logic and philosophy of time

252
Logic and Philosophy of Time emes from Prior Per Hasle, Patrick Blackburn, and Peter Øhrstrøm (Eds.)

Upload: others

Post on 12-Mar-2022

14 views

Category:

Documents


5 download

TRANSCRIPT

Logic and Philosophy of TimeThemes from Prior

Per Hasle, Patrick Blackburn, and Peter Øhrstrøm (Eds.)

Logic and Philos

ophy

of

Logic and Philosophy of TimeA.N. Prior (1914-69) in the course of the 1950s and 1960s founded a new and revolutionary paradigm in philosophy and logic. Its most central feature is the preoccupation with time and the development of the logic of time. However, this was inseparably interwoven with fundamental questions about human freedom, ethics, and existence. This remarkable integration of themes also embodies an original and in fact revolutionary conception of logic. The book series, Logic and Philosophy of Time, is dedicated to a deep investigation and also the further development of Prior’s paradigm.

The series includes:1 - Logic and Philosophy of Time: Themes from Prior

Series editorsPer Hasle, Patrick Blackburn & Peter Øhrstrøm

Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques

F

PH

P

♦ ! ♦

Pp ⊃ !Pp!(p ⊃ q) ⊃ ( ♦q ⊃ ♦p)p0 ∧ Fp0 ∧ ♦p0 p0

! ⊃∧ ⊃

p0 ∧ Fp0

Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques

♦p0P Fp0!P Fp0♦ P Fp0 !

!(p0 ⊃ P Fp0) ⊃ ( ♦ P Fp0 ⊃ ♦p0)♦p0

Elton Marques
Elton Marques
Elton Marques

(Pp ∧ Pq) ⊃ (P (p ∧ q) ∨ P (p ∧ Pq) ∨ P (Pp ∧ q))

Elton Marques
Elton Marques
Elton Marques

p q

K

KH G P F

⊃ ⊃ ⊃⊃ ⊃ ⊃⊃⊃

⊢ p ⊢ Gp⊢ p ⊢ Hp

K

K

FPp ⊃ (Pp ∨ p ∨ Fp)

KPPp ⊃ Pp

K

FFp⊃Fp

< <

Elton Marques
Elton Marques
Elton Marques
Elton Marques

π × Φ Φ

(t, q)

π(t, q) 0 1

Fϕϕ

t Fϕ t′ t < t′ t′ ϕ

t, c q q π(t, q) = 1t, c ϕ t, c ϕt, c Fϕ t′∈c t < t′ t′, c ϕt, c Pϕ t′∈c t′ < t t′, c ϕ

t t

t, c ♦ϕ c′ t∈c′ t, c′ ϕ

♦Fq!Fq Fq ! ♦

Elton Marques
Elton Marques
Elton Marques

Fp t1c1 F p t2 c2

F G

Elton Marques

Fpt1

t2

F = !F

HFp p

Elton Marques

∀p : (p ∨ Pp∨ Fp) ⊃ FPp

pPFp FPp

Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques

∀t : (t < t)

Elton Marques
Elton Marques
Elton Marques
Elton Marques

P Q ∀i(Pi→Qi) iP i p i

q p

P Q∀i(Pi→Qi) i P ip i

x y

x yX Y

x = 1 1 − x = 0x

XX

xX

1−x Y

X Yxy

X Y x(1−y)

xy = yx

XY

YX

X YX Y

Y X

19P

Q P Q

a −→ b a b ab −→

∀x(fx→gx)

fx∀x(fx→gx)

xF G

xx

x

P Q PQ P Q

PQ

P Q

pp i P i

P i Qi

i P Q

i P i Qi

∀i(Pi→Qi)P Q

−∃i(Pi − Qi)

xX

1− x x = 1X x = 0

xy = 0 X YX Y

X Y

XY

X Y

X Y XY

XY

X X

1

a

n

a

a a n

an

a

a

U a b cU

n

UU

a n

a n

na

n a

⊃ ! n δ p

n

nn n

n n

![δ[(p⊃0)⊃(q⊃r)]⊃δ[(r⊃p)⊃(q⊃p)]]!p⊃[δ(p⊃q)⊃δq]δ(0)⊃[δ(0⊃0)⊃δ(!p)]np⊃!(n⊃p)!n⊃p

nn

p⊃!(n⊃p)

n !n⊃p n!n

!n n

n

(1, 0)

δ ε ζ

δ

δ n n

(⊃,!, 0, n, δ, p)

