looking beyond the standard model with energetic cosmic...

55
Looking Beyond the Standard Model with Energetic Cosmic Particles Andreas Ringwald http://www.desy.de/˜ringwald DESY Seminar Universit¨ at Dortmund June 13, 2006, Dortmund, Germany

Upload: others

Post on 27-Jan-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Looking Beyond the StandardModel with Energetic Cosmic

    Particles

    Andreas Ringwaldhttp://www.desy.de/˜ringwald

    DESY

    Seminar

    Universität Dortmund

    June 13, 2006, Dortmund, Germany

  • – Looking Beyond the Standard Model – 11. Introduction

    • There is a high energy universe:Gamma rays have been identified upto energies E

  • – Looking Beyond the Standard Model – 21. Introduction

    • There is a high energy universe:Gamma rays have been identified upto energies E

  • – Looking Beyond the Standard Model – 31. Introduction

    • There is a high energy universe:Gamma rays have been identified upto energies E

  • – Looking Beyond the Standard Model – 41. Introduction

    • There is a high energy universe:Gamma rays have been identified upto energies E

  • – Looking Beyond the Standard Model – 5

    Outline:

    2. Ultrahigh energy cosmic rays and neutrinos

    3. TeV scale physics with ultrahigh energy neutrinos

    4. GUT scale physics with extremely energetic neutrinos

    5. Conclusions

    A. Ringwald (DESY) Seminar, Dortmund, June 2006

  • – Looking Beyond the Standard Model – 6

    2. Ultrahigh energy cosmic rays and neutrinos

    • CR spectrum: Large statistical andsystematic uncertainties

    ⇐ low flux⇐ energy from shower simulations

    • Crucial improvement by PAO:

    ⇐ huge size ⇒ better statistics⇐ hybrid observations ⇒ better

    energy calibration through Fly’sEye technique, direction fromground array

    • It works[Ahlers et al. ‘05]

    A. Ringwald (DESY) Seminar, Dortmund, June 2006

  • – Looking Beyond the Standard Model – 7

    2. Ultrahigh energy cosmic rays and neutrinos

    • CR spectrum: Large statistical andsystematic uncertainties

    ⇐ low flux⇐ energy from shower simulations

    • Crucial improvement by PAO:

    ⇐ huge size ⇒ better statistics⇐ hybrid observations ⇒ better

    energy calibration through Fly’sEye technique, direction fromground array

    • It works [www.auger.org]

    A. Ringwald (DESY) Seminar, Dortmund, June 2006

  • – Looking Beyond the Standard Model – 8

    2. Ultrahigh energy cosmic rays and neutrinos

    • CR spectrum: Large statistical andsystematic uncertainties

    ⇐ low flux⇐ energy from shower simulations

    • Crucial improvement by PAO:

    ⇐ huge size ⇒ better statistics⇐ hybrid observations ⇒ better

    energy calibration through Fly’sEye technique, direction fromground array

    • It works[Ahlers et al. ‘05]

    A. Ringwald (DESY) Seminar, Dortmund, June 2006

  • – Looking Beyond the Standard Model – 9

    2. Ultrahigh energy cosmic rays and neutrinos

    • CR spectrum: Large statistical andsystematic uncertainties

    ⇐ low flux⇐ energy from shower simulations

    • Crucial improvement by PAO:

    ⇐ huge size ⇒ better statistics⇐ hybrid observations ⇒ better

    energy calibration through Fly’sEye technique, direction fromground array

    • It works[Ahlers et al. ‘05]

    A. Ringwald (DESY) Seminar, Dortmund, June 2006

  • – Looking Beyond the Standard Model – 102. Ultrahigh energy cosmic rays and neutrinos

    • CR angular distribution: ≈ isotrop

    • CR composition: Large uncertainty

    ⇐ studies rely on simulations

    • Cosmic rays above >∼ 108.6 GeV, the

    “second knee”, dominantly protons

    • Assume that CR’s in 10[8.6,11] GeVrange originate from isotropically dis-tributed extragalactic proton sources,with simple power-law injection spec-tra ∝ E−γi (1 + z)

    n

    [Berezinsky,..’02-’05;...;Ahlers et al. ‘05]

    ⇒ Good fit; inelastic interactions withCMB (e+e− “dip”; π “bump”) visi-ble; some post-GZK events?

