load pull overview x-parameters with active and hybrid ... · load pull overview x-parameters with...

97
1 Load Pull Overview X-Parameters with Active and Hybrid Active Load Pull Gary Simpson, CTO Maury Microwave EuMW 2012 www.maurymw.com

Upload: vuongdien

Post on 16-Aug-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

1

Load Pull Overview

X-Parameters with

Active and Hybrid Active

Load Pull Gary Simpson, CTO

Maury Microwave

EuMW 2012

www.maurymw.com

2

Load Pull Overview

General

Load Pull Overview

3

Load Pull Overview

1. Introduction to Maury Microwave

2. Basics and Benefits of Load Pull

3. Pulsed Measurements

4. Harmonic Load Pull

5. Active Tuning

6. Load Pull with X-Parameters

7. Ultra-Fast Noise Parameters

8. Summary

Outline

4

Load Pull Overview

Maury Microwave Corporation

Headquarters

2900 Inland Empire Blvd, Ontario California, USA

5

Load Pull Overview

• 1957 Incorporated in California

• Experts in Precision Machining for Microwave Components

• 1980’s Aligned with HP/Agilent to provide ALL 8510 Cal Kits

• 1987 World’s First Commercial Automated Load Pull and Noise Parameter System

• 2004 Launched LSNA (Large Signal Network Analyzer)

• 2008 Load Pull with X-Params

• 2008 Ultra-Fast Noise Params*

*Patent Pending

6

Load Pull Overview

AS9100 & ISO 9001

CE Conformance

ANSI/NCSL Z540-1

MIL-STD-45662A

Traceability to NIST (National Institute of Standards & Technology)

Certification, Conformance, Accountability

7

Load Pull Overview

Space Flight Applications • One Piece Flange and Body

• No Braze Joints

• No Dielectric Versions For

High Radiation Requirements

• Optimized Tuning

8

Load Pull Overview

Measurement Science Knowledge • At Maury we continue to

value credibility, honesty,

integrity…’

• Daily Interaction with

Industry Experts in Leading

Companies

– Noise Parameter Testing

– Power Load Pull/Source Pull

– Nonlinear/Large Signal

– S-Parameters

– X-Parameters

9

Load Pull Overview

Experts In

Full System

Integration

Solutions • Experienced Technical

Team

– Waveguide & Coaxial

– Turnkey & Customized

Solutions

10

Load Pull Overview

Maury Product Overview

Device Characterization

Components

11

Load Pull Overview

Market Leader Device Characterization

Emphasis in Automated

Impedance Control

• USB Controlled Tuners

• Software - Automated Measurements

• Load Pull & Source Pull

• Large-Signal / Nonlinear

Measurements

• Noise Parameter Measurements

• Agilent Global Channel Partner*

12

Load Pull Overview

What is a Tuner?

A device to control impedance

Reflection Control Method:

• Magnitude – move probe up / down

• Phase – move probe horizontally

Mismatch probe in

a 50-Ohm slab line USB Interface

Side View

Probe

Probe

End View

13

Load Pull Overview

14

Load Pull Overview

Automated

Mechanical Tuners

0.25 – 110 GHz

Coaxial and Waveguide

Repeatability > 40 or 50 dB

USB Control

ATS software or DLL

Reliable and proven technology

More than 20 years in Tuner Technology

15

Load Pull Overview

1. Introduction to Maury Microwave

2. Basics and Benefits of Load Pull

3. Pulsed Measurements

4. Harmonic Load Pull

5. Active Tuning

6. Load Pull with X-Parameters

7. Ultra-Fast Noise Parameters

8. Summary

Outline

16

Load Pull Overview

What Is Load Pull?

Measurement vs.

Impedance

17

Load Pull Overview

What is Load Pull

TUNER

TUNER

source Load

Stimulus and

Measurement

DUT

18

Load Pull Overview

Why Load Pull? • Characterize Non-Linear Devices

– Small Signal S-Parameters Not Sufficient

– Must Measure with Actual Operating Conditions

– Most Power Devices are Far from 50 Ohms

• Stability / Ruggedness Test – Linear or Non-Linear Device

– Test at High Reflection, All Phases

• Characterize Noise Parameters – Measure vs. Source Impedance

– Load Match Optional - to Reduce Uncertainty

19

Load Pull Overview

Benefits of Load Pull

• See impedance matching trade-offs

– Allows design to specs

– Faster time to market, Eliminate cut-and-try

• Develop High-Efficiency Power Amps

• Test Stability under any mismatch

– S-parameters not accurate for large-signal Osc.

