lipschitz truncation - uni-muenchen.dediening/ss12/huette/gmeineder.pdf · lipschitz truncation...

22
Preliminaries The generic problem On some useful notions Lipschitz Truncation Lipschitz Truncation F.X. Gmeineder LMU Munich 23th June 2012 F.X. Gmeineder Lipschitz Truncation 1/15

Upload: others

Post on 19-Oct-2020

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lipschitz Truncation - uni-muenchen.dediening/ss12/huette/gmeineder.pdf · Lipschitz Truncation F.X. Gmeineder LMU Munich 23th June 2012 F.X. Gmeineder Lipschitz Truncation 1/15

Preliminaries The generic problem On some useful notions Lipschitz Truncation

Lipschitz Truncation

F.X. Gmeineder

LMU Munich

23th June 2012

F.X. Gmeineder Lipschitz Truncation 1/15

Page 2: Lipschitz Truncation - uni-muenchen.dediening/ss12/huette/gmeineder.pdf · Lipschitz Truncation F.X. Gmeineder LMU Munich 23th June 2012 F.X. Gmeineder Lipschitz Truncation 1/15

Preliminaries The generic problem On some useful notions Lipschitz Truncation

Framework

Framework

(i)Revision: p-Laplacian problem & difficulties

(ii)About some analytic notions

Maximal function, A-fatness

Sobolev, Lipschitz spaces

(iii) Lipschitz truncation: Cutting the gradients

Solution to (i)

F.X. Gmeineder Lipschitz Truncation 2/15

Page 3: Lipschitz Truncation - uni-muenchen.dediening/ss12/huette/gmeineder.pdf · Lipschitz Truncation F.X. Gmeineder LMU Munich 23th June 2012 F.X. Gmeineder Lipschitz Truncation 1/15

Preliminaries The generic problem On some useful notions Lipschitz Truncation

Consider the p-Laplacian problem:

−div(|Dv|p−2Dv) = F in Ω ⊂ RN

v = 0 on ∂Ω

where Ω has Lipschitz boundary, p > 1, Dv (symmetrized gradient).Remark: Key assumption: p > 1 −→ Reflexivity of W 1,p

0 (Ω)N ! Let X a

suitable class of functions/distributions and ϕ ∈ X .

F.X. Gmeineder Lipschitz Truncation 3/15

Page 4: Lipschitz Truncation - uni-muenchen.dediening/ss12/huette/gmeineder.pdf · Lipschitz Truncation F.X. Gmeineder LMU Munich 23th June 2012 F.X. Gmeineder Lipschitz Truncation 1/15

Preliminaries The generic problem On some useful notions Lipschitz Truncation

Let vn ⊂ X be a sequence s.t.

(i) ∫Ω

|Dvn|p−2Dvn ·Dϕ dx = 〈Fn, ϕ〉

(ii)

supn

∫Ω

|Dvn|p dx <∞

−→ vn v weakly in W 1,p0 (Ω)N

(iii)〈Fn, ϕ〉 −→ 〈F, ϕ〉

for all suitable ϕ ∈ X

F.X. Gmeineder Lipschitz Truncation 4/15

Page 5: Lipschitz Truncation - uni-muenchen.dediening/ss12/huette/gmeineder.pdf · Lipschitz Truncation F.X. Gmeineder LMU Munich 23th June 2012 F.X. Gmeineder Lipschitz Truncation 1/15

Preliminaries The generic problem On some useful notions Lipschitz Truncation

Let vn ⊂ X be a sequence s.t.

(i) ∫Ω

|Dvn|p−2Dvn ·Dϕ dx = 〈Fn, ϕ〉

(ii)

supn

∫Ω

|Dvn|p dx <∞

−→ vn v weakly in W 1,p0 (Ω)N

(iii)〈Fn, ϕ〉 −→ 〈F, ϕ〉

for all suitable ϕ ∈ X

F.X. Gmeineder Lipschitz Truncation 4/15

Page 6: Lipschitz Truncation - uni-muenchen.dediening/ss12/huette/gmeineder.pdf · Lipschitz Truncation F.X. Gmeineder LMU Munich 23th June 2012 F.X. Gmeineder Lipschitz Truncation 1/15

Preliminaries The generic problem On some useful notions Lipschitz Truncation

Let vn ⊂ X be a sequence s.t.

