linzell - computational simulation of blast effects on structural components

Upload: aktc

Post on 02-Apr-2018

231 views

Category:

Documents


1 download

TRANSCRIPT

  • 7/27/2019 Linzell - Computational Simulation of Blast Effects on Structural Components

    1/46

    Computational SimulationComputational Simulation

    of Blast Effects onof Blast Effects on

    Structural ComponentsStructural Components

    Daniel G. LinzellDaniel G. LinzellAssociate ProfessorAssociate Professor

    Civil and Environmental EngineeringCivil and Environmental Engineering

    Lyle N. LongLyle N. LongDistinguished ProfessorDistinguished Professor

    Aerospace EngineeringAerospace Engineering

    Abner ChenAbner ChenPh.D. CandidatePh.D. Candidate

    Civil and Environmental EngineeringCivil and Environmental Engineering

    EmreEmreAlpmanAlpmanPostdoctoral ResearcherPostdoctoral Researcher

    Aerospace EngineeringAerospace Engineering

  • 7/27/2019 Linzell - Computational Simulation of Blast Effects on Structural Components

    2/46

    Acknowledgements

    z Office of Naval Research

    z Penn State University Applied Research Lab

    z APCI

  • 7/27/2019 Linzell - Computational Simulation of Blast Effects on Structural Components

    3/46

    Objectives

    z Detailed coupled gas/chemistry simulationsof detonations

    z Large scale simulations of pressure loadings

    using time-accurate CFDz Fluid/structure simulations under blast/impact

    loadings

    z Coating materials to help make structuresblast/impact resistant polyurea

  • 7/27/2019 Linzell - Computational Simulation of Blast Effects on Structural Components

    4/46

    Background Blast resistant

    materials (polyurea)

    z Polyureaz Introduced by Texaco in 1989z Known Advantages vs. Polyurethanes (traditional coatings)z Applications

    z DoD Civil Infrastructurez DoD other apps

    Army/Navy Spray on armor (Humvees) Navy Ship hulls (U.S.S. Cole)

    z Other Civil Infrastructure Rail cars Water storage tanks Chemical plant infrastructure

    Sources:PCI: http://www.pcimag.com/CDA/Archives/779f754db76a7010VgnVCM100000f932a8c0DefenseReview.com: http://www.defensereview.com/article502.html,Polymer Materials for Structural Retrofit, Knox et al., AFRL

  • 7/27/2019 Linzell - Computational Simulation of Blast Effects on Structural Components

    5/46

    z DoD

    applications Polyureaz AFRL

    z ERDC-WES

    z Army

    z Navy

    z Pentagon

    z Retrofitz Public domain?

    Source: Polymer Materials for StructuralRetrofit, Knox et al., AFRL; Army

    Times

    Untreated stud wall

    Coated with polyurea

    Background Blast resistant

    materials (polyurea)

  • 7/27/2019 Linzell - Computational Simulation of Blast Effects on Structural Components

    6/46

    Blast Simulation CFD Method

    z Unstructured-grid, time-accurate Euler code

    z Finite volume, Runge-Kutta time marching

    z Code is called PUMA2

    z Has been in use at Penn State for manyyears, thoroughly validated on a wide rangeof problems

  • 7/27/2019 Linzell - Computational Simulation of Blast Effects on Structural Components

    7/46

    Blast CFD - Assumptions

    z 75 lbs. of TNT

    z Explosive is spherical in geometry

    z Uniform explosion

  • 7/27/2019 Linzell - Computational Simulation of Blast Effects on Structural Components

    8/46

    Blast CFD - Initial Pressure

    Profile

    Initial Pressur e Profi le

    0

    20000

    40000

    60000

    80000

    100000

    120000

    140000

    160000

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    r/R

    p/p0

  • 7/27/2019 Linzell - Computational Simulation of Blast Effects on Structural Components

    9/46

    Blast CFD - Pressure History

    Pressure His to r ies a t D i f fe ren t L oca t ions

    1

    10

    100

    1000

    10000

    0 0.00005 0.0001 0.00015 0.0002 0.00025 0.0003 0.00035 0.0004 0.00045 0.0005

    t (sec)

    P(atm) r = 1m

    r = 0.5m

    r = 0.2m

  • 7/27/2019 Linzell - Computational Simulation of Blast Effects on Structural Components

    10/46

    Blast CFD PUMA2

    Comparisons to ConWep

  • 7/27/2019 Linzell - Computational Simulation of Blast Effects on Structural Components

    11/46

    Blast CFD - Simulations

    Including Steel Plate

    z Plate Dimensions (60in by 60in)

    z 75 lbs. of TNT

    z Plate located approx 3 ft away from the

    explosive

  • 7/27/2019 Linzell - Computational Simulation of Blast Effects on Structural Components

    12/46

  • 7/27/2019 Linzell - Computational Simulation of Blast Effects on Structural Components

    13/46

    zz Commercial codesCommercial codes

    zz InteractionInteractionzz Loosely coupledLoosely coupled

    zz Mechanisms behind protection?Mechanisms behind protection?

    zz Parameters to control performance?Parameters to control performance?