• Test Ruggedness – Improve Reliability

– Avoid amplifier degradation or failure

20

Load Pull Overview

Basic Load Pull Setup

Power Measurements

Measure Pout, Gt, Bias, Eff, ACPr

vs. Gamma (load or source)

21

Load Pull Overview

Load Pull with AM/PM Power Measurements

Measure Gamma_in, AM/PM, Gp, True PAE,

plus basic parameters vs. Gamma

22

Load Pull Overview

Load Pull with Vector Receiver

Measure a, b Waves

Derive All Other Parameters

23

Load Pull Overview

Load Pull Stimulus • Measure vs. Gamma (load or source)

• Measure vs. Power

• Measure vs. Bias

• Measure vs. Frequency

• Sweep Plan: Measure vs. All Variables

– Result is Multi-Dimensional Data Covering

Complete Region of Operation

24

Load Pull Overview

Typical Measured Parameters

• Pout, Gain, Bias, Efficiency

• Linearity

– ACPr, EVM, AM/PM, Intermodulation ...

• Spurious Signals , in, Waveforms...

• ATS Software Version 5

– 76 Built-in Parameters

– 25 User Defined Parameters

25

Load Pull Overview

Displays Constant

Parameter Contours

Load Pull Contour Display

26

Load Pull Overview

On-Wafer Load Pull

27

Load Pull Overview

1. Introduction to Maury Microwave

2. Basics and Benefits of Load Pull

3. Pulsed Measurements

4. Harmonic Load Pull

5. Active Tuning

6. Load Pull with X-Parameters

7. Ultra-Fast Noise Parameters

8. Summary

Outline

28

Load Pull Overview

Pulsed IV measurements

Several quiescent bias point

Short pulse : Quasi-isothermal conditions

Low duty cycle : Constant mean temperature

Quiescent bias point : Thermal conditions fixed

29

Load Pull Overview

Pulsed S-Parameters

30

Load Pull Overview

Pulsed IV & S parameter measurements

Synchronization between Pulse IV and Measurements

31

Load Pull Overview

Commercial compact FET models

• Mostly used models for GaN HEMTs

FET models

Number of

parameters

Electro-

thermal effect

Trapping

Effects

Original Device

Context

Curtice3 [1] 59 No No GaAs FET

CFET [2] 53 Yes No HEMT

EEHEMT1 [3] 71 No No HEMT

Angelov [4] 80 Yes No HEMT/MESFET

AMCAD HEMT1 [5]