    [Greisen;Zatsepin,Kuzmin ‘67]

    h12

    +60

    −60

    −30

    +30

    0

    o

    o

    o

    o

    hh

    24

    GC

    AG

    ASA

    C

    A. Ringwald (DESY) Seminar, Dortmund, June 2006

  • – Looking Beyond the Standard Model – 112. Ultrahigh energy cosmic rays and neutrinos

    • CR angular distribution: ≈ isotrop

    • CR composition: Large uncertainty

    ⇐ studies rely on simulations

    • Cosmic rays above >∼ 108.6 GeV, the

    “second knee”, dominantly protons

    • Assume that CR’s in 10[8.6,11] GeVrange originate from isotropically dis-tributed extragalactic proton sources,with simple power-law injection spec-tra ∝ E−γi (1 + z)

    n

    [Berezinsky,..’02-’05;...;Ahlers et al. ‘05]

    ⇒ Good fit; inelastic interactions withCMB (e+e− “dip”; π “bump”) visi-ble; some post-GZK events?

    [Greisen;Zatsepin,Kuzmin ‘67]

    400

    500

    600

    700

    800

    900

    1000

    1014

    1015

    1016

    1017

    1018

    1019

    1020

    1021

    Elab

    (eV)

    Xm

    ax (

    g/c

    m2)

    proton

    iron

    gamma

    gammawith preshower

    DPMJET 2.55

    neXus 2

    neXus 3

    QGSJET 01c

    QGSJET II

    SIBYLL 2.1

    Fly´s Eye

    HiRes-MIA

    HiRes 2004

    Yakutsk 2001

    Yakutsk 2005

    CASA-BLANCA

    HEGRA-AIROBICC

    SPASE-VULCAN

    DICE

    TUNKA

    [Heck ‘05]

    A. Ringwald (DESY) Seminar, Dortmund, June 2006

  • – Looking Beyond the Standard Model – 122. Ultrahigh energy cosmic rays and neutrinos

    • CR angular distribution: ≈ isotrop

    • CR composition: Large uncertainty

    ⇐ studies rely on simulations

    • Cosmic rays above >∼ 108.6 GeV, the

    “second knee”, dominantly protons

    • Assume that CR’s in 10[8.6,11] GeVrange originate from isotropically dis-tributed extragalactic proton sources,with simple power-law injection spec-tra ∝ E−γi (1 + z)

    n

    [Berezinsky,..’02-’05;...;Ahlers et al. ‘05]

    ⇒ Good fit; inelastic interactions withCMB (e+e− “dip”; π “bump”) visi-ble; some post-GZK events?

    [Greisen;Zatsepin,Kuzmin ‘67][Ahlers et al. ‘05]

    A. Ringwald (DESY) Seminar, Dortmund, June 2006

  • – Looking Beyond the Standard Model – 132. Ultrahigh energy cosmic rays and neutrinos

    • CR angular distribution: ≈ isotrop

    • CR composition: Large uncertainty

    ⇐ studies rely on simulations

    • Cosmic rays above >∼ 108.6 GeV, the

    “second knee”, dominantly protons

    • Assume that CR’s in 10[8.6,11] GeVrange originate from isotropically dis-tributed extragalactic proton sources,with simple power-law injection spec-tra ∝ E−γi (1 + z)

    n

    [Berezinsky,..’02-’05;...;Ahlers et al. ‘05]

    ⇒ Good fit; inelastic interactions withCMB (e+e− “dip”; π “bump”) visi-ble; some post-GZK events?

    [Greisen;Zatsepin,Kuzmin ‘67][Ahlers et al. ‘05]

    A. Ringwald (DESY) Seminar, Dortmund, June 2006

  • – Looking Beyond the Standard Model – 14

    • Possible sources of these protons:GRB, AGN, . . .

    • Shock acceleration:– p’s, confined by magnetic fields,

    accelerate through repeated scat-tering by plasma shock fronts

    – production of π’s and n’s throughcollisions of the trapped p’s withambient plasma produces γ’s, ν’sand CR’s (n diffusion from source)

    • Neutrinos as diagnostic tool:– ν’s from sources (pγ → n + π’s)

    close to be measured– Cosmogenic neutrino flux (from

    pγCMB → Nπ’s) dominates above109 GeV

    A. Ringwald (DESY) Seminar, Dortmund, June 2006

  • – Looking Beyond the Standard Model – 15

    • Possible sources of these protons:GRB, AGN, . . .

