lng example

48
ENSC3019 Unit Operations S2 2015 LNG / Gas Process Engineering Example for Process Modules Acknowledgments: Dr. John Boxall (2012) Various Slides adapted from Terry Edwards, Process Modules lectures Wesfarmers process slides for Process Modelling course Figures GPSA Handbook and Campbell, Gas Conditioning and Process Vol2

Upload: heatmotion

Post on 12-Jul-2016

18 views

Category:

Documents


1 download

DESCRIPTION

Lecture Notes - LNG example

TRANSCRIPT

Page 1: LNG Example

ENSC3019 Unit Operations S2 2015

LNG / Gas Process Engineering Example for Process Modules

Acknowledgments: Dr. John Boxall (2012) Various Slides adapted from Terry Edwards, Process Modules lectures Wesfarmers process slides for Process Modelling course Figures GPSA Handbook and Campbell, Gas Conditioning and Process Vol2

Page 2: LNG Example

Liquefied Natural Gas (LNG) Background

http://energy.gov/sites/prod/files/2013/04/f0/LNG_primerupd.pdf

Page 3: LNG Example

Liquefied Natural Gas (LNG) Background

http://energy.gov/sites/prod/files/2013/04/f0/LNG_primerupd.pdf

Page 4: LNG Example

Liquefied Natural Gas (LNG) Background

https://www.spe-qld.org/useruploads/files/aug_2011_final_lng_presentation_rev3_%5Bcompatibility_mode%5D.pdf

Page 5: LNG Example

Not necessary on NWS

LNG Processing

LNG Storage and Sales

LPG Extraction LPG

Sales

Domestic Pipeline Sales

Ethane Extraction

Petrochemicals & Gas to Liquids

Separation and Processing of Well Fluids

Page 6: LNG Example

LNG Production – Cascade Refrigeration

Inlet Gas: Methane (and some N2) •  Always requires some front end treatment

–  acid gas removal –  dehydration –  mercury removal

•  Liquid hydrocarbon removal –  Distillation and absorption

•  Liquefaction through a refrigerant cycle

–  Refrigeration –  Heat Exchangers

6 Phillips Optimized Cascade LNG Process

-161 °C

Page 7: LNG Example

GAS TREATING (SWEETENING)

7

Page 8: LNG Example

Gas sweetening (CO2 removal, also H2S)

8

Page 9: LNG Example

Gas Sweetening Absorption Processes

•  Separate CO2 from NG –  Gas supply at high pressure (>35 bar) –  Typically also removes hydrogen sulphide (H2S) as well

•  Removal specifications –  < 2 % (pipeline) –  < 50 ppm (LNG plant feed)

9

Covered in Gas-liquid absorption columns

Page 10: LNG Example

Gas sweetening: Example

•  CO2/H2S Removal using amine based solvent

•  Information: –  1,000 Sm3/day gas @ 6000 kPa –  0.4% H2S, 3.0% CO2 –  20% solution of DEA

•  What circulation rate is required?

•  Estimate the plant requirements

10 Simplified Design Calcs: GPSA Handbook

Dr, Dc in mm, Q in MSm3/day, P in kPa

Page 11: LNG Example

Gas sweetening: Example •  QDEA = 360(Qy/x) = 360(1.0*3.4/20) = 61.2 m3/h

–  Add both acid gas concentrations –  1 MSm3 = 1000 Sm3

•  Dc = 10750*sqrt(1.0/√6000) = 1221 = 1200 mm (1.2 m)

–  Based on gas flowrate and density (pressure) –  Quite reasonable diameter for a column

•  Dr = 160*sqrt(61.2) = 1251 = 1300 mm (1.3 m) –  Based on amine flowrate –  Above feed point regen diameter ~67% or 900 mm

•  Reboiler –  H = 93*61.2 = 5690 kW –  A = 4.63*61.2 = 286 m2

–  etc. for other process equipment

Page 12: LNG Example

Simulation tools providing greater design flexibility/accuracy – Example VMGSim

12

Page 13: LNG Example

DEHYDRATION

13

Page 14: LNG Example

Dehydration to get Natural Gas & Condensate to Shore: 1.  To prevent hydrate formation which would block subsea pipeline

2.  To prevent internal corrosion of subsea pipeline

Dew-point Control or

Glycol Dehydration

Glycol and Molecular Sieve

Dehydration

Dehydration onshore: 1.  As above – but may need even tighter dew-point control

2.  Meet a sales gas water content spec.

Export Gas Pipeline

Page 15: LNG Example

Dehydration of a gas stream, TEG absorption and regeneration

15

Page 16: LNG Example

16

What is the saturated water content for a sweet gas that is at 50 °C and 15000 kPa if the gas has a molecular weight of 45 g/mol?

If the first gas processing stage will decrease the temperature to 10 °C without significantly changing the pressure, is dehydration critical prior to this initial processing stage, and if so why?.

Gas Dehydration: Water Content

Page 17: LNG Example

17

Information: Temp 50 °C Pressure 15000 kPa Molecular weight of 45 g/mol

Gas Dehydration

Uncorrected Water Content: 1050 mg water/sm3 wet gas

Corrected Water Content: = 1050 * 0.93 = 977 mg water/sm3 wet gas

Correction for molecular weight of gas / gas density: 0.93

50 °C 0.93

Page 18: LNG Example

18

If the first gas processing stage will decrease the temperature to 10 °C without significantly changing the pressure, is dehydration critical prior to this initial processing stage, and if so why?.