65 Yes Yes GaN HEMT

• AMCAD GaN HEMT1 is the only model here with a complete extraction flow

based on pulsed IV/RF measurements

32

Load Pull Overview

Pulsed Bias/RF Load Pull Power Measurements

TUNER Coupler

Power Sensor

Power Sensor

WA Attenuators

Coupler

Spectrum

Analyzer

Power Meter

Signal Generator

TUNER

Pulsed System

33

Load Pull Overview

1. Introduction to Maury Microwave

2. Basics and Benefits of Load Pull

3. Pulsed Measurements

4. Harmonic Load Pull

5. Active Tuning

6. Load Pull with X-Parameters

7. Ultra-Fast Noise Parameters

8. Summary

Outline

34

Load Pull Overview

Harmonic Load Pull

35

Load Pull Overview

Harmonic Load Pull

• Multiplexer Method

• Cascaded Tuner Method

• Active Tuning Method

36

Load Pull Overview

RF

Source

Tuner

F1

DUT

Load

Load

Power

Meter

Tuner

F1

Tuner

F2

Tuner

F3

T

R

I

P

L

E

X

E

R

Separate Fundamental / Harmonics with Filters

Harmonic Load Pull Multiplexer Method

37

Load Pull Overview

Harmonic Load Pull Cascaded Tuner Method

RF

Source

Tuner

F1

Tuner

F1,2,3

Tuner

F1,2,3

Power

Meter

DUT

Select combination of tuner states

to simultaneously set F1, F2, F3

Tuner

F1,2,3

38

Load Pull Overview

1. Introduction to Maury Microwave

2. Basics and Benefits of Load Pull

3. Pulsed Measurements

4. Harmonic Load Pull

5. Active Tuning

6. Load Pull with X-Parameters

7. Ultra-Fast Noise Parameters

8. Summary

Outline

39

Load Pull Overview

Active Tuning

Reflection

DUT

b2

a2

Synthesize Gamma by Injecting

Signal that Acts Like Reflection

40

Load Pull Overview

Hybrid Active Tuning

Reflection

DUT

TUNER

b2

a2

Synthesize Gamma by Adding

Injected Signal to Passive Reflection

High Power Amp NOT Required

41

Load Pull Overview

Hybrid Setup Passive + Active Tuning

• Passive Tuner Reflects Most F1 Power

• Eliminates Very High Power Amp

42

Load Pull Overview

Hybrid tuning setup A

DUT

Passive

Tuner PA

43

Load Pull Overview

DUT

Passive

Tuner

PA

F2

F1

Hybrid tuning setup B

44

Load Pull Overview

DUT

Passive

Tuner

PA

Hybrid tuning setup C

45

Load Pull Overview

DUT

Active tuning with the PNA-X

PNA-X

PA

F1

F2

F3

a1 b1 a2 b2

46

Load Pull Overview

DUT

Active tuning with X-Parameters

PNA-X

PA

F1

Extraction

Signal

a1 b1 a2 b2

PA

Drive

Signal Port 1 Port 3

47

Load Pull Overview

DUT

Hybrid tuning with the PNA-X

PNA-X

PA

F1

F2

F3

Passive

Tuner

Passive

Tuner

a1 b1 a2 b2

48

Load Pull Overview

Easy Upgrade

With Vector Receiver Load Pull

• Add One Source per Harmonic

• With PNA-X, Use Built-in Source

49

Load Pull Overview

Active Load Pull

Benefits:

• Simple (with Vector Receiver)

• Can Achieve Gamma = 1 or greater

• Overcome Fixture Losses

• Higher Gamma at Fundamental

• Independent Harmonic Tuning

• Accuracy based on single VNA cal

• Economical – Add-on to Existing ATS

50

Load Pull Overview

1. Introduction to Maury Microwave

2. Basics and Benefits of Load Pull

3. Pulsed Measurements

4. Harmonic Load Pull

5. Active Tuning

6. Load Pull with X-Parameters

7. Ultra-Fast Noise Parameters

8. Summary

Outline

51

Load Pull Overview

New Paradigm for PA Design

• Instant Large Signal Model

• Major Breakthrough – Dream of Microwave Engineers for years

Solution:

Load Pull + NVNA + ADS

52

Load Pull Overview

Load Pull with LSNA Time Domain - 2004

53

Load Pull Overview

Time Domain Data

• Absolute Mag and Phase of a and b Waves

• At Fundamental and Harmonics

DUT a2

b2

a1

b1

Calibrated Reference Planes

54

Load Pull Overview

NVNA - 2008

• “Nonlinear Vector Network Analyzer

• Superset of LSNA

– “Large Signal Network Analyzer”

– Measures Time Domain

• Measures Time Domain and X-Parameters

– X-Parameters are Unique to Agilent NVNA

– X-Parameters act as Large Signal Model

55

Load Pull Overview

S-Parameters

VNA measures amplitudes and phases of Linear signals.

56

Load Pull Overview

X-Parameters

NVNA measures amplitudes and phases of non-linear signals.

57

Load Pull Overview

X-Parameter Summary

• Non-Linear Generalization of S-Parameters – S-Parameters are special case where distortion = 0

• Data covers one Large Signal Operating Point

• Acts like Large Signal, Non-Linear Model – In Region near Large Signal Operating Point

58

Load Pull Overview

Multiple X-Parameter Measurements

Load Pull measurements

combine to cover region

of interest.

50 Ohm Region

59

Load Pull Overview

Solution:

