logic-based benders decomposition and binary decision ... · s.t. assignment constraints on...

1
Logic-based Benders Decomposition and Binary Decision Diagram Based Approaches for Stochastic Distributed Operating Room Scheduling Cheng Guo Merve Bodur Dionne Aleman David Urbach MODEL SETUP The SDORS Problem SDORS: Stochastic Distributed Operating Room Scheduling Hospitals share operating rooms (ORs) and waiting lists Schedule patients to hospitals and ORs Surgery durations are stochastic Cancel a surgery if it is expected to finish after working hours Goals X Robust schedule X Decrease costs X Shorten waiting time X Reduce cancellation Decisions u hd : Open hospital y hdr : Open room x hdpr : Assign patient w p : Postpone patient z hdpr : Accept patient Model Novelty F Modeling the dis- tributed OR schedul- ing problem in a stochastic setting The Model 2 nd stage Cancel patients if there is overtime 1 st stage Schedule patients to (hospital, room, day) observe durations I 2-stage stochastic integer program (2SIP): min f (u, y, x, w)+ E T [ Q(x, y, T)] s.t. h∈H d∈D r ∈R h x hdpr =1 p P h∈H d∈D r ∈R h x hdpr + w p =1 p ∈P\ P y hdr u hd h ∈H; d ∈D; r ∈R h x hdpr y hdr h ∈H; d ∈D; p ∈P ; r ∈R h y hdr y hd,r -1 h ∈H; d ∈D; r ∈R h \{1} u hd ,y hdr ,x hdpr ,w p ∈{0, 1} h ∈H; d ∈D; p ∈P ; r ∈R h I The cancellation cost Q(x, y, T): min h∈H d∈D r ∈R h p∈P c cancel p (x hdp - z hdpr ) s.t. p∈P T p z hdpr B hd y hdr h ∈H; d ∈D; r ∈R h z hdpr x hdpr h ∈H; d ∈D; p ∈P ; r ∈R h z hdpr ∈{0, 1} h ∈H; d ∈D; p ∈P ; r ∈R h SOLUTION METHODS Sample Average Approximation (SAA) Approximate 2SIP with SAA T s p : simulated surgery duration in scenario s z s hdpr : acceptance decision in scenario s Two Decomposition Schemes Master Problem Subproblem master solutions cutting planes BDD master problem BDD subproblem LBBD master problem LBBD subproblem master solution BDD-based cuts master solution LBBD cuts Algorithmic Contributions F LBBD optimality cuts for 2SIP F Adapted first fit decreasing (FFD) algorithm F Problem-specific subproblem relaxation F "Early stop" scheme Two-stage Decomposition I Master problem: min f (u, y, x, w)+ 1 |S| s∈S h∈H d∈D r ∈R Q s hdr s.t. assignment constraints on x hdpr ,y hdr ,u hd [ BDD-based cuts or LBBD cuts] I Subproblem: ¯ Q s hdr = min p∈P c cancel p ˆ x hdpr - z s hdpr s.t. assignment & duration constraints on z s hdpr Logic-Based Benders Decomposition (LBBD) cut: Q s hdr ¯ Q s hdr - pˆ P hdr c cancel p 1 - x hdpr Binary Decision Diagram (BDD) based cut: Q s hdr ¯ π r + p∈P c p - max a∈A s hdpr 1 ¯ ξ a x hdpr * ¯ ξ a π r : dual optimal solutions of subproblem’s BDD reformulation Classical Benders cuts from subproblem’s linear programming (LP) relaxation + Fast for large instances Does not perform well in small instances Three-stage Decomposition I LBBD master problem: min f (u, y, x, w)+ h∈H d∈D Q hd s.t. assignment constraints on x hdp ,y hd ,u hd [ LBBD cuts] I LBBD subproblem (2SIP): ¯ Q hd = min 1 |S| s∈S r ∈R h p∈P c cancel p x pr - z s pr s.t. assignment & duration constraints on x pr ,z s pr LBBD cut: y hd ˆ y hd =>Q hd ¯ Q hd - pˆ P hd ¯ Q hd 1 - x hdp Classical Benders cuts from subproblem LP relaxation Further decompose the LBBD subproblem with the BDD-based method + Fast for small instances Slow for large instances, due to difficult LBBD subproblems Algorithmic Enhancements Adapted FFD heuristic Adapt FFD method to get an initial solution Derive additional constraints from this solution Subproblem relaxation For the 2-stage decomposition: Q s hdr min p∈P c cancel p T s p p∈P T s p x hdpr - B hd Similar for 3-stage decomposition "Early stop" scheme Avoid solving difficult subproblems Stop solving the subproblem if globalUB < incumbentOptCost+ ¯ Q LB hd EXPERIMENTAL RESULTS Vs. Commercial Solver instance Time / Gap (pp-h-d-r) MIP 2-BDD 2-LBBD 3-LBBD 10-2-3-3 4% 3% 3% 17 (min) 25-2-3-3 13% 9% 12% 9% 10-3-5-5 6% 5% 6% 21 (min) 25-3-5-5 60% 17% 20% - 50-3-5-5 61% 21% 21% - 75-3-5-5 - 32% 21% - Time limit: 30 minutes MIP: CPLEX 12.8 - : gap > 100% Decomposition out- performs MIP For 2-stage decom- position, BDD-based cuts have a small advantage over LBBD cuts 3-stage decomposi- tion is very fast in small instances Vs. Deterministic Model instance Cancel. Rate (%) Utiliz. Rate (%) (pp-h-d-r) Deter. Sto. Deter. Sto. 10-3-5-5 16 1 3 5 25-3-5-5 19 2 9 11 50-3-5-5 16 2 18 23 75-3-5-5 15 5 29 33 Stochastic model decreases cancellation and improves utilization Acknowledgments This research is supported by University Health Network and Natural Sciences and Engineering Research Council of Canada. [email protected]

