load frequency control in three area power system using fuzzy logic controller

6
@ IJTSRD | Available Online @ www ISSN No: 245 Inte R Load Frequency using M.Tech Sc Yamuna Institute of Engineer ABSTRACT In interconnected power system lo control has been used extensively. This an application of a fuzzy gain schedule and integral (FGPI) controller for l control of a three-area electrical intercon system. The main aim is to design a FG that can ensure good performance. The analysis on dynamic performance of Lo Control (LFC) of three area interconn non-reheat power system by the u Intelligence. The fuzzy rules are develo there is minimum frequency deviation load is changed. The proposed contro frequency deviations effectively as conventional controller. The results has by using MATLAB/Simulink software. Keywords: Load frequency control, Cla Optimal Control, Adaptive control, E systems I. INTRODUCTION In power systems, active and reactive function independently. Therefore, dif blocks are used to control them. T generation control (AGC) is the major solving this problem [1]. Interconnec power systems operate together adjustin flows and frequencies at all areas by study, a three-area power system is control power flows. A power system h characteristic meaning that it can be disturbances and changes at the operatin Given that frequencies at the areas and p w.ijtsrd.com | Volume – 2 | Issue – 4 | May-Jun 56 - 6470 | www.ijtsrd.com | Volum ernational Journal of Trend in Sc Research and Development (IJT International Open Access Journ Control in Three Area Power g Fuzzy Logic Controller Nazia Kosser cholar, Electrical Engineering Department , ering & Technology, Gadhauli, Yamunanagar, H oad frequency study presents ed proportional load-frequency nnected power GPI controller e paper present oad Frequency nected thermal use of Fuzzy oped to ensure n occur when oller limits the compared to s been verified assical control, Energy storage e power flows fferent control The automatic r technique for cted electrical ng their power AGC. In this considered to has a dynamic e affected by ng point [2,3] . power flows in tie-lines produce unpredictable generated and demand powe difficulties are taken care of b are also called load-frequency being improved over the yea control, a technical require operation of an interconnected important for supplying relia good quality. The goals of th zero steady state errors in a m power system and to fulfill conditions [5]. During last dec the load frequency control in systems have been presen Different control strategies hav on the conventional linear among others. Since, the dyna even for a reduced mathema nonlinear, time-variant and go couplings of the input variabl to be designed with special scheduling controller had be systems by some researcher e control parameters can be cha parameter estimation is not re outputs are obtained faster compared with conventional c the same method, the tran unstable because of abruptnes Also, accurate linear time inv obtained at variable operatin FGPI controllers have been above mentioned difficulties n 2018 Page: 32 me - 2 | Issue 4 cientific TSRD) nal System Haryana, India e load changes and also, ers are not equal. Such by AGC systems which y control (LFC) and are ars [4]. Load frequency ement for the proper d power system, is very able electric power with he LFC are to maintain multi -area interconnected the requested dispatch cades, several studies on n interconnected power nted in the literature. ve been suggested based control theory [6–8], amics of a power system atical model is usually overned by strong cross- les, the controllers have care [9]. Thus, a gain een used for nonlinear e.g. [5]. In this method, anged very quickly since equired, and thus system with higher quality as controllers. However, in nsient response can be ss in system parameters. variant models cannot be ng points [5]. Recently, proposed to solve the in power systems. For

Upload: ijtsrd

Post on 17-Aug-2019

5 views

Category:

Education


0 download

DESCRIPTION

In interconnected power system load frequency control has been used extensively. This study presents an application of a fuzzy gain scheduled proportional and integral FGPI controller for load frequency control of a three area electrical interconnected power system. The main aim is to design a FGPI controller that can ensure good performance. The paper present analysis on dynamic performance of Load Frequency Control LFC of three area interconnected thermal non reheat power system by the use of Fuzzy Intelligence. The fuzzy rules are developed to ensure there is minimum frequency deviation occur when load is changed. The proposed controller limits the frequency deviations effectively as compared to conventional controller. The results has been verified by using MATLAB Simulink software. Nazia Kosser "Load Frequency Control in Three Area Power System using Fuzzy Logic Controller" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-2 | Issue-4 , June 2018, URL: https://www.ijtsrd.com/papers/ijtsrd12955.pdf Paper URL: http://www.ijtsrd.com/engineering/electrical-engineering/12955/load-frequency-control-in-three-area-power-system-using-fuzzy-logic-controller/nazia-kosser