    • Shock acceleration:– p’s, confined by magnetic fields,

    accelerate through repeated scat-tering by plasma shock fronts

    – production of π’s and n’s throughcollisions of the trapped p’s withambient plasma produces γ’s, ν’sand CR’s (n diffusion from source)

    • Neutrinos as diagnostic tool:– ν’s from sources (pγ → n + π’s)

    close to be measured– Cosmogenic neutrino flux (from

    pγCMB → Nπ’s) dominates above109 GeV

    p

    π+

    µ+

    e+

    nπ−

    µ−

    e−

    p

    νµ

    ν̄µ

    νe

    ν̄µ

    νµ

    ν̄e

    SHO

    CK

    [Ahlers PhD in prep.]

    A. Ringwald (DESY) Seminar, Dortmund, June 2006

  • – Looking Beyond the Standard Model – 16

    • Possible sources of these protons:GRB, AGN, . . .

    • Shock acceleration:– p’s, confined by magnetic fields,

    accelerate through repeated scat-tering by plasma shock fronts

    – production of π’s and n’s throughcollisions of the trapped p’s withambient plasma produces γ’s, ν’sand CR’s (n diffusion from source)

    • Neutrinos as diagnostic tool:– ν’s from sources (pγ → n + π’s)

    close to be measured– Cosmogenic neutrino flux (from

    pγCMB → Nπ’s) dominates above109 GeV

    Hillas-plot

    (100 EeV)

    (1 ZeV)

    Γ

    Neutronstar

    maxE ~ ZBL

    maxE ~ ZBL

    White

    dwarf

    Protons

    (candidate sites for E=100 EeV and E=1 ZeV)

    GRB

    Galacticdisk

    halo

    galaxiesColliding

    jets

    nuclei

    lobes

    hot-spots

    SNR

    Active

    galaxies

    Clusters

    (Fermi)

    (Ultra-relativistic shocks-GRB)

    1 au 1 pc 1 kpc 1 Mpc

    -9

    -3

    3

    9

    15

    3 6 9 12 15 18 21

    log(Magnetic field, gauss)

    log(size, km)

    Fe (100 EeV)

    Protons

    [Pierre Auger Observatory]A. Ringwald (DESY) Seminar, Dortmund, June 2006

  • – Looking Beyond the Standard Model – 17

    • Possible sources of these protons:GRB, AGN, . . .

    • Shock acceleration:– p’s, confined by magnetic fields,

    accelerate through repeated scat-tering by plasma shock fronts

    – production of π’s and n’s throughcollisions of the trapped p’s withambient plasma produces γ’s, ν’sand CR’s (n diffusion from source)

    • Neutrinos as diagnostic tool:– ν’s from sources (pγ → n + π’s)

    close to be measured– Cosmogenic neutrino flux (from

    pγCMB → Nπ’s) dominates above109 GeV

    p

    π+

    µ+

    e+

    νµ

    ν̄µ

    νe

    n

    SHO

    CK

    [Ahlers PhD in prep.]

    A. Ringwald (DESY) Seminar, Dortmund, June 2006

  • – Looking Beyond the Standard Model – 18

    • Possible sources of these protons:GRB, AGN, . . .

    • Shock acceleration:– p’s, confined by magnetic fields,

    accelerate through repeated scat-tering by plasma shock fronts

    – production of π’s and n’s throughcollisions of the trapped p’s withambient plasma produces γ’s, ν’sand CR’s (n diffusion from source)

    • Neutrinos as diagnostic tool:– ν’s from sources (pγ → n + π’s)

    close to be measured– Cosmogenic neutrino flux (from

    pγCMB → Nπ’s) dominates above109 GeV

    [Ahlers et al. ‘05]

    A. Ringwald (DESY) Seminar, Dortmund, June 2006

  • – Looking Beyond the Standard Model – 19

    3. TeV scale physics with ultrahigh energy neutrinos

    • Cν’s with Eν >∼ 108 GeV probe νN

    scattering at√

    sνN >∼ 14 TeV (LHC)

    • Perturbative Standard Model (SM)≈ under control (← HERA)

    [Gandhi et al. ’98; Glück et al. ’98; ...]