Upload: others

Post on 19-Aug-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Logic-based Benders Decomposition and Binary Decision ... · s.t. assignment constraints on xhdpr,yhdr,uhd [BDD-based cutsorLBBD cuts] ISubproblem: Q¯s hdr= min X p∈P ccancel p

Logic-based Benders Decomposition and Binary Decision Diagram BasedApproaches for Stochastic Distributed Operating Room Scheduling

Cheng Guo Merve Bodur Dionne Aleman David UrbachMODEL SETUP

The SDORS Problem

SDORS: Stochastic Distributed Operating Room Scheduling

•Hospitals share operating rooms (ORs) and waiting lists• Schedule patients to hospitals and ORs• Surgery durations are stochastic•Cancel a surgery if it is expected to finish after working hours

GoalsXRobust scheduleXDecrease costsX Shorten waiting timeXReduce cancellation

Decisionsuhd: Open hospitalyhdr: Open roomxhdpr: Assign patientwp: Postpone patientzhdpr: Accept patient

Model NoveltyFModeling the dis-

tributed OR schedul-ing problem in astochastic setting

The Model2nd stage

Cancel patients ifthere is overtime

1st stageSchedule patients to(hospital, room, day)

observedurations

I 2-stage stochastic integer program (2SIP):min f (u, y, x, w) + ET[Q(x,y,T)]s.t.

∑h∈H

∑d∈D

∑r∈Rh

xhdpr = 1 ∀p ∈ P ′∑h∈H

∑d∈D

∑r∈Rh

xhdpr + wp = 1 ∀p ∈ P \ P ′

yhdr ≤ uhd ∀h ∈ H; d ∈ D; r ∈ Rhxhdpr ≤ yhdr ∀h ∈ H; d ∈ D; p ∈ P ; r ∈ Rhyhdr ≤ yhd,r−1 ∀h ∈ H; d ∈ D; r ∈ Rh \ {1}uhd, yhdr, xhdpr, wp ∈ {0, 1} ∀h ∈ H; d ∈ D; p ∈ P ; r ∈ Rh

IThe cancellation cost Q(x,y,T):min

∑h∈H

∑d∈D

∑r∈Rh

∑p∈P

ccancelp (xhdp − zhdpr)

s.t.∑p∈P

Tpzhdpr ≤ Bhdyhdr ∀h ∈ H; d ∈ D; r ∈ Rh

zhdpr ≤ xhdpr ∀h ∈ H; d ∈ D; p ∈ P ; r ∈ Rhzhdpr ∈ {0, 1} ∀h ∈ H; d ∈ D; p ∈ P ; r ∈ Rh