(i) ∫Ω

|Dvn|p−2Dvn ·Dϕ dx = 〈Fn, ϕ〉

(ii)

supn

∫Ω

|Dvn|p dx <∞

−→ vn v weakly in W 1,p0 (Ω)N

(iii)〈Fn, ϕ〉 −→ 〈F, ϕ〉

for all suitable ϕ ∈ X

F.X. Gmeineder Lipschitz Truncation 4/15

Page 7: Lipschitz Truncation - uni-muenchen.dediening/ss12/huette/gmeineder.pdf · Lipschitz Truncation F.X. Gmeineder LMU Munich 23th June 2012 F.X. Gmeineder Lipschitz Truncation 1/15

Preliminaries The generic problem On some useful notions Lipschitz Truncation

Definition

Assume in the above situation v is also a weak solution to the p-Laplaciansystem. Then this system is said to satisfy the weak stability property.

• How to reach weak stability?

• Strict monotonicity of T (X ) ≡ |X |p−2X and

lim supn→∞

(T (Dvn)− T (Dv)) · D(vn − v) dx = 0

imply Dvn → Dv a.e. in Ω.

• Vitali’s convergence theorem ⇒ pass to the limit in the nonlinear term

F.X. Gmeineder Lipschitz Truncation 5/15

Page 8: Lipschitz Truncation - uni-muenchen.dediening/ss12/huette/gmeineder.pdf · Lipschitz Truncation F.X. Gmeineder LMU Munich 23th June 2012 F.X. Gmeineder Lipschitz Truncation 1/15

Preliminaries The generic problem On some useful notions Lipschitz Truncation

Definition

Assume in the above situation v is also a weak solution to the p-Laplaciansystem. Then this system is said to satisfy the weak stability property.

• How to reach weak stability?

• Strict monotonicity of T (X ) ≡ |X |p−2X and

lim supn→∞

(T (Dvn)− T (Dv)) · D(vn − v) dx = 0

imply Dvn → Dv a.e. in Ω.

• Vitali’s convergence theorem ⇒ pass to the limit in the nonlinear term

F.X. Gmeineder Lipschitz Truncation 5/15

Page 9: Lipschitz Truncation - uni-muenchen.dediening/ss12/huette/gmeineder.pdf · Lipschitz Truncation F.X. Gmeineder LMU Munich 23th June 2012 F.X. Gmeineder Lipschitz Truncation 1/15

Preliminaries The generic problem On some useful notions Lipschitz Truncation

Definition

Assume in the above situation v is also a weak solution to the p-Laplaciansystem. Then this system is said to satisfy the weak stability property.

• How to reach weak stability?

• Strict monotonicity of T (X ) ≡ |X |p−2X and

lim supn→∞

(T (Dvn)− T (Dv)) · D(vn − v) dx = 0

imply Dvn → Dv a.e. in Ω.

• Vitali’s convergence theorem ⇒ pass to the limit in the nonlinear term

F.X. Gmeineder Lipschitz Truncation 5/15

Page 10: Lipschitz Truncation - uni-muenchen.dediening/ss12/huette/gmeineder.pdf · Lipschitz Truncation F.X. Gmeineder LMU Munich 23th June 2012 F.X. Gmeineder Lipschitz Truncation 1/15

Preliminaries The generic problem On some useful notions Lipschitz Truncation

Definition

Assume in the above situation v is also a weak solution to the p-Laplaciansystem. Then this system is said to satisfy the weak stability property.

• How to reach weak stability?

• Strict monotonicity of T (X ) ≡ |X |p−2X and

lim supn→∞

(T (Dvn)− T (Dv)) · D(vn − v) dx = 0

imply Dvn → Dv a.e. in Ω.

• Vitali’s convergence theorem ⇒ pass to the limit in the nonlinear term

F.X. Gmeineder Lipschitz Truncation 5/15

Page 11: Lipschitz Truncation - uni-muenchen.dediening/ss12/huette/gmeineder.pdf · Lipschitz Truncation F.X. Gmeineder LMU Munich 23th June 2012 F.X. Gmeineder Lipschitz Truncation 1/15

Preliminaries The generic problem On some useful notions Lipschitz Truncation

The simple case

Fn,F ∈ (W 1,p0 (Ω)d)∗ such that Fn → F strongly. Take ϕ ≡ v − vn and

obtain∫Ω

(T (Dvn)−T (Dv))(D(vn−v))dx = 〈F n, vn−v〉−∫

ΩT (Dv)·D(vn−v) dx

F.X. Gmeineder Lipschitz Truncation 6/15

Page 12: Lipschitz Truncation - uni-muenchen.dediening/ss12/huette/gmeineder.pdf · Lipschitz Truncation F.X. Gmeineder LMU Munich 23th June 2012 F.X. Gmeineder Lipschitz Truncation 1/15

Preliminaries The generic problem On some useful notions Lipschitz Truncation

The difficult case

Assume F n = div(Gn) with Gn → G strongly in L1(Ω)d×d . un = v − vn

−→ 〈div(Gn),un〉, −〈G ,∇un〉 have no clear meaning.