    ⇒ Search for enhancements in σνNbeyond (perturbative) SM:

    ⋄ Electroweak sphaleron production(B + L violating processes in SM)⋄ Kaluza-Klein, black hole, p-brane

    or string ball production in TeVscale gravity models⋄ . . . [Ahlers et al. ‘05]

    A. Ringwald (DESY) Seminar, Dortmund, June 2006

  • – Looking Beyond the Standard Model – 20

    3. TeV scale physics with ultrahigh energy neutrinos

    • Cν’s with Eν >∼ 108 GeV probe νN

    scattering at√

    sνN >∼ 14 TeV (LHC)

    • Perturbative Standard Model (SM)≈ under control (← HERA)

    [Gandhi et al. ’98; Glück et al. ’98; ...]

    ⇒ Search for enhancements in σνNbeyond (perturbative) SM:

    ⋄ Electroweak sphaleron production(B + L violating processes in SM)⋄ Kaluza-Klein, black hole, p-brane

    or string ball production in TeVscale gravity models⋄ . . .

    [Tu ‘04]

    A. Ringwald (DESY) Seminar, Dortmund, June 2006

  • – Looking Beyond the Standard Model – 21

    3. TeV scale physics with ultrahigh energy neutrinos

    • Cν’s with Eν >∼ 108 GeV probe νN

    scattering at√

    sνN >∼ 14 TeV (LHC)

    • Perturbative Standard Model (SM)≈ under control (← HERA)

    [Gandhi et al. ’98; Glück et al. ’98; ...]

    ⇒ Search for enhancements in σνNbeyond (perturbative) SM:

    ⋄ Electroweak sphaleron production(B + L violating processes in SM)

    ⋄ Kaluza-Klein, black hole, p-braneor string ball production in TeVscale gravity models⋄ . . .

    [Fodor,Katz,AR,Tu ‘03; Han,Hooper ‘03]

    A. Ringwald (DESY) Seminar, Dortmund, June 2006

  • – Looking Beyond the Standard Model – 22

    3. TeV scale physics with ultrahigh energy neutrinos

    • Cν’s with Eν >∼ 108 GeV probe νN

    scattering at√

    sνN >∼ 14 TeV (LHC)

    • Perturbative Standard Model (SM)≈ under control (← HERA)

    [Gandhi et al. ’98; Glück et al. ’98; ...]

    ⇒ Search for enhancements in σνNbeyond (perturbative) SM:

    ⋄ Electroweak sphaleron production(B + L violating processes in SM)

    ⋄ Kaluza-Klein, black hole, p-braneor string ball production in TeVscale gravity models⋄ . . .

    [AR,Tu ‘01; Tu ‘04]

    A. Ringwald (DESY) Seminar, Dortmund, June 2006

  • – Looking Beyond the Standard Model – 23

    “Model-independent” upper bounds on σνN

    dN

    dt∝

    ∫dEν Fν(Eν)σνN(Eν)

    ⇒ Non-observation of deeply-penetra-ting particles, together with lowerbound on Fν (e.g. cosmogenic ν’s)⇒ upper bound on σνN[Berezinsky,Smirnov ‘74; Morris,AR ‘94; Tyler,Olinto,Sigl ‘01;..]

    • Recent quantitative analysis:[Anchordoqui,Fodor,Katz,AR,Tu ‘04]

    ⋄ Best current limits from exploi-tation of RICE search results

    [Kravchenko et al. [RICE] ‘02,03]

    ⋄ Auger will improve these limits byone order of magnitude [Anchordoqui,Fodor,Katz,AR,Tu ‘04]

    A. Ringwald (DESY) Seminar, Dortmund, June 2006

  • – Looking Beyond the Standard Model – 24

    “Model-independent” upper bounds on σνN

    dN

    dt∝

    ∫dEν Fν(Eν)σνN(Eν)

    ⇒ Non-observation of deeply-penetra-ting particles, together with lowerbound on Fν (e.g. cosmogenic ν’s)⇒ upper bound on σνN[Berezinsky,Smirnov ‘74; Morris,AR ‘94; Tyler,Olinto,Sigl ‘01;..]