SOLUTION METHODSSample Average Approximation (SAA)•Approximate 2SIP with SAA•T sp : simulated surgery duration in scenario s• zshdpr: acceptance decision in scenario s

Two Decomposition SchemesMasterProblem

Subproblem

master

solutio

ns cuttingplanes

BDDmasterproblem

BDDsubproblem

LBBDmasterproblem

LBBDsubproblem

master

solutio

n

BDD-based

cuts

master

solutio

n LBBDcuts

Algorithmic ContributionsFLBBD optimality cuts for 2SIPFAdapted first fit decreasing (FFD) algorithmFProblem-specific subproblem relaxationF "Early stop" scheme

Two-stage DecompositionIMaster problem:

min f (u, y, x, w) + 1|S|

∑s∈S

∑h∈H

∑d∈D

∑r∈R

Qshdr

s.t. assignment constraints on xhdpr, yhdr, uhd[BDD-based cuts or LBBD cuts]

I Subproblem:Qshdr = min

∑p∈P

ccancelp

xhdpr − zshdpr

s.t. assignment & duration constraints on zshdpr•Logic-Based Benders Decomposition (LBBD) cut:

Qshdr ≥ Qshdr −∑

p∈Phdrccancelp

1− xhdpr

•Binary Decision Diagram (BDD) based cut:Qshdr ≥ πr +

∑p∈P

cp − maxa∈Ashdpr1

ξa

xhdpr

* ξa, πr: dual optimal solutions of subproblem’s BDD reformulation

•Classical Benders cuts from subproblem’s linearprogramming (LP) relaxation

+Fast for large instances–Does not perform well in small instances

Three-stage DecompositionILBBD master problem:

min f (u, y, x, w) +∑h∈H

∑d∈D

Qhd

s.t. assignment constraints on xhdp, yhd, uhd[LBBD cuts]

ILBBD subproblem (2SIP):Qhd = min 1

|S|∑s∈S

∑r∈Rh

∑p∈P

ccancelp

xpr − zspr

s.t. assignment & duration constraints on xpr, zspr•LBBD cut:

yhd ≤ yhd => Qhd ≥ Qhd −∑

p∈PhdQhd

1− xhdp

•Classical Benders cuts from subproblem LPrelaxation•Further decompose the LBBD subproblem withthe BDD-based method

+Fast for small instances– Slow for large instances, due to difficult LBBDsubproblems

Algorithmic Enhancements�Adapted FFD heuristic–Adapt FFD method to get an initialsolution

–Derive additional constraints fromthis solution

� Subproblem relaxation–For the 2-stage decomposition:

Qshdr ≥ minp∈P

ccancelp

T sp

∑p∈P

T spxhdpr −Bhd

– Similar for 3-stage decomposition� "Early stop" scheme–Avoid solving difficult subproblems– Stop solving the subproblem if

globalUB < incumbentOptCost+QLBhd

EXPERIMENTAL RESULTSVs. Commercial Solver

instance Time / Gap(pp-h-d-r) MIP 2-BDD 2-LBBD 3-LBBD10-2-3-3 4% 3% 3% 17 (min)25-2-3-3 13% 9% 12% 9%10-3-5-5 6% 5% 6% 21 (min)25-3-5-5 60% 17% 20% -50-3-5-5 61% 21% 21% -75-3-5-5 - 32% 21% -

•Time limit: 30 minutes•MIP: CPLEX 12.8• - : gap > 100%

⇒Decomposition out-performs MIP

⇒For 2-stage decom-position, BDD-basedcuts have a smalladvantage overLBBD cuts

⇒ 3-stage decomposi-tion is very fast insmall instances

Vs. Deterministic Modelinstance Cancel. Rate (%) Utiliz. Rate (%)(pp-h-d-r) Deter. Sto. Deter. Sto.10-3-5-5 16 1 3 525-3-5-5 19 2 9 1150-3-5-5 16 2 18 2375-3-5-5 15 5 29 33

⇒ Stochasticmodel decreasescancellation andimproves utilization

AcknowledgmentsThis research is supported by University HealthNetwork and Natural Sciences and EngineeringResearch Council of Canada.

[email protected]