⊃ n n !n n

n n nn n n

n n n

n

n

n n⊃0

U

a b c

a

UU

Uab

a bb

a

U Uab ba

U Uab ab

Ul U

Ut1p1p1 t1 p1 t1

U U

n

n

n

nW Q Wp p

Qp p

Wp = p ∧ ∀q [(q ⊃ !(p ⊃ q)]

Qp = ♦p ∧ ∀q [!(p ⊃ q) ∨ !(p ⊃ ¬q)]

a n

U

W Q

a n

a na

na n

a na U

U

an U

a b c

a b cUUab

UU

a b ca b c

U

na

aa b

c

(C,Γ, 0, n, δ, p)n

[p⊃!(n⊃p)]

10

U

nn

Hpp

a Un

na U

n a na n UT

n

a bc

n

Hp δ!(n⊃p)⊃δHp

n

a n

U

a

Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques

p (p∨q)∼∼p (p∧∼∼p)

ab R

aRb bRa

p (p∨q)

Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques

∨∨

∨ ⊃

aRb a b R ab aRb

R

a b

Elton Marques
Elton Marques
Elton Marques
Elton Marques

Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques

Fp p

Pp p

Hp P p Gp F p

Elton Marques
Elton Marques
Elton Marques

Hp p

Gp p

p⊃PFp

Pp⊃!Pp p⊃PFp !PFp p Fp!(p⊃q)⊃(!p⊃!q) !Fp

l

Elton Marques
Elton Marques
Elton Marques

l

l

l

l l

lp q

p q

(p∧∼q∧Pq) ∨ P (p∧∼q∧Pq) ∨ F (p∧∼q∧Pq)

20

Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques

p t T (t, p)p t

P FPp Fp

p Pp p

Fpp

H ¬P¬ G ¬F¬

!♦ ¬!¬

Pp → !Pp

pp

(p ⇒Diod q ∧ ♦p) → ♦q

q p pq

¬r ∧ ¬Fr ∧ ♦r r

r

⇒Diod

Elton Marques
Elton Marques
Elton Marques
Elton Marques

(p ⇒Diod q) (∀t)(T (t, p) → T (t, q))

!

(p ⇒Diod q) !(p → q)

Elton Marques
Elton Marques

rt0

wt−1

¬r ∧ ¬Fr ∧ ♦r♦rPw w!Pw(∀t)(T (t, r) → T (t,¬Pw))

r ⇒Diod ¬Pw ¬Pw rt T (t, r) t t0

t

♦¬Pw¬!Pw

(p ∧Gp) → PGp!(p → HFp)

¬r ∧ ¬Fr ∧ ♦r♦r¬r ∧G¬rPG¬r!PG¬r!(r → HFr)♦HFr¬!PG¬r

Elton Marques
Elton Marques

w

ww

ww

v1 v2v1 v2v1 w v1

v2 v1v2

w

P ∧→ G f

P ∧ → G

∧ ∨ ∧t

∧ ∨ ∧

! "g,w,t,t′

ϕ g w tt′

! ϕ"g,w,t,t′ !ϕ"g,w,t,t

! ϕ"g,w,t,t′ !ϕ"g,w,t′,t′

! "g,w,t,t′

′ ′

′ ′

ϕ ′ ′ g wt t′ t′′

! ϕ"g,w,t,t′,t′′ !ϕ"g,w,t,t,t′′

! ϕ"g,w,t,t′,t′′ !ϕ"g,w,t′,t′,t′′

! ϕ"g,w,t,t′,t′′ !ϕ"g,w,t,t′,t

! ϕ"g,w,t,t′,t′′ !ϕ"g,w,t′′,t′,t′′

ϕϕ w0

t0 !ϕ"g,w0 ,t0 ,t0 gψ ψ

w0 t0!ψ"g,w0 ,t0 ,t0 ,t0 g

w0 t0

t t0 < t t′

t′ < t0 d d w0 td w0 t′

t t′

t t′

∃ ∧

t t < t0 t′

t0 < t′ d d w0

t d w0 t′

tt′ t t′

′ ′

∃ ∧

′ ′

1 2 1 2

+

+

+

ϕ + g w tt′

+ ! + ϕ"g,w,t,t′ t′′ t′ < t′′

!ϕ"g,w,t,t′′

+

+ ∃ ∧

+

t t0 < t t′

t0 < t d d w0 t0d w0 t d w0 t′

∀ → ∨

s s

x

x

∀ → →x x

w

Elton Marques

wi

∧¬

wi

∧¬ ∧wi

wi ∧¬wi ∧

wi

Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques

¬

∧¬ ∧

∧¬ ∧wi wi

∧¬ ∧

∧ ∧¬

∧ wi

∧¬

Elton Marques

wi wi

wi

∧ ∧¬

∧ ¬ ¬

∧ ¬ ∧ ¬ ¬ →

→∧¬ ∧ → →

1 2

Elton Marques
Elton Marques

AB A!→B

A !→B w

w A(A ∧ B) w (A ∧ ¬B)

Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques

h h′

h t h′

h′ t h h′

h h′

h′ t h′ t

❏❏❏❏❏

h′ h

t

h h′

! !!h′ t

tt

Elton Marques
Elton Marques
Elton Marques
Elton Marques

hO1

h1 O2 h2 O1 O2

h1 O1

h2 O2

h1h h1

O1 h2h h2

O1

S O2

h2h1 h !!

!

S

O2

O1

!!✁✁✁✁✁✁

❆❆❆❆❆❆❆❆❆❆

h h2

h h1

Elton Marques
Elton Marques

O1 O2

h2h1 O2

O1

O1

O1

O2

h h′

t h′ tn

A !→B B An A B

Elton Marques

h1 O1 h2O2

S h2

T ( ≼ d) M≼

M M≺ ,≽, ≻

≼ m,m′

m′′

m′ ! m′′ m′′ ⊀ m′ m m ≺ m′ m ≺ m′′

m′ ≺ m m′′ ≺ m m′ ≼ m′′ m′′ ≺ m′

tth t ∩ h

th ≺ t′h th′ # t′h′ t t′

th ≺ t′h h

d (t, t′)n t t′

t′ = t′′ th ≺ t′h, t′′h′ d(t, t′) =

d(t, t′′)LT

Atom p, q, p1, . . .

,

LT

LT

M = (T , I) T IAtom × M {0, 1} I

{th, h} t/h

t/h # p I(p, th) = 1t/h # A ∃t′(t′h ≺ th t′/h # A)t/h # A ∃t′(th ≺ t′h t′/h # A)

LT !→ LTC

LC

LTC

A !→B t/h t

t/h # A !→Bt/h′ A h′

(A ∧ B) t/h′ t/h(A ∧ ¬B) t/h′′

t/h t/h′

h h′

t

h′ h h′′

h′ ∩ h ⊇ h′′ ∩ h

A t/h′ t/hA t/h′′ h′ h h′′

h h1 h2

/h

( o1 ∨ o2) !→ s

A t/h (A, t/h)A t/h

A t/h MO = (T , I)(A, t/h)

(A, t/h) ⊆ IM′

O = (T , I ′) (A, t/h) ⊆ I ′

M′O, t/h # A

f (A, t/h) ⊃ fM′

O = (T , I ′)I ′ ⊃ f M′

O, t/h $ A

(p, th)t h f A t/h

MO = (T , I) M′O = (T , I ′) f

A t/h M′O A t/h

" (A, t/h)A

A

(p ∨ ¬q) t/h{(p, th) 5→ 1} {(q, th) 5→ 0} (p ∨ ¬q) t/h

(A, t/h) tp t/h I(p, t′h) = 1 t′h ≺ th

{(p, t′h) → 1} p t/h t

(p ∧ q) t/h t/h{(p, th) 5→ 1, (q, t′h) 5→ 1}

t′h ≺ th

{(o1, h1) 5→ 1} O1

{(o2, h2) 5→ 1} O2

/h1 /h2

/h1/h2

(A, t/h′, h) t/h′ Ah

t∗ A t/h′

h h′ ′(A, t/h′, h) = t∗′(A, t/h′, h)

′′(A, t/h′, h)

h h′

h′

h′ h′ t/h′ A

′(A, t/h′, h) = d(h h′, ′(A, t/h′, h))