    • Recent quantitative analysis:[Anchordoqui,Fodor,Katz,AR,Tu ‘04]

    ⋄ Best current limits from exploi-tation of RICE search results

    [Kravchenko et al. [RICE] ‘02,03]

    ⋄ Auger will improve these limits byone order of magnitude [Anchordoqui,Fodor,Katz,AR,Tu ‘04]

    A. Ringwald (DESY) Seminar, Dortmund, June 2006

  • – Looking Beyond the Standard Model – 25

    Strongly interacting neutrino scenarios

    • Bounds exploiting searches for dee-ply-penetrating particles applicableas long as σνN

  • – Looking Beyond the Standard Model – 26

    Strongly interacting neutrino scenarios

    • Bounds exploiting searches for dee-ply-penetrating particles applicableas long as σνN

  • – Looking Beyond the Standard Model – 27

    Strongly interacting neutrino scenarios

    • Bounds exploiting searches for dee-ply-penetrating particles applicableas long as σνN

  • – Looking Beyond the Standard Model – 28

    Strongly interacting neutrino scenarios

    • Bounds exploiting searches for dee-ply-penetrating particles applicableas long as σνN

  • – Looking Beyond the Standard Model – 29

    Long-lived staus at IceCube

    • In most SUSY extensions of SM,lightest superpartner (LSP) stable

    – neutralino dark matter– gravitino dark matter

    • Gravitino LSP interacts only gravi-tationally ⇒ next-to-lightest SUSYparticle (NLSP) long-lived

    • If NLSP charged, e.g. stau τ̃ , itcan possibly be collected in colliderexperiments. Observation of staudecays ⇒ indirect discovery of thegravitino [Buchmüller et al. ‘04,...,Feng et al. ‘04,...].

    [Ahlers,Kersten,AR ‘06]

    A. Ringwald (DESY) Seminar, Dortmund, June 2006

  • – Looking Beyond the Standard Model – 30

    Long-lived staus at IceCube

    • Long-lived stau NLSPs resulting fromcosmic νN interactions inside Earthcan be detected in ice or waterCherenkov neutrino telescopes[Albuquerque,Burdman,Chacko ‘03; Ahlers,Kersten,AR ‘06;...]

    • SUSY cross-section smaller than SM

    • Stau has small energy loss in matter⇒ effective detection volume for staumuch larger than for muon

    • Staus always produced in pairs ⇒nearly parallel muon-like tracks in thedetector, in contrast to SM, wheresingle muons dominate

    • IceCube: Up to 50 τ̃ pair events/yr

    [Ahlers,Kersten,AR ‘06]

    A. Ringwald (DESY) Seminar, Dortmund, June 2006

  • – Looking Beyond the Standard Model – 31

    Long-lived staus at IceCube

    • Long-lived stau NLSPs resulting fromcosmic νN interactions inside Earthcan be detected in ice or waterCherenkov neutrino telescopes[Albuquerque,Burdman,Chacko ‘03; Ahlers,Kersten,AR ‘06;...]

    • SUSY cross-section smaller than SM

    • Stau has small energy loss in matter⇒ effective detection volume for staumuch larger than for muon

    • Staus always produced in pairs ⇒nearly parallel muon-like tracks in thedetector, in contrast to SM, wheresingle muons dominate

    • IceCube: Up to 50 τ̃ pair events/yr

    [Ahlers,Kersten,AR ‘06]

    A. Ringwald (DESY) Seminar, Dortmund, June 2006

  • – Looking Beyond the Standard Model – 32

    4. GUT scale physics with extremely energetic neutrinos

    • Existing observatories for ExtremelyHigh Energy Cosmic neutrinos pro-vide upper bounds up to GUT scale

    • Upcoming decade: Improved sensiti-vity by many orders of magnitude

    ⇒ E ≥ 107 GeV:→ Astrophysics of cosmic rays

    ⇒ E ≥ 108 GeV:→ Particle physics beyond LHC

    ⇒ E ≥ 1012 GeV:→ Cosmology: relics of GUT phase

    transitions; absorption on big bangrelic neutrinos [AR,L.Schrempp ‘06]