IDEA: Replace un by its Lipschitz truncation. Then uniform smallness ofthe integrand on sets where the Lipschitz truncation is not equal to un

lead tolim supn→∞

((T (Dvn)− T (Dv)) · D(vn − v))θ dx = 0

for some θ ∈ (0, 1].

F.X. Gmeineder Lipschitz Truncation 7/15

Page 13: Lipschitz Truncation - uni-muenchen.dediening/ss12/huette/gmeineder.pdf · Lipschitz Truncation F.X. Gmeineder LMU Munich 23th June 2012 F.X. Gmeineder Lipschitz Truncation 1/15

Preliminaries The generic problem On some useful notions Lipschitz Truncation

The maximal function and Lipschitz spaces

Let 1 < p <∞.

M : L1(Ω) 3 f 7→ (Mf )(x) ≡ supr>0: B(x ,r)⊂Ω

−∫

B(x ,r)

fdLn

is called the maximal function of f ∈ L1(Ω).

• Example: Assume f : RN → R harmonic. Then (Mf )(x) = f (x). Thisis, any harmonic function is a fixed point of M.

• Note: If 1 < p <∞, the Hardy-Littlewood operator is a continuousoperator M : Lp(RN)→ Lp(RN) −→ by Hardy-Littlewood-Inequality

F.X. Gmeineder Lipschitz Truncation 8/15

Page 14: Lipschitz Truncation - uni-muenchen.dediening/ss12/huette/gmeineder.pdf · Lipschitz Truncation F.X. Gmeineder LMU Munich 23th June 2012 F.X. Gmeineder Lipschitz Truncation 1/15

Preliminaries The generic problem On some useful notions Lipschitz Truncation

The maximal function and Lipschitz spaces

Let 1 < p <∞.

M : L1(Ω) 3 f 7→ (Mf )(x) ≡ supr>0: B(x ,r)⊂Ω

−∫

B(x ,r)

fdLn

is called the maximal function of f ∈ L1(Ω).

• Example: Assume f : RN → R harmonic. Then (Mf )(x) = f (x). Thisis, any harmonic function is a fixed point of M.

• Note: If 1 < p <∞, the Hardy-Littlewood operator is a continuousoperator M : Lp(RN)→ Lp(RN) −→ by Hardy-Littlewood-Inequality

F.X. Gmeineder Lipschitz Truncation 8/15

Page 15: Lipschitz Truncation - uni-muenchen.dediening/ss12/huette/gmeineder.pdf · Lipschitz Truncation F.X. Gmeineder LMU Munich 23th June 2012 F.X. Gmeineder Lipschitz Truncation 1/15

Preliminaries The generic problem On some useful notions Lipschitz Truncation

The maximal function and Lipschitz spaces

Let 1 < p <∞.

M : L1(Ω) 3 f 7→ (Mf )(x) ≡ supr>0: B(x ,r)⊂Ω

−∫

B(x ,r)

fdLn

is called the maximal function of f ∈ L1(Ω).

• Example: Assume f : RN → R harmonic. Then (Mf )(x) = f (x). Thisis, any harmonic function is a fixed point of M.

• Note: If 1 < p <∞, the Hardy-Littlewood operator is a continuousoperator M : Lp(RN)→ Lp(RN) −→ by Hardy-Littlewood-Inequality

F.X. Gmeineder Lipschitz Truncation 8/15

Page 16: Lipschitz Truncation - uni-muenchen.dediening/ss12/huette/gmeineder.pdf · Lipschitz Truncation F.X. Gmeineder LMU Munich 23th June 2012 F.X. Gmeineder Lipschitz Truncation 1/15

Preliminaries The generic problem On some useful notions Lipschitz Truncation

A1-property

Let Ω ⊂ RN be bounded. It fulfills a A1 ≥ 1 property iff there existsA1 ≥ 1 such that for all x ∈ Ω

|B2dist(x ,ΩC )(x)| ≤ A1 · |B2dist(x ,ΩC (x) ∩ ΩC |

holds true.