Gas Dehydration

Page 19: LNG Example

19 (Petrobras Hydrate Plug Removed from Pig-Catcher)

Page 20: LNG Example

TEG Dehydration example

20

A Natural gas stream saturated with water enters a triethylene glycol (TEG) contactor at 50 °C. The gas leaving the contactor must have a water dew point below 0°C. What is the minimum concentration of TEG solution coming back from the regeneration required to dehydrate the gas if a 10 °C approach to equilibrium in the column is assumed? Equilibrium data for TEG contactors is provided in the Figure.

Page 21: LNG Example

TEG Dehydration example

21

Information: Temperature 50 °C Leaving water dew point 0°C 10 °C approach to equilibrium Temperature

~ 99.4 wt% TEG

Page 22: LNG Example

Physical properties of glycols

22

Page 23: LNG Example

Hysys Example of a TEG Stripper and Regeneration – Process Modelling

23

Page 24: LNG Example

Why are Glycols not enough for LNG?

24

Page 25: LNG Example

Other Dehydration

•  Gas adsorption –  Molecule Sieves common in gas processing –  As pointed out adsorption topics not considered in process

modules

•  Gas Permeation –  Membrane dehydration

25

Page 26: LNG Example

26

Packed in a tower

Wet Feed Gas in at top

Dry Feed Gas out at bottom

Between 5000kg & 10000 kg in each tower

Mole Sieve gas dehydration

Page 27: LNG Example

Adsorption and Regeneration Cycling

27

Page 28: LNG Example

Dehydration at Apache’s plant at Varanus Island, NWS

Wet gas

Dry gas

Page 29: LNG Example

GAS PROCESSING

29

Page 30: LNG Example

Successive distillation/absorption to remove heavier components – mostly just methane for LNG

30

Absorption De-ethanizer De-propanizer De-butanizer

To LNG

Page 31: LNG Example

Westfarmers Straddle NGL plant: Distillation fractions heavier components to LPGs

31

Page 32: LNG Example

Simulation (Hysys etc.) would typically be used for multi-component distillation (MCD) But, McCabe-Thiele Approach for MCD can give initial estimate.

•  Example: de-propanizer

–  0.01 ethane, 0.64 propane, 0.3 butanes, 0.05 pentanes –  top product with < 0.01 butane, bottom <0.02 propane

•  Light Key – Propane

•  Heavy Key – n-Butane

•  Relative Volatility, α = 3.0

•  Non key components: ethane, n-pentane

32

Page 33: LNG Example

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Equilibrium line - relative volatility of key components

Y

X

Propane Liquid Composition

Propane Vapour Composition

Page 34: LNG Example

Also need: Operating lines, Reflux Ratio, Feed

34

Example Feed: Saturated Vapour – leaving an expansion and heat removed through heat exchanger Assume 65% propane

Lecture 2

Example Reflux Ratio: 1.3

Goal: top product with < 0.01 butane, bottom <0.02 propane

Page 35: LNG Example

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Rectifying section operating line using reflux ratio

35

Y

X

intercept 0.99/(1.3+1) = 0.43

0.99,0.99

(< 0.01 butane)

Page 36: LNG Example

Feed line for the saturated vapour

36 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Y

X

Saturated Vapour – Horizontal Line

(Feed = 65% propane)

0.65 feed (0.64 + 0.01)

Page 37: LNG Example

Operating line for stripping section

37 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Y

X

Bottom composition: 0.02, 0.02

Feed and operating line intersection

(< 0.02 propane)

Page 38: LNG Example

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

McCabe-Thiele MCD w/ binary of Key components

Y

X

Draw in Stages

Page 39: LNG Example

McCabe-Thiele MCD w/ binary of Key components •  Theoretical stages - 29

–  In reality would require more stages –  Efficiency of each stage not 100% - not at equilibrium –  And of course this is only an estimate

39

Page 40: LNG Example

Example Hysys simulation for the production of natural gas liquids (NGL)

40

Page 41: LNG Example

REFRIGERATION

41

Page 42: LNG Example

LNG Production: Refrigeration required to −160 °C

-161 °C

Even NGL significant cooling required LNG - MCHE

Page 43: LNG Example

Wesfarmers example: Turbo-expander

43

Page 44: LNG Example

44

Example using the information provided: Expansion from 5900 kPag to 2800 kPag. Inlet Temperature -45 °C, Exit -75 °C (~230, 200 K). Draw Process on P-h diagram (methane) and Estimate Isentropic Efficiency

Page 45: LNG Example

45

out in isentropic isentropich h h ε= +Δ

Expansion in a turbo expander

Need: hout hin hisentropic

Δhisentropic

650 750

605 645 670

605

645

670

-65

( ) /isentropic out in isentropich h hε = − Δ

40 %

Turbo-expansion process

Page 46: LNG Example

40% Isentropic efficiency reasonable?

•  Short answer, no –  Typically greater than 80%

•  Why?

•  Methane used as the refrigerant for the P-h diagram, example from Wesfarmers is on their NGL train and would contain other components

46

Page 47: LNG Example

Interested in process design? http://www.arrowenergy.com.au/__data/assets/pdf_file/0003/1938/0620-20Project20Description20-20LNG20Plant.pdf

Page 48: LNG Example

Interested in learning more? http://www.arrowenergy.com.au/__data/assets/pdf_file/0003/1938/0620-20Project20Description20-20LNG20Plant.pdf