    A. Ringwald (DESY) Seminar, Dortmund, June 2006

  • – Looking Beyond the Standard Model – 33

    Top-down scenarios for super-GZK neutrinos

    • Existence of superheavy particleswith 1012 GeV

  • – Looking Beyond the Standard Model – 34

    Top-down scenarios for super-GZK neutrinos

    • Existence of superheavy particleswith 1012 GeV

  • – Looking Beyond the Standard Model – 35

    Top-down scenarios for super-GZK neutrinos

    • Existence of superheavy particleswith 1012 GeV

  • – Looking Beyond the Standard Model – 36

    Top-down scenarios for super-GZK neutrinos

    • Existence of superheavy particleswith 1012 GeV

  • – Looking Beyond the Standard Model – 37

    Top-down scenarios for super-GZK neutrinos

    • Existence of superheavy particleswith 1012 GeV

  • – Looking Beyond the Standard Model – 38

    Top-down scenarios for super-GZK neutrinos

    • Injection spectra: fragmentationfunctions Di(x, µ), i = p, e, γ, ν, de-termined via

    – Monte Carlo generators– DGLAP evolution from experi-

    mental initial distributions at e.g.µ = mZ to µ = mX

    ⇒ Reliably predicted!

    • Spectra at Earth:

    – for superheavy dark matter, injec-tion nearby: jν ∼ jγ ∼ jp

    – for topological defects, injectionfar away: jν ≫ jγ ∼ jp

    0.01

    0.03

    0.1

    0.3

    1

    3

    10

    30

    100

    300

    1/σ

    had

    /dx

    1/σ

    had

    /dx

    1/σ

    had

    /dx

    π± (√s = 91 GeV)

    π± (√s = 29 GeV)

    π± (√s = 10 GeV)

    (a)

    0.01

    0.03

    0.1

    0.3

    1

    3

    10

    30

    K± (√s = 91 GeV)

    K± (√s = 29 GeV)

    K± (√s = 10 GeV)

    (b)

    0.01

    0.03

    0.1

    0.3

    1

    3

    10

    30

    0.005 0.01 0.02 0.05 0.1 0.2 0.5 1

    xp = p/p

    beam

    p, _p (√s = 91 GeV)

    p, _p (√s = 29 GeV)

    p, _p (√s = 10 GeV)

    (c)

    [Particle Data Group ‘04]

    A. Ringwald (DESY) Seminar, Dortmund, June 2006

  • – Looking Beyond the Standard Model – 39

    Top-down scenarios for super-GZK neutrinos

    • Injection spectra: fragmentationfunctions Di(x, µ), i = p, e, γ, ν, de-termined via

    – Monte Carlo generators– DGLAP evolution from experi-

    mental initial distributions at e.g.µ = mZ to µ = mX

    ⇒ Reliably predicted!

    • Spectra at Earth:

    – for superheavy dark matter, injec-tion nearby: jν ∼ jγ ∼ jp

    – for topological defects, injectionfar away: jν ≫ jγ ∼ jp

    1e-05

    0.0001

    0.001

    0.01

    0.1

    1

    10

    100

    1000

    1e-05 0.0001 0.001 0.01 0.1 1

    this workBarbot-DreesSarkar-Toldrax

    xDp q(x;M X)

    MX = 1� 1016 GeV

    [Aloisio,Berezinsky,Kachelriess ‘04]

    A. Ringwald (DESY) Seminar, Dortmund, June 2006

  • – Looking Beyond the Standard Model – 40

    Top-down scenarios for super-GZK neutrinos

    • Injection spectra: fragmentationfunctions Di(x, µ), i = p, e, γ, ν, de-termined via

    – Monte Carlo generators– DGLAP evolution from experi-

    mental initial distributions at e.g.µ = mZ to µ = mX

    ⇒ Reliably predicted!

    • Spectra at Earth:

    – for superheavy dark matter, injec-tion nearby: jν ∼ jγ ∼ jp

    – for topological defects, injectionfar away: jν ≫ jγ ∼ jp

    [Aloisio,Berezinsky,Kachelriess ‘04]

    A. Ringwald (DESY) Seminar, Dortmund, June 2006

  • – Looking Beyond the Standard Model – 41

    Top-down scenarios for super-GZK neutrinos

    • Injection spectra: fragmentationfunctions Di(x, µ), i = p, e, γ, ν, de-termined via

    – Monte Carlo generators– DGLAP evolution from experi-

    mental initial distributions at e.g.µ = mZ to µ = mX

    ⇒ Reliably predicted!