    Background

    Fluid/structure simulations

    3-D

  • 7/27/2019 Linzell - Computational Simulation of Blast Effects on Structural Components

    14/46

    Focus Areas

    fluid/structure interaction

    z Numerical fluid/structure program

    z Material models

    z Comparison of ABAQUS and LS-DYNA

    z

    Comparison of PUMA2 and ConWepz Effect of polyurea on steel plate under blast

    loading

    z Experimental fluid/structure programz Material properties

    z Validation testing

  • 7/27/2019 Linzell - Computational Simulation of Blast Effects on Structural Components

    15/46

    Fluid/structure interaction

    z Numerical fluid/structure program

    z Material models via literature

    z Comparison of ABAQUS and LS-DYNA

    z

    Comparison of PUMA2 and ConWepz Effect of polyurea on steel plate under blast

    loading

    z Experimental fluid/structure programz Material properties

    z Validation testing

  • 7/27/2019 Linzell - Computational Simulation of Blast Effects on Structural Components

    16/46

    Material model - Steel

    z Steel (AISI 4340)

    z J ohnson-Cook material model (Kurtaran andEskandarian, 2003)

    z A=66.7, B=100.4, n=0.26, C=0.014, and m=1.03

    ( ) ( )[ ]m

    **npl T1Cln1BA ++= &pl

    : equivalent plastic strain

    *& : normalized plastic strain rate

    roommelt

    room

    TT

    TTT

    =

    *

  • 7/27/2019 Linzell - Computational Simulation of Blast Effects on Structural Components

    17/46

    Material model - Polyurea

    z Polyurea (APCI)

    z Mie-Gruneisen equation of state (Fuentes 2006) A hydrodynamic material model

    A function of density and internal energy

    )( HmH EEPP =

    00= 0 0

    02H

    HPE =

    01=

    2

    2

    00

    )1(

    s

    C

    PH = C0 and s are material constants

    : material constant : reference density

  • 7/27/2019 Linzell - Computational Simulation of Blast Effects on Structural Components

    18/46

    Numerical program

    z Abaqus - Explicit

    z LS-Dyna

    z PUMA2

  • 7/27/2019 Linzell - Computational Simulation of Blast Effects on Structural Components

    19/46

    Fluid/structure interaction

    z Numerical fluid/structure program

    z Material models

    z Comparison of ABAQUS and LS-DYNA

    z

    Comparison of PUMA2 and ConWepz Effect of polyurea on steel plate under

    blast loading

    z Experimental fluid/structure programz Material properties

    z Validation testing

  • 7/27/2019 Linzell - Computational Simulation of Blast Effects on Structural Components

    20/46

    Numerical analysis-

    ABAQUS and LS-DYNA

  • 7/27/2019 Linzell - Computational Simulation of Blast Effects on Structural Components

    21/46

    Pressure time-history of the

    impact load

    0 0.002 0.004 0.006 0.008 0.01 0.012

    Time (sec)

    0.0E+000

    1.0E+004

    2.0E+004

    3.0E+004

    4.0E+004

    5.0E+004

    6.0E+004

    Pressure(psi)

  • 7/27/2019 Linzell - Computational Simulation of Blast Effects on Structural Components

    22/46

    Displacement

    0 0.002 0.004 0.006 0.008 0.01 0.012Time (sec)

    -2

    -1.5

    -1

    -0.5

    0

    0.5

    Displaceme

    nt(in)

    ABAQUS

    LS-DYNA

  • 7/27/2019 Linzell - Computational Simulation of Blast Effects on Structural Components

    23/46

    Von Mises Stress

    0 0.002 0.004 0.006 0.008 0.01 0.012

    Time (sec)

    0.0x100

    2.0x104

    4.0x104

    6.0x104

    8.0x10

    4

    1.0x105

    1.2x105

    1.4x105

    VonMisesStess(psi)