TRANSCRIPT

Page 1: Load Frequency Control in Three Area Power System using Fuzzy Logic Controller

@ IJTSRD | Available Online @ www.ijtsrd.com

ISSN No: 2456

InternationalResearch

Load Frequency using

M.Tech Scholar, Electrical Engineering DepartmentYamuna Institute of Engineering & Technology

ABSTRACT In interconnected power system load frequency control has been used extensively. This study presents an application of a fuzzy gain scheduled proportional and integral (FGPI) controller for loadcontrol of a three-area electrical interconnected psystem. The main aim is to design a FGPI controller that can ensure good performance. The paper present analysis on dynamic performance of Load Frequency Control (LFC) of three area interconnected thermal non-reheat power system by the use of Fuzzy Intelligence. The fuzzy rules are developed to ensure there is minimum frequency deviation occur when load is changed. The proposed controller limits the frequency deviations effectively as compared to conventional controller. The results has been verified by using MATLAB/Simulink software.

Keywords: Load frequency control, Classical control, Optimal Control, Adaptive control, Energy storage systems

I. INTRODUCTION

In power systems, active and reactive power flowsfunction independently. Therefore, different control blocks are used to control them. The automatic generation control (AGC) is the major technique for solving this problem [1]. Interconnected electrical power systems operate together adjusting their poweflows and frequencies at all areas by AGC. In this study, a three-area power system is considered to control power flows. A power system has a dynamic characteristic meaning that it can be affected by disturbances and changes at the operating point [2,3]Given that frequencies at the areas and power flows in

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 4 | May-Jun

ISSN No: 2456 - 6470 | www.ijtsrd.com | Volume

International Journal of Trend in Scientific Research and Development (IJTSRD)

International Open Access Journal

requency Control in Three Area Power Systemusing Fuzzy Logic Controller

Nazia Kosser M.Tech Scholar, Electrical Engineering Department,

Yamuna Institute of Engineering & Technology, Gadhauli, Yamunanagar, Haryana

In interconnected power system load frequency control has been used extensively. This study presents an application of a fuzzy gain scheduled proportional and integral (FGPI) controller for load-frequency

area electrical interconnected power system. The main aim is to design a FGPI controller that can ensure good performance. The paper present analysis on dynamic performance of Load Frequency Control (LFC) of three area interconnected thermal

reheat power system by the use of Fuzzy telligence. The fuzzy rules are developed to ensure

there is minimum frequency deviation occur when load is changed. The proposed controller limits the frequency deviations effectively as compared to conventional controller. The results has been verified

Load frequency control, Classical control, Optimal Control, Adaptive control, Energy storage

In power systems, active and reactive power flows function independently. Therefore, different control blocks are used to control them. The automatic generation control (AGC) is the major technique for solving this problem [1]. Interconnected electrical power systems operate together adjusting their power flows and frequencies at all areas by AGC. In this

area power system is considered to control power flows. A power system has a dynamic characteristic meaning that it can be affected by disturbances and changes at the operating point [2,3]. Given that frequencies at the areas and power flows in

tie-lines produce unpredictable load changes and also, generated and demand powers are not equal. Such difficulties are taken care of by AGC systems which are also called load-frequency control (Lbeing improved over the years [4]. Load frequency control, a technical requirement for the proper operation of an interconnected power system, is very important for supplying reliable electric power with good quality. The goals of the LFC are tzero steady state errors in a multipower system and to fulfill the requested dispatch conditions [5]. During last decades, several studies on the load frequency control in interconnected power systems have been presented in Different control strategies have been suggested based on the conventional linear control theory [6among others. Since, the dynamics of a power system even for a reduced mathematical model is usually nonlinear, time-variant and governecouplings of the input variables, the controllers have to be designed with special care [9]. Thus, a gain scheduling controller had been used for nonlinear systems by some researcher e.g. [5]. In this method, control parameters can be chaparameter estimation is not required, and thus system outputs are obtained faster with higher quality as compared with conventional controllers. However, in the same method, the transient response can be unstable because of abruptness in system parameters. Also, accurate linear time invariant models cannot be obtained at variable operating points [5]. Recently, FGPI controllers have been proposed to solve the above mentioned difficulties in power systems. For