    • Spectra at Earth:

    – for superheavy dark matter, injec-tion nearby: jν ∼ jγ ∼ jp

    – for topological defects, injectionfar away: jν ≫ jγ ∼ jp

    1e+22

    1e+23

    1e+24

    1e+25

    1e+26

    1e+27

    1e+18 1e+19 1e+20 1e+21 1e+22E (eV)

    E3 J(E)(eV2 m�2 s�1 sr�

    1 ) MX = 1� 1014 GeV�p

    p+

    [Aloisio,Berezinsky,Kachelriess ‘04]

    A. Ringwald (DESY) Seminar, Dortmund, June 2006

  • – Looking Beyond the Standard Model – 42

    Top-down scenarios for super-GZK neutrinos

    • How generic?– Superheavy dark matter: need

    symmetry to prevent fast X decay∗ gauge ⇒ X stable∗ discrete⇒ stable or quasi-stable

    – Topological defects: generic pre-diction of symmetry breaking (SB)in GUT’s, including fundamentalstring theory, e.g.∗ G→ H×U(1) SB: monopoles∗ U(1) SB: ordinary or supercon-

    ducting strings∗ G→ H×U(1)→ H× ZN SB:

    monopoles connected by strings

    A. Ringwald (DESY) Seminar, Dortmund, June 2006

  • – Looking Beyond the Standard Model – 43

    Top-down scenarios for super-GZK neutrinos

    • How generic?– Superheavy dark matter: need

    symmetry to prevent fast X decay∗ gauge ⇒ X stable∗ discrete⇒ stable or quasi-stable

    – Topological defects: generic pre-diction of symmetry breaking (SB)in GUT’s, and even fundamentalstring theory, e.g.∗ G→ H×U(1) SB: monopoles∗ U(1) SB: ordinary or supercon-

    ducting strings∗ G→ H×U(1)→ H× ZN SB:

    monopoles connected by strings

    x

    y

    z

    Reφ

    Imφ

    [Rajantie ‘03]

    A. Ringwald (DESY) Seminar, Dortmund, June 2006

  • – Looking Beyond the Standard Model – 44

    Top-down scenarios for super-GZK neutrinos

    • How generic?– Superheavy dark matter: need

    symmetry to prevent fast X decay∗ gauge ⇒ X stable∗ discrete⇒ stable or quasi-stable

    – Topological defects: generic pre-diction of symmetry breaking (SB)in GUT’s, and even fundamentalstring theory, e.g.∗ G→ H×U(1) SB: monopoles∗ U(1) SB: ordinary or supercon-

    ducting strings∗ G→ H×U(1)→ H× ZN SB:

    monopoles connected by strings

    NECKLACE

    M M

    M

    M M

    M

    MS NETWORK

    [Berezinsky ‘05]

    A. Ringwald (DESY) Seminar, Dortmund, June 2006

  • – Looking Beyond the Standard Model – 45

    Top-down scenarios for super-GZK neutrinos

    • How generic?– Superheavy dark matter: need

    symmetry to prevent fast X decay∗ gauge ⇒ X stable∗ discrete⇒ stable or quasi-stable

    – Topological defects: generic pre-diction of symmetry breaking (SB)in GUT’s, including fundamentalstring theory, e.g.∗ G→ H×U(1) SB: monopoles∗ U(1) SB: ordinary or supercon-

    ducting strings∗ G→ H×U(1)→ H× ZN SB:

    monopoles connected by strings

    SO(10)1

    −→ 4C 2L 2R

    8>>>>>>>>>>>>>>>>>>>>>>>>>:

    1−→ 3C 2L 2R 1B−L

    8

  • – Looking Beyond the Standard Model – 46

    Top-down scenarios for super-GZK neutrinos

    • Strong impact of measurement for

    – particle physics

    ∗ GUT parameters, e.g. mX∗ particle content of the desert,

    e.g. SM vs. MSSM∗ νN scattering at

    √s≫ LHC

    – cosmology

    ∗ window on early phase transition∗ Hubble expansion rate H(z)∗ existence of the big bang relic

    neutrino background

    [Fodor,Katz,AR,Weiler,Wong,in prep.]