F.X. Gmeineder Lipschitz Truncation 9/15

Page 17: Lipschitz Truncation - uni-muenchen.dediening/ss12/huette/gmeineder.pdf · Lipschitz Truncation F.X. Gmeineder LMU Munich 23th June 2012 F.X. Gmeineder Lipschitz Truncation 1/15

Preliminaries The generic problem On some useful notions Lipschitz Truncation

Lipschitz functions and extensions

• W 1,∞(Ω) = Lip(Ω)

Theorem

(Lipschitz extension) Assume Ω ⊂ RN and let f : Ω→ RM be Lipschitz.Then there exists a Lipschitz function f : RN → RM such that

f |Ω = f

Lip(f ) ≤√MLip(f )

F.X. Gmeineder Lipschitz Truncation 10/15

Page 18: Lipschitz Truncation - uni-muenchen.dediening/ss12/huette/gmeineder.pdf · Lipschitz Truncation F.X. Gmeineder LMU Munich 23th June 2012 F.X. Gmeineder Lipschitz Truncation 1/15

Preliminaries The generic problem On some useful notions Lipschitz Truncation

Theorem (Acerbi, Fusco 1988)

Let Ω ⊂ RN have the A1-property, A ≥ 1. Let v ∈W 1,10 (Ω)N . Then for

every θ, λ > exist truncations vθ,λ ∈W 1,∞0 (Ω)N such that

• ||vθ,λ||∞ ≤ θ• ||∇vθ,λ||∞ ≤ c1A1λ

where c1 only depends on the dimension N. Moreover, up to a nullset itholds

vθ,λ 6= v ⊂ Ω ∩ (Mv > θ ∪ M(v) > λ)

F.X. Gmeineder Lipschitz Truncation 11/15

Page 19: Lipschitz Truncation - uni-muenchen.dediening/ss12/huette/gmeineder.pdf · Lipschitz Truncation F.X. Gmeineder LMU Munich 23th June 2012 F.X. Gmeineder Lipschitz Truncation 1/15

Preliminaries The generic problem On some useful notions Lipschitz Truncation

Theorem (Diening, Malek, Steinhauer 2006)

Let 1 < p <∞ and Ω ⊂ Rd be a bounded domain which has theA1-property. Let un ⊂W 1,p

0 (Ω)d such that

un 0 inW 1,p0 (Ω)d

SetK ≡ sup

n∈N||un||W 1,p(RN) <∞& γ ≡ ||un||Lp(RN

Let θn > 0 such that θn → 0 as n→∞ and

γnθn→ 0, n→∞

Set µj = 22j .

F.X. Gmeineder Lipschitz Truncation 12/15

Page 20: Lipschitz Truncation - uni-muenchen.dediening/ss12/huette/gmeineder.pdf · Lipschitz Truncation F.X. Gmeineder LMU Munich 23th June 2012 F.X. Gmeineder Lipschitz Truncation 1/15

Preliminaries The generic problem On some useful notions Lipschitz Truncation

Then: There exists a sequence λn ⊂ R, λn,j > 0 such that

µj ≤ λn,j ≤ µj+1 and a sequenceun,j⊂W 1,∞

0 (Ω)d such that

||un,j ||∞ ≤ θn → 0

||∇un,j ||∞ ≤ cλn,j ≤ cµj+1

and up to some nullsetun,j 6= un

⊂ Ω ∩ (Mun > θ ∪

M∇un,j > 2λn,j

)

F.X. Gmeineder Lipschitz Truncation 13/15

Page 21: Lipschitz Truncation - uni-muenchen.dediening/ss12/huette/gmeineder.pdf · Lipschitz Truncation F.X. Gmeineder LMU Munich 23th June 2012 F.X. Gmeineder Lipschitz Truncation 1/15

Preliminaries The generic problem On some useful notions Lipschitz Truncation

and for all j ∈ N as n→∞:

un,j → 0 strongly inLs(Ω)d ∀s ∈ [1,∞]

un,j 0 weakly inW 1,s0 (Ω)d ∀s ∈ [1,∞)

∇un,j ∗ *-weakly in L∞(Ω)d

and||∇un,jχun,j 6=un ||Lp(Ω) ≤ c

γnθnµj+1 + Kc2−j/p

F.X. Gmeineder Lipschitz Truncation 14/15

Page 22: Lipschitz Truncation - uni-muenchen.dediening/ss12/huette/gmeineder.pdf · Lipschitz Truncation F.X. Gmeineder LMU Munich 23th June 2012 F.X. Gmeineder Lipschitz Truncation 1/15

Preliminaries The generic problem On some useful notions Lipschitz Truncation

Solution to the problem

• un fulfills the assumptions of the Lipschitz truncation theorem

• The sequenceun,j⊂W 1,∞

0 (Ω)d are admissible test functions.

• Thus, ∫Ω

(T (Dvn)− T (Dv)) · (Dun,j) dx =

−∫

Ω((Gn − G ) + G + T (Dv)) · Dun,j dx

• But: Gn → G strongly in L1(Ω)d×d and Dun,j ∗ 0 in L∞(Ω)d

F.X. Gmeineder Lipschitz Truncation 15/15