′(A, t/h′, h) ′(A, t/h′, h)A t/h′

h h′

′ A t/h′ t/hA t/h′′ ′(A, t/h′, h) ≤ ′(A, t/h′′, h)

pp!→B

th t′hh

p t′ t′

t′ t/h′

p th′ ′( p, t/h′, h)h′ h ′

( p, t/h′, h) t/h′

′′

A t/h MO

f ∈ I f At/h MO

A t/h MO

" (A, t/h) MO " (A, t/h) ∩ I ̸= ∅" (A, t/h) ∩ I A t/h

AA

p !→ Bt/h

{(t′h, p) 5→ 1 : t′h ≺ th} ′

g A t/h f ⊆ gA t/h A t/h

g − f

f h′ f ht a ∈ f

th′ a th

h A t/h′ fA t/h′ f h

A t/h

h t/h′

A A t/hA

t/h A t/h hA t/h′ h′

h A

t/h A t/h At/h′ h A t/h′

ht/h′ A (A, t/h′, h)

h A t/h′

( p, t/h′, h)I p

t ( p, t/h′, h)

′ ′

(A, t/h′, h) = d(h h′, (A, t/h′, h))

A t/h′ t/hA t/h′′ (A, t/h′, h) ≤ (A, t/h′′, h)

A t/h′

h′

′ A t/h h′

h h′ (A, t/h′, h) = ′(A, t/h′, h) At/h h A

t/h′ A t/h∅ (A, t/h′) h

A t/h′′

′ h′ h h′

h′

( p∧ q) t/h qh p t′′/h

t/h( p ∧ q) t/h′

{(p, t′′h′) 5→ 1, (q, t′h′) 5→ 1}

❚❚

❚❚

❚❚

❚❚

❚❚

❚h′ h

t

t′

t′′

h h1

! !!

!

!!!

q

p p

p q

t′′ ′(( p ∧ q), t/h′, h) = t′′ h( p∧ q) t/h′ {(q, t′h′) 5→ 1} h

( p∧ q) t/h(( p ∧ q), t/h′, h) = t′ (( p ∧ q), t/h′, h) ̸=

′(( p ∧ q), t/h′, h)

t/h t/h′

h h′

t/h′ t/h

th

18

18

∀x∀y∀P∀Q(x = y → (P (x) ↔ Q(x)))

t1

t2

t1

t1

t1

t2 t3

t1 t2

tn3

tn

tn

3

E3 E3(o, b, t1)E3(o, s, t2)

3

3

tn3

tn3

δt

t1t2

a1 a2

a1 a2

tn3

t1 φ t2 ¬φφ

R

R

R

R

R

12 ,

34 ,

78 ,

1516 , . . .

12

12

34

R

internalprocesses

action

persistence

impingements

reaction

resilience

external processes (activity)

stasis/stability

dissolution/destruction

Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques

(i)(ii)

x x

x

Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques

Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques
Elton Marques

P

p | ¬ϕ | (ϕ ∧ ϕ) | [now]ϕ | !ϕ | $ ϕ | ϕ p ∈ P

Elton Marques
Elton Marques
Elton Marques

!ϕ ϕ$ϕ ϕ

t tt

ϕ→ !ϕϕ→ $ϕ

!ϕ→ ϕϕ→ ! ϕ

ϕ→ $ ϕϕ→ !$ ϕ

t0

t0 ϕ ¬!ϕt t ¬ϕt t ¬ ϕ

t0 ϕ ¬! ϕ

Elton Marques
Elton Marques

M0 = ⟨W,T, t0,K, V ⟩

WTK ⊆ W ×W WV : P → ℘(W × T )

K

K(w,w)K(w, v) ⇒ K[v] ⊆ K[w] K[w] = {v | K(w, v)}

M, (w, t) |= p ⇔ (w, t) ∈ V (p)M, (w, t) |= ¬ϕ⇔ M, (w, t) ̸|= ϕM, (w, t) |= ϕ ∧ ψ ⇔ M, (w, t) |= ϕ and M, (w, t) |= ψM, (w, t) |= [now]ϕ⇔ M, (w, t) |= ϕM, (w, t) |= !ϕ⇔ ∀t′(t′ ∈ T ⇒ M, (w, t′) |= ϕ)M, (w, t) |= $ϕ⇔ ∀t′(t′ ∈ T ⇒ M, (w, t′) |= ϕ)M, (w, t) |= ϕ⇔ ∀v(K(w, v) ⇒ M, (v, t) |= ϕ)

[now]ϕ ϕ

M, (w, t) |= !ϕ⇔ M, (w, t) |= $ϕ

ϕ→ ϕϕ→ ϕ

[now]ϕ,!ϕ,$ϕ

[now]ϕ↔ ϕ |=([now]ϕ↔ ϕ) |=[now]ϕ↔ ϕ |=

[now]