    A. Ringwald (DESY) Seminar, Dortmund, June 2006

  • – Looking Beyond the Standard Model – 47

    Top-down scenarios for super-GZK neutrinos

    • Strong impact of measurement for

    – particle physics

    ∗ GUT parameters, e.g. mX∗ particle content of the desert,

    e.g. SM vs. MSSM∗ νN scattering at

    √s≫ LHC

    – cosmology

    ∗ window on early phase transition∗ Hubble expansion rate H(z)∗ existence of the big bang relic

    neutrino background

    [Fodor,Katz,AR,Weiler,Wong,in prep.]

    A. Ringwald (DESY) Seminar, Dortmund, June 2006

  • – Looking Beyond the Standard Model – 48

    Top-down scenarios for super-GZK neutrinos

    • Strong impact of measurement for

    – particle physics

    ∗ GUT parameters, e.g. mX∗ particle content of the desert,

    e.g. SM vs. MSSM∗ νN scattering at

    √s≫ LHC

    – cosmology

    ∗ window on early phase transition∗ Hubble expansion rate H(z)∗ existence of the big bang relic

    neutrino background [Barbot,Drees ‘02]

    A. Ringwald (DESY) Seminar, Dortmund, June 2006

  • – Looking Beyond the Standard Model – 49

    Top-down scenarios for super-GZK neutrinos

    • Strong impact of measurement for

    – particle physics

    ∗ GUT parameters, e.g. mX∗ particle content of the desert,

    e.g. SM vs. MSSM∗ νN scattering at

    √s≫ LHC

    – cosmology

    ∗ window on early phase transition∗ Hubble expansion rate H(z)∗ existence of the big bang relic

    neutrino background[Tu ‘04]

    A. Ringwald (DESY) Seminar, Dortmund, June 2006

  • – Looking Beyond the Standard Model – 50

    Top-down scenarios for super-GZK neutrinos

    • Strong impact of measurement for

    – particle physics

    ∗ GUT parameters, e.g. mX∗ particle content of the desert,

    e.g. SM vs. MSSM∗ νN scattering at

    √s≫ LHC

    – cosmology

    ∗ window on early phase transition∗ Hubble expansion rate H(z)∗ existence of the big bang relic

    neutrino background (CνB)

    A. Ringwald (DESY) Seminar, Dortmund, June 2006

  • – Looking Beyond the Standard Model – 51

    Top-down scenarios for super-GZK neutrinos

    • Strong impact of measurement for

    – particle physics

    ∗ GUT parameters, e.g. mX∗ particle content of the desert,

    e.g. SM vs. MSSM∗ νN scattering at

    √s≫ LHC

    – cosmology

    ∗ window on early phase transition∗ Hubble expansion rate H(z)∗ existence of the big bang relic

    neutrino background (CνB)

    [Fodor,Katz,AR,Weiler,Wong,in prep.]

    A. Ringwald (DESY) Seminar, Dortmund, June 2006

  • – Looking Beyond the Standard Model – 52

    Top-down scenarios for super-GZK neutrinos

    • Strong impact of measurement for

    – particle physics

    ∗ GUT parameters, e.g. mX∗ particle content of the desert,

    e.g. SM vs. MSSM∗ νN scattering at

    √s≫ LHC

    – cosmology

    ∗ window on early phase transition∗ Hubble expansion rate H(z)∗ existence of the big bang relic

    neutrino background (CνB)

    [Fodor,Katz,AR,Weiler,Wong,in prep.]

    A. Ringwald (DESY) Seminar, Dortmund, June 2006

  • – Looking Beyond the Standard Model – 53

    Top-down scenarios for super-GZK neutrinos

    • Strong impact of measurement for

    – particle physics

    ∗ GUT parameters, e.g. mX∗ particle content of the desert,

    e.g. SM vs. MSSM∗ νN scattering at

    √s≫ LHC

    – cosmology

    ∗ window on early phase transition∗ Hubble expansion rate H(z)∗ existence of the big bang relic

    neutrino background (CνB)

    [AR,L. Schrempp ‘06]

    A. Ringwald (DESY) Seminar, Dortmund, June 2006

  • – Looking Beyond the Standard Model – 54

    5. Conclusions

    • Exciting times for ultrahigh energycosmic rays and neutrinos:

    – many observatories under con-struction

    ⇒ appreciable event samples

    • Expect strong impact on

    – astrophysics– particle physics– cosmology

    A. Ringwald (DESY) Seminar, Dortmund, June 2006