Jun 2018 Page: 32

www.ijtsrd.com | Volume - 2 | Issue – 4

Scientific (IJTSRD)

International Open Access Journal

trol in Three Area Power System

Yamunanagar, Haryana, India

lines produce unpredictable load changes and also, generated and demand powers are not equal. Such difficulties are taken care of by AGC systems which

frequency control (LFC) and are being improved over the years [4]. Load frequency control, a technical requirement for the proper operation of an interconnected power system, is very important for supplying reliable electric power with good quality. The goals of the LFC are to maintain zero steady state errors in a multi-area interconnected power system and to fulfill the requested dispatch conditions [5]. During last decades, several studies on the load frequency control in interconnected power systems have been presented in the literature. Different control strategies have been suggested based on the conventional linear control theory [6–8], among others. Since, the dynamics of a power system even for a reduced mathematical model is usually

variant and governed by strong cross-couplings of the input variables, the controllers have to be designed with special care [9]. Thus, a gain scheduling controller had been used for nonlinear systems by some researcher e.g. [5]. In this method, control parameters can be changed very quickly since parameter estimation is not required, and thus system outputs are obtained faster with higher quality as compared with conventional controllers. However, in the same method, the transient response can be

ss in system parameters. Also, accurate linear time invariant models cannot be obtained at variable operating points [5]. Recently, FGPI controllers have been proposed to solve the above mentioned difficulties in power systems. For

Page 2: Load Frequency Control in Three Area Power System using Fuzzy Logic Controller

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

@ IJTSRD | Available Online @ www.ijtsrd.com

example, [5] and [10] developed different fuzzy rules for the proportional and integral gains separately and showed that response of power systems can be further improved using fuzzy logic controller [11]. In this study, a FGPI controller was designed with seven triangular membership functions to LFC application in a two-area power system for generating electricity with good quality. In the design of the controller, rules for the gains (Kp and Ki) are chosen to be identical in order to improve the system performance. Settling times and overshoots of the systems and absolute integral values were utilized as comparison criteria to evaluate the performance of controllers. It was shown that the proposed FGPI controller generally has better performance than the other controllers.

II. INTERCONNECTED ELECTRICAL POWER SYSTEMS Interconnected power systems consist of many control areas connected by tie-lines. The block scheme of an uncontrolled three-area power system is shown in Fig. 1. All blocks are generally nonlinear, timeand/or non-minimum phase systems [12]. In each control area, the generators are assumed to form a coherent group. Loads changing at operating point affect both frequencies in all areas and tieflow between the areas [13]. As known that power systems have parametric uncertainties and they must have small oscillations in the magnitude of transient frequency. Their speed control must be taken care of as quickly as possible [12]. The loadcontrol generally is accomplished by two different control actions in interconnected threesystems: (a) the primary speed control and (b) supplementary or secondary speed control actions. The former performs the initial vulgar readjustment of the frequency by which generators in the control area track a load variation and share it in proportion to their capacities. This process typically takes place within 2–20 s. The latter takes over the fine adjustment of the frequency by resetting the frequency error to zero through an integral action. The relationship between the speed and load can be adjusted by changing a load reference set point input. In practice, the adjustment of the load reference set point is accomplished by operating the speed changer motor. The output of each unit at a given system frequency can be varied only by changing its load reference, which in effect moves the speedcharacteristic up and down. This control is considerably slower and goes into action only when

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 4 | May-Jun

veloped different fuzzy rules for the proportional and integral gains separately and showed that response of power systems can be further improved using fuzzy logic controller [11]. In this study, a FGPI controller was designed with seven

ship functions to LFC application area power system for generating electricity

with good quality. In the design of the controller, ) are chosen to be

identical in order to improve the system performance. s and overshoots of the systems and

absolute integral values were utilized as comparison criteria to evaluate the performance of controllers. It was shown that the proposed FGPI controller generally has better performance than the other