!ϕ↔ $ϕ |=!ϕ↔ $ ϕ |=

! ϕ↔ $ ϕ |=

!φ→ φ

!φ→ ! φ!φ↔ ! φ!φ↔ $ φ

Elton Marques

M0 = ⟨W,T, t0,K, V ⟩

WT t0 ∈ TK ⊆ W ×W WV : P → ℘(W × T )

M0 t0K

K(w,w)K(w, v) ⇒ K[v] ⊆ K[w] K[w] = {v | K(w, v)}

M0, (w, t) |= p ⇔ (w, t) ∈ V (p)M0, (w, t) |= ¬ϕ⇔ M0, (w, t) ̸|= ϕM0, (w, t) |= ϕ ∧ ψ ⇔ M0, (w, t) |= ϕ and M0, (w, t) |= ψM0, (w, t) |= [now]ϕ⇔ M0, (w, t0) |= ϕM0, (w, t) |= ϕ⇔ ∀v(K(w, v) ⇒ M0, (v, t) |= ϕ)M0, (w, t) |= !ϕ⇔ ∀t′(t′ ∈ T ⇒ M0, (w, t′) |= ϕ)M0, (w, t) |= $ϕ⇔ ∀t′(t′ ∈ T ⇒ Mt′ , (w, t) |= ϕ)

Elton Marques
Elton Marques

[now]ϕϕ

M0, (w, t) |= [now]ϕ⇔ M0, (w, t) |= ![now]ϕ

[now]ϕ

M0, (w, t) |= [now]ϕ ̸⇔ M0, (w, t) |= $[now]ϕ

ϕ t0 t1[now]ϕ t0 $[now]ϕ

ϕ→ ϕϕ→ ϕ

[now]ϕ

[now][now]([now]ϕ↔ ϕ)

[now]ϕ,!ϕ,$ϕ

[now]ϕ↔ ![now]ϕ[now]ϕ ̸↔ $[now]ϕ

!ϕ → $ ϕ !ϕ → $ϕ[now]ϕ → ![now]ϕ

[now]ϕ→ $[now]ϕ

tt′

t tt′

t′ t t′

Elton Marques
Elton Marques

[now]ϕ

[now]ϕ

Elton Marques
Elton Marques
Elton Marques
Elton Marques

ϵ

P I

p | ¬ϕ | (ϕ ∧ ϕ) | [i]ϕ | !ϕ | $ ϕ | ϕ p ∈ P

[now]ϕϕ

[i]ϕ ϕ i

now

i

Mϵ = ⟨W,T, τ, ϵ,K, V ⟩

WTτ : I → TϵK ⊆ W ×W WV : P → ℘(W × T )

Mϵ ϵ Kτ I

τi ∈ T

Elton Marques
Elton Marques

Mϵ, (w, t) |= p ⇔ (w, t) ∈ V (p)

Mϵ, (w, t) |= ¬ϕ⇔ Mϵ, (w, t) ̸|= ϕ

Mϵ, (w, t) |= ϕ ∧ ψ ⇔ Mϵ, (w, t) |= ϕ and Mϵ, (w, t) |= ψ

Mϵ, (w, t) |= [i]ϕ⇔ Mϵ, (w, τi) |= ϕ

Mϵ, (w, t) |= !ϕ⇔ ∀t′(t′ ∈ T ⇒ Mϵ, (w, t′) |= ϕ)

Mϵ, (w, t) |= $ϕ⇔ ∀t′(t′ ∈ T ⇒ Mϵ, (w, t′) |= ϕ)

Mϵ, (w, t) |= ϕ⇔ ∀v(Kϵ(w, v) ⇒ Mϵ(v, t) |= ϕ)

ti

[i]ϕϕ τi

ϕ→ ϕϕ→ ϕ

[i]ϕ,!ϕ,$ϕ

[i]ϕ↔ ![i]ϕ[i]ϕ↔ $[i]ϕ

⟨W,T,K⟩

Mϵ, (w, t) |= [i]ϕ⇔ Mτi , (w, t) |= [now]ϕ

t ϕt ϕ

Elton Marques

!(T ′P ′→P )(T ′P ′→!P )

t t

t t

t

t t

tt

t t

t

t

tt

t

X

Elton Marques

X

This book is the first volume in the series, Logic and Philosophy of Time. Its various contributions take their inspiration from A.N. Prior’s paradigm for the study of time, hence the subtitle “Themes from Prior”. The volume contains important research on historical as well as modern systematic challenges related to Prior’s work and thought.