Load Pull with

X-Parameters

Instant Large Signal Model

60

Load Pull Overview

X-Parameter Component

Instant Large Signal Model

Industry Breakthrough

61

Load Pull Overview

Instant Large Signal Model

• Maury Load Pull

• Agilent NVNA

• Maury SW in PNA-X

• Run a Sweep Plan

• Save X-Parameter File

• Simulate in ADS

62

Load Pull Overview

Load Pull + NVNA Setup

PNA-X NVNA + Maury Software

Maury

Tuner

Maury

Tuner DUT

Bias System

Limited

Power

63

Load Pull Overview

High Power Measurement Setup

PNA-X DUT

Input Amp

Output Amp

Use Front Panel Links to Receivers

64

Load Pull Overview

High Power Calibration Setup

PNA-X Cal Stds

Input Amp

Output Amp

65

Load Pull Overview

• Simple Setup

– Use Front Panel

Links

• Main thing

– Power Budget

– Protect NVNA

– Protect Amps

High Power Load Pull

with X-Parameters

20 Watt Setup

66

Load Pull Overview

Traditional Large Signal Model

• Use Small Signal and DC measurements

– Fit Model Parameters to Data

– Time-Consuming

– Accuracy Limited in Some Regions of Operation

– Technology Dependent

– Model is Extrapolated to Large Signal

• Load Pull is Accuracy Reference

– Load Pull is Measured at Actual Large Signal

67

Load Pull Overview

X-Parameter Large Signal Model

• Based on Large Signal Measurements

of X-Parameter Data

• Technology Independent

• Hides Design Details of Device

• Load Pull Sweep Plan for PA Design

New Paradigm for Modeling and Design

68

Load Pull Overview

Comparison of Models

Traditional • Circuit-based Model

• Time consuming

• Extrapolate to Large Signal

• Can relate to Physics

• Can be Scalable

X-Parameters

• Behavioral Model

• Instant Model

• Large Signal Directly

New Paradigm for PA

Modeling and Design

69

Load Pull Overview

Results – Packaged FET Extremely Accurate Agreement

Pout PAE

Blue – Simulated, Red - Measured

70

Load Pull Overview

Results - Packaged FET – Extremely Accurate

August 21, 2009

Agilent Restricted

70

0.2 0.4 0.6 0.80.0 1.0

0

5

10

15

-5

20

0.10

0.15

0.20

0.25

0.05

0.30

time, nsec

Me

asu

red

Cu

rren

tMe

asu

red

Vo

lta

ge

Sim

ula

ted

Vo

lta

ge S

imu

late

dC

urre

nt

Measured and Simulated Voltage and Current Waveforms

0.2 0.4 0.6 0.80.0 1.0

4

6

8

10

12

14

2

16

0.1

0.2

0.3

0.4

0.0

0.5

time, nsec

Me

asu

red

Cu

rren

tMe

asu

red

Vo

lta

ge

Sim

ula

ted

Vo

lta

ge S

imu

late

dC

urre

nt

Measured and Simulated Voltage and Current Waveforms

0 2 4 6 8 10 12 14 16-2 18

0.10

0.15

0.20

0.25

0.05

0.30

MeasuredVoltage

Me

asu

red

Cu

rre

nt

SimulatedVoltage

Sim

ula

ted

Cu

rre

nt

Measured and Simulated Dynamic Load Line

Measurements X-param Simulation

Pout Contour

(dBm)

WJ FP2189 1W HFET

71

Load Pull Overview

Harmonic Tuning

Simulation with X-Parameters

• Fundamental Load Pull with X-Parameters

• Simulate Harmonic Load Pull in ADS

Benefits:

• Reduce Setup Complexity

• Reduce Measurement Time

• Reduce Data Storage

72

Load Pull Overview

Experiment to Test

Simulation with X-Parameters

DUT

Passive

Tuner

Passive

Tuner

Setup 1 – F1, F2, F3 Load Pull

Passive

Tuner

Passive

Tuner

Cree 10W GaN

DUT

Passive

Tuner

Passive

Tuner

Setup 2 – F1 Load Pull

Cree 10W GaN

With

X-Parameters

73

Load Pull Overview

(0.000 to 0.000)

ga

mm

a[1

]g

am

ma

[2]

ga

mm

a[3

]