TERCONNECTED ELECTRICAL POWER

Interconnected power systems consist of many control lines. The block scheme of an

area power system is shown in Fig. 1. All blocks are generally nonlinear, time-variant

minimum phase systems [12]. In each control area, the generators are assumed to form a coherent group. Loads changing at operating point affect both frequencies in all areas and tie-line power flow between the areas [13]. As known that power

ave parametric uncertainties and they must have small oscillations in the magnitude of transient frequency. Their speed control must be taken care of as quickly as possible [12]. The load-frequency control generally is accomplished by two different

actions in interconnected three-area power systems: (a) the primary speed control and (b) supplementary or secondary speed control actions. The former performs the initial vulgar readjustment of the frequency by which generators in the control area

a load variation and share it in proportion to their capacities. This process typically takes place

20 s. The latter takes over the fine adjustment of the frequency by resetting the frequency error to zero through an integral action. The

hip between the speed and load can be adjusted by changing a load reference set point input. In practice, the adjustment of the load reference set point is accomplished by operating the speed changer motor. The output of each unit at a given system

cy can be varied only by changing its load reference, which in effect moves the speed-droop characteristic up and down. This control is considerably slower and goes into action only when

the primary speed control has done its job. In this case, response time may be of the order of 1 min

Fig. 1. The interconnection scheme of an uncontrolled three-area power system

III. MODELLING OF POWER SYSTEMThe three-area interconnected power system used in this study is displayed in Fig. 2 where f is the system frequency (Hz), Ri is regulation constant (Hz per unit), is speed governor time constant (s), Ttime constant (s), Tp is power system time constant (s) and DPL1,2 is load demand increments. The overall system can be modeled as a multithe following form.

.

( ) ( ) ( )x Ax t Bu t Ld t

Here A is the system matrix, B and L are input and disturbance distribution matrices, x(t), u(t) and d(t) are state, control and load changes disturbance vectors, respectively.

1 1 1 123, 2 2 2 213, 3 3 3 321( ) [ ]g v g v g vx t f P P P f P P P f P P P

1 2 3( ) [ , , ]Tu t u u u

1 2 3( ) [ , , ]Td d dd t P P P

where ∆ denotes deviation from the nominal values and u1, u2 and u3 are the control outputs in Fig. 2. The system output, which depends on area control error (ACE) given in Fig. 3, is written as follow:

1 1

2 2

3 3

( )

( ) ( ) ( )

( )

y t ACE

y t y t ACE cx t

y t ACE

123i i iACE P b f

where bi is the frequency bias constant, frequency deviation and ∆P123

power for area i (i=1 for area 1, i=2 for area 2 and i=3 for area 3) and C is the output matrix [14].

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

Jun 2018 Page: 33

the primary speed control has done its job. In this me may be of the order of 1 min

Fig. 1. The interconnection scheme of an uncontrolled area power system

MODELLING OF POWER SYSTEM area interconnected power system used in

this study is displayed in Fig. 2 where f is the system is regulation constant (Hz per

unit), is speed governor time constant (s), Tt is turbine is power system time constant (s)

and DPL1,2 is load demand increments. The overall as a multi-variable system in

(1)

Here A is the system matrix, B and L are input and disturbance distribution matrices, x(t), u(t) and d(t) are state, control and load changes disturbance

1 1 1 123, 2 2 2 213, 3 3 3 321( ) [ ]Tg v g v g vx t f P P P f P P P f P P P (2)

(3)

(4)

∆ denotes deviation from the nominal values are the control outputs in Fig. 2. The

system output, which depends on area control error (ACE) given in Fig. 3, is written as follow:

(5)

(6)

is the frequency bias constant, ∆fi is the 123 is the change in tie-line

power for area i (i=1 for area 1, i=2 for area 2 and i=3 for area 3) and C is the output matrix [14].

Page 3: Load Frequency Control in Three Area Power System using Fuzzy Logic Controller

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 4 | May-Jun 2018 Page: 34

IV. THE PROPOSED CONTROLLER Originally developed by Zadeh in 1965 fuzzy logic (FL) is today implemented in all industrial systems all over the world. It is much closer in spirit to human thinking and natural language than classical logical systems [15]. Therefore, it is not required a mathematical model or certain system parameters [1]. According to many researchers, there are some reasons for the present popularity of FL control. First, FL can easily be applied to most industrial

applications in industry. Second, it can deal with intrinsic uncertainties by changing controller parameters. Finally, it is appropriate for rapid applications. Fuzzy logic has been applied to industrial systems as a controller in various applications. For the first time, FL was applied to control theory by Mamdani in 1974 [16]. A fuzzy controller is formed by fuzzification of error, inference.

