 6,4 9 6,4Re Im Re Ims k k k ka a a a

6 11 6,6 12 6,6Re Imc k ka a

6 12 6,6 11 6,6Re Ims k ka a

a1-a22 = f q,f,c

Page 38: Lorentz Tests with Short-Range Gravity

y (east)

x

(south)

z

q

f Ms

Mt

r f

q = π/2

q = 0

(zenith)

a2

DC (m=0, k60) 61,k 2 3 4 5 6a15

a16

a5

a6

a19

a20

a9

a10

a21

a22

a11

a12

Angular dependence of force ( in sun frame) (8)Njmk

( j = 6 terms)

colatitude = 0.89 (IUB)

q = 0.89

Page 39: Lorentz Tests with Short-Range Gravity

dMt

Point-plane, time dependence of z-force

y

x

q

f

Ms R

z

d

Force on Mt from

5 mm × 5 mm plate, d = 200 m

scaled by 1/R6

Page 40: Lorentz Tests with Short-Range Gravity

dMt

Point-plane, time dependence of z-force

y

x

q

f

Ms R

z

d

Force on Mt from

5 mm × 5 mm plate, d = 200 m

scaled by 1/R6

q = 0.89

Page 41: Lorentz Tests with Short-Range Gravity

d = 8 fitting function

1 2 6

( , , )ii t sG dV dV

r

a q f c

Abs(avg) ≈ .01 N/m4

→ Limits on 𝑘𝑗𝑚 ≈noise

Λ ≈10 fN

.01 N/m4≈ 10−12m4

F k

Abs(avg) ≈ 10-5 Nm/m4

→ Limits on 𝑘𝑗𝑚 ≈noise

Λ ≈10 aNm

10−5Nm/m4≈ 10−12m4

kt HUST:

Page 42: Lorentz Tests with Short-Range Gravity

Measured signals

• HUST: > 2000 hrs of data accumulated from December 2014 to August 2015

• Averaged over attractor rotational period DT = 3846 s

• Include data from 8 f0 (below) and 16 f0 [1] for two independent sets

HUST 8 f0 time series and Fourier transform IU, HUST Fourier components (± 2 stat)

[1] C.-G. Shao, et al., PRL 117 071102 (2016)

≈ 10fN ≈ 10aNm

Page 43: Lorentz Tests with Short-Range Gravity

Independent coefficient values

(2, units 10-13 m4)

Combined analysis: constraints on (preliminary) (8)N

jmk

Page 44: Lorentz Tests with Short-Range Gravity

Outlook - optimization

• smaller test mass gap r (sensitivity to F ~ 1/r n ≥ 4)

• smaller solid-angle W = A/r2 “acceptance”

(avoid angular averaging of F to 0)

Basic strategies conflict:

A

r

W

f

q = π/2

q = 0

(zenith)

4max max 4,46, 4, ~ ~ id j m F Y e f

Df

→ want Df ≈ /2

• Increase sensitivity with “more”

(periodic) masses

Page 45: Lorentz Tests with Short-Range Gravity

Outlook – optimization: HUST LV pendulum

(poster by Y. Chen, talk by C. Shao, F 2:30)

C.-G. Shao, et al., PRD 94 104061 (2016)

• Strips ≈ 1 x 2 x 20 mm

• Gap r ≈ 0.4 → 1mm

Df

Df ≈ 140→ 90

• LV torque relative to

torque at r = 0.4 mm

Gap r (mm)

Page 46: Lorentz Tests with Short-Range Gravity

Outlook - optimization

• smaller test mass gap r (sensitivity to F ~ 1/r n ≥ 4)

• smaller solid-angle W = A/r2 “acceptance”

(avoid angular averaging of F to 0)

Basic strategies conflict:

A

r

W

f

q = π/2

q = 0

(zenith)

4max max 4,46, 4, ~ ~ id j m F Y e f

Df

→ want Df ≈ /2

• Increase sensitivity with “more”

(periodic) masses

• “antisymmetric” arrangement

Page 47: Lorentz Tests with Short-Range Gravity

Outlook – optimization: HUST LV pendulum

(poster by Y. Chen, talk by C. Shao, F 2:30)

C.-G. Shao, et al., PRD 94 104061 (2016)

• LV torque enhancement relative to

no-strip design

Page 48: Lorentz Tests with Short-Range Gravity

Summary

• Consistent with ~ fN, aNm sensitivity of the experiments and no evidence of

sidereal effects

• 131 constraints on fundamental coefficients:

• Short-range gravity experiments: First independent constraints on 14 d = 6

nonrelativistic coefficients: k̅eff < 10-9 m2

• Preliminary independent constraints on 22 d = 8 nonrelativistic coefficients:

(6) (6) 9 2

1 2, 10 mk k

N(8) 12 410 mjmk

• Experiments optimized for LV: improvement by 1-2 orders of magnitude (d = 6)