Load conditions

6 8 10 12 14 16 184 20

20

30

40

50

60

10

70

Pin_avail

XP

ara

m_

PA

EM

ea

su

red

_P

AE

PAE vs. Available Input Power

Harmonic Load Simulation

0 10 20 30 40 50 60-10 70

0.0

0.5

1.0

1.5

-0.5

2.0

XParam_Vout

XP

ara

m_

Iou

t

Measured_Vout

Me

asu

red

_Io

ut

Dynamic Load Line

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.20.0 2.4

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.20.0 2.4

0

10

20

30

40

50

60

-10

70

0.0

0.5

1.0

1.5

-0.5

2.0

time, nsec

XP

ara

m_

Vo

ut X

Pa

ram

_Io

ut

time, nsec

Me

asu

red

_V

ou

t Me

asu

red

_Io

ut

Voltage and Current Waveforms at output

Red

Simulated

from F1

Load Pull

Blue

Measured

3 Harmonic

Load Pull

Not in X-Parameters Measurement

Excellent Agreement

74

Load Pull Overview

Software Integration ATS Software Version 5

• Installs Inside PNA-X

• Tightly Coupled with PNA-X / NVNA

• Full X-Parameter Support

75

Load Pull Overview

Selecting X-Parameters On/Off

Turn off X-Parameters

for Faster Initial Tuning

Turn on X-Parameters

for Sweep Plan to make

Large Signal Model

76

Load Pull Overview

Sweep Plan Setup

• Sweep Plan

• Up to 7 Variables

• Fully Automated Measurement

• Measure over Full Range of Device Operation

77

Load Pull Overview

Hybrid Active Tuning Setup

Simple User Controls

Passive

F1 Tuner

Active

Harmonic

Tuning

Example Configuration

78

Load Pull Overview

Passive / Active / Hybrid Tuning Same User Controls

79

Load Pull Overview

1. Introduction to Maury Microwave

2. Basics and Benefits of Load Pull

3. Pulsed Measurements

4. Harmonic Load Pull

5. Active Tuning

6. Load Pull with X-Parameters

7. Ultra-Fast Noise Parameters

8. Summary

Outline

80

Load Pull Overview

Noise Parameters Consist of Four Scalar Values

Most Common Set:

• Fmin – Minimum noise figure

• opt – Optimum magnitude

• opt – Optimum phase

• rn - Equivalent noise resistance

F= Fmin + 4rn s - opt

2

1+ opt 2

(1 - s 2 )

81

Load Pull Overview

Benefits of Noise Parameters • See noise figure for any source impedance

• Combine with s-parameters for complete Low

Noise Amplifier (LNA) design

– Accurate prediction of LNA performance

• Maury Ultra-Fast Method (200X+ Faster)*

– Faster time to market

– Simpler

– More Accurate than traditional approach

– Test in production = competitive advantage

*Patent Pending

82

Load Pull Overview

Noise Parameter Measurement

Basic Setup

83

Load Pull Overview

Noise Parameter Measurement Sequence

1. System Cal

2. Receiver Cal

3. DUT Measurement

84

Load Pull Overview

Noise Parameter Measurement

Traditional Method 1. System Cal

• Characterize Tuners Over Entire Chart

• One Frequency at a Time

2. Receiver Cal and Measurement

• One Frequency at a Time

• Allows Ideal Impedance Pattern

85

Load Pull Overview

Noise Parameter Measurement

Traditional Method • Time Consuming

– Can Have Drift Issues

• Use System Cal for Long Time

– To Save Time

– Calibrate Parts Separately

• Based on 1969 Paper

– Used by everyone for Almost 40 years

86

Load Pull Overview

Noise Parameter Measurement

New Method*

Main Idea:

• Characterize One Set Of Tuner States

• Sweep Frequency at Each State

• Take Advantage of Fast Sweep of

Modern Instruments

*Patent Pending

87

Load Pull Overview

Noise Parameter Measurement

New Method

Noise

Source DUT

Maury

Tuner

PNA-X with Noise Option

88

Load Pull Overview

Noise Parameter Measurement

New Method

89

Load Pull Overview

Noise Parameter Results Old Method

73 Frequencies – 30 Hours

90

Load Pull Overview

Same Data, 0.5 GHz Steps

Noise Parameter Results

Old Method

Гopt

Fmin

rn

Assoc Gain

91

Load Pull Overview

Noise Parameter Results New Method*

73 Frequencies – 8 Minutes, 224x Faster

*Patent Pending

92

Load Pull Overview

On-Wafer, 0.8-18 GHz

Fmin= 0.4 dB

Measured Data, No Smoothing Applied

93

Load Pull Overview

DUT Tuner

PNA-X with Noise Option

Noise

Receiver

Module

Noise

Source

Noise Parameter Measurement

50 GHz

94

Load Pull Overview

• Operation 1. Thru Path for S-Parameters

2. Direct Noise Path (Below 26.5 GHz)

3. Down-Convert Path (26.5 to 50 GHz)

• USB Control

Noise Receiver Module

50 GHz

95

Load Pull Overview

On-Wafer, 8-45 GHz

Fmin= 0.4 – 0.7 dB

Measured Data, No Smoothing Applied

96

Load Pull Overview

Maury Ultra-Fast Noise Parameters

• Industry Breakthrough (224x Faster)

• Simpler Setup and Measurement

• Better Accuracy

• Works Well to Very Low Noise

97

Load Pull Overview

Summary

• Load Pull Applications – Nonlinear Devices

– Stability / Ruggedness

– Harmonic Tuning

– Active Tuning

– Pulsed IV

• Load Pull with X-Parameters – New Paradigm for Modeling and Design

– Instant Large Signal Model

– Major Industry Breakthrough

• Ultra-Fast Noise Parameters – 200 Times Faster

– Much Simpler

– More Accurate

– Major Industry Breakthrough