Fig. 2. Three-area power system with controllers

Fig.3. The three-area interconnected power system used in this study

Page 4: Load Frequency Control in Three Area Power System using Fuzzy Logic Controller

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 4 | May-Jun 2018 Page: 35

Mechanism and defuzzification levels. Therefore, an analog signal is taken from output of the FL controller. For systems, human experts prepare linguistic descriptions as fuzzy rules which are obtained based on step response experiments of the process, error signal, and its time derivative [10]. In general, conventional FL controllers are not suitable for system controlling since they cannot produce reliable transient response. Also, they are unable to decrease steady-state errors down to zero [17]. Thus, a fuzzy gain scheduling PI (FGPI) controller is proposed in this study to maintain load-frequency control in the three-area power system. The main goal of the load-frequency control in the interconnected power systems is to protect the balance between production and consumption [17].

Fig. 4. Rules for input (frequency deviation)

Fig. 5. Rules for input (rate of change of frequency deviation)

Fig. 6. Rules for output (proportional gain)

Fig. 7. Rules for output (integral gain)

Fig.8 The variations of Ki with respect to e and de, Surface plot

V. RESULTS AND ANALYSIS The simulations are done on MATLAB/ Simulink environment for the three area control. A step disturbance is considered for the three same areas. With the help of fuzzy controller with twenty five rules, the frequency deviations are set to zero with minimum settling time and overshoot. Fig.8 shows the surface plot of FLC for the variations of Ki with respect to error and derivation of error.

In this model shown by Fig.3, the application of fuzzy controller [3] for load-frequency control in power systems is used. For the same, interconnected power system having three control areas including same turbine units. In the system, non-reheat turbines are used for each area. So, same properties and physical constants of the areas above are considered in the simulation. In the simulation, a step load increment in the three areas of power system is considered [7]. The area control error for each area is controlled with FLC to optimize the integral coefficient and hence to achieve the zero frequency steady state error. The fuzzy model used is Mamdani and bisector is used as defuzzification method. In the decision-making stage, total twenty five rules are used, which are specified by a set of IF–THEN statements [9] define the controller behavior. The fuzzy simulation model in Simulink is shown in Fig. 3.

The frequency deviations for the first area is illustrated by Fig.9, which clearly shows the maximum overshoot of around - 0.02, i.e. 0.04 percent of nominal frequency of 50 Hz and a good settling time of 9 to 10 seconds for a step change in load after 2 seconds. The same is the case for the areas two and three as shown by Fig.10 and Fig. 11

Page 5: Load Frequency Control in Three Area Power System using Fuzzy Logic Controller

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

@ IJTSRD | Available Online @ www.ijtsrd.com

respectively. The figures also shows the dynamics which are controlled by the FLC to get the steady zero frequency error. From the simulation study, the fuzzy

Fig.9. Plot for change in frequency for Area one

Fig.10. Plot for change in frequency for Area two

Fig.11. Plot for change in frequency for Area three

VI. CONCLUSIONS

In this study, FLC application to three area generation controls is considered for the frequency deviations of each area [7]. The transient behavior of frequency for the load perturbation in areas is studied. In practice, power systems generally have more than three areas and each area is different than others. Because of this,

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 4 | May-Jun

figures also shows the dynamics which are controlled by the FLC to get the steady zero frequency error. From the simulation study, the fuzzy

logic controller is very effective to suppress the frequency oscillations caused by load disturbances.

Fig.9. Plot for change in frequency for Area one

Fig.10. Plot for change in frequency for Area two

Fig.11. Plot for change in frequency for Area three

In this study, FLC application to three area generation controls is considered for the frequency deviations of each area [7]. The transient behavior of frequency for the load perturbation in areas is studied. In practice,

than three areas and each area is different than others. Because of this,

in the study, the power systems with three areas that consist of thermal units are considered. The simulation results obtained shows the performance of FLC controller against to the load perturbation at each area in the considered power system. From the analysis, the settling time of controllers was reached in the time region of 9 to 10 seconds and overshoot is very low (0.04 percent of nominal frequency of 50

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

Jun 2018 Page: 36

logic controller is very effective to suppress the frequency oscillations caused by load disturbances.

in the study, the power systems with three areas that consist of thermal units are considered. The simulation results obtained shows the performance of

load perturbation at each area in the considered power system. From the analysis, the settling time of controllers was reached in the time region of 9 to 10 seconds and overshoot is very low (0.04 percent of nominal frequency of 50

Page 6: Load Frequency Control in Three Area Power System using Fuzzy Logic Controller

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 4 | May-Jun 2018 Page: 37

Hz). From the study, the fuzzy logic improves the system performance by effectively reducing the overshoot. Also the stability of the system was thus maintained effectively by the proposed controller. Decreased settling time in power systems significantly decreases generating cost, providing economical advantages to the consumer and the management. The machines corrosions, used in the system can be stopped by lowered overshoot of the system outputs. Hence, the life of machines and power plants are longer.

References

1) Hassan Yousef, “Adaptive fuzzy logic load frequency control of multi-area power system”, International Journal of Electrical Power & Energy Systems Volume 68, June 2015, Pages 384– 395, January 2015.

2) Anand B., Ebenezer A. Jeyakumar, “Load frequency control with fuzzy logic controller considering non-linearities and boiler dynamics”, ICGST-ACSE Journal, ISSN 1687-4811, Volume 8, issue 111, pp 15-20, 2009.

3) Aravindan P., Sanavullah M.Y., “Fuzzy Logic Based Automatic Load Frequency Control of Two Area Power System With GRC”, International Journal of Computational Intelligence Research, Volume 5, Number 1. pp. 37–44, 2009.

4) P. Kundur, Power System Stability and Control. New York: McGraw-Hill, 1994, pp. 581–623.

5) Mines J. N. 1997. MATLAB Supplement to Fuzzy & Neural approach in Engineering, John Wiley NY.

6) George-Gross, Lee J.W., “Analysis of Load Frequency Control Performance Assessment Criteria”, IEEE transaction onPower System, Vol. 16, No. 16, pp. 520-525,2001.

7) Nanda J., Kakkarum J.S., “Automatic Generation Control with Fuzzy logic controllers considering

generation constraints”, In Proceeding of 6th Int Conf on Advances in Power System Control Operation and managements, Hong Kong, 2003.

8) Magla A., Nanda J., “Automatic Generation Control of an Interconnected Hydro- Thermal System Using Conventional Integral and Fuzzy logic Control”, In Proc. IEEE Electric Utility Deregulation, Restructuring and PowerTechnologies.(DRPT2004), Hong Kong, pp. 372-377, 2004.

9) Anand B., Ebenezer A. Jeyakumar., “ Load frequency control with fuzzy logic controller considering non-linearities and boiler dynamics”, ICGST-ACSE Journal, ISSN 1687-4811, Volume 8, issue 111, pp 15-20., 2009.

10) Chatterjee K.. “Design of Dual Mode PI Controller for Load Frequency Control”, International Journal of Emerging Electric Power System. Vol. 11, Issue 4, Article 3, 2010.

11) Demiroren A., Zeynelgil H.L., Sengor N. S., “The Application of ANN Technique to Load-frequency Control for Three- area Power System”, IEEE Porto Power Tech Conference, PPT001, 10th -13th September2001, Porto, Portugal. 2001

12) Nasser Jalleli, Donald N. Ewart, Lester H. Fink, Louis S. Vanslyck, “Understanding Automatic Generation Control”, IEEE Transactions on power systems, vol. 7, No. 3, August 1992..

13) Gayadhar-Panda, Sidhartha-Panda, Cemal Ardil, “Automatic Generation Control of Interconnected Power System with Generation Rate Constraints by Hybrid Neuro Fuzzy Approach”, World Academy of Science, Engineering & Technology 52, pp543-548. 2009.

14) Concordia C, Kirchmayer LK. Tie-line power frequency control ofelectrical power systems. Part I. Trans AIEE 1953:562̢72.