    ABAQUSLS-DYNA

  • 7/27/2019 Linzell - Computational Simulation of Blast Effects on Structural Components

    24/46

    Internal energy

    0 0.002 0.004 0.006 0.008 0.01 0.012Time (sec)

    0E+000

    2E+004

    4E+004

    6E+004

    8E+004

    1E+005

    IntenalEnegy(lb-in

    )

    Comparison of internal energy for mesh size 1"x1"x1"LS-DYNA

    ABAQUS

  • 7/27/2019 Linzell - Computational Simulation of Blast Effects on Structural Components

    25/46

    Fluid/structure interaction

    z Numerical fluid/structure program

    z Material models

    z Comparison of ABAQUS and LS-DYNA

    z

    Comparison of PUMA2 and ConWepz Effect of polyurea on steel plate under

    blast loading

    z Experimental fluid/structure programz Material properties

    z Validation testing

  • 7/27/2019 Linzell - Computational Simulation of Blast Effects on Structural Components

    26/46

    Numerical program Comparison of PUMA2 & ConWep

    z FEM program: LS-DYNA

    z Steel plate: 60x60x0.25z Steel (AISI 4340)

    z Johnson-Cook material model literature, no

    failure criterion

    z Loadz PUMA2 CFD code (complex spatial and

    temporal loading)z ConWep (Blast function provided in LS-DYNA)

  • 7/27/2019 Linzell - Computational Simulation of Blast Effects on Structural Components

    27/46

    Background

    z CFD code, PUMA2

    z Solve Euler equations

    z Neglect viscous effect

    z Blast function (ConWep)

    z U.S. Army Waterways Experiment Station

    z Empirical model

  • 7/27/2019 Linzell - Computational Simulation of Blast Effects on Structural Components

    28/46

    Configuration of the model

  • 7/27/2019 Linzell - Computational Simulation of Blast Effects on Structural Components

    29/46

    Comparison of displacements

    0 0.002 0.004 0.006 0.008Time (s)

    -12

    -10

    -8

    -6

    -4

    -2

    0

    z-d

    isplacement(in)

    PUMA2

    ConWep

  • 7/27/2019 Linzell - Computational Simulation of Blast Effects on Structural Components

    30/46

    Comparison of von Mises

    stress

    0 0.002 0.004 0.006 0.008Time (s)

    0

    20000

    40000

    60000

    80000

    100000

    120000

    140000

    160000

    180000

    V-Mstess(psi)

    PUMA2

    ConWep

  • 7/27/2019 Linzell - Computational Simulation of Blast Effects on Structural Components

    31/46

    Fluid/structure interaction

    z Numerical fluid/structure program

    z Material models

    z Comparison of ABAQUS and LS-DYNA

    z

    Comparison of PUMA2 and ConWepz Effect of polyurea on steel plate under

    blast loading

    z Experimental fluid/structure programz Material properties

    z Validation testing

    N i l

  • 7/27/2019 Linzell - Computational Simulation of Blast Effects on Structural Components

    32/46

    Numerical program

    Effect of polyurea on steel plateunder blast loading

    z Steel plate: 60x60x0.25

    z Thickness of coating: 0,0.25, 0.5

    z Steel (AISI 4340)

    z J ohnson-Cook material

    model

    z Polyurea (Air Products)

    z Mie-Gruneisen Equation

    of Statez Load: PUMA2 CFD code

    (complex spatial andtemporal loading)

  • 7/27/2019 Linzell - Computational Simulation of Blast Effects on Structural Components

    33/46

    Numerical program Steel plate

    without polyurea

  • 7/27/2019 Linzell - Computational Simulation of Blast Effects on Structural Components

    34/46

    Numerical program Steel plate

    with 0.25 thick polyurea

  • 7/27/2019 Linzell - Computational Simulation of Blast Effects on Structural Components

    35/46

    Numerical program Steel plate

    with 0.5 thick polyurea

  • 7/27/2019 Linzell - Computational Simulation of Blast Effects on Structural Components

    36/46

    Deflection at the center

    0.02.0

    4.0

    6.0

    8.010.0

    12.0

    14.0

    16.0

    18.0

    20.0

    0.000 0.001 0.002 0.003 0.004 0.005

    Time (s)

    Displacem

    ent(in)

    No coating

    0.25" polyurea

    0.5" polyurea

  • 7/27/2019 Linzell - Computational Simulation of Blast Effects on Structural Components

    37/46

    Kinetic energy

    0.E+00

    1.E+06

    2.E+06

    3.E+06

    4.E+06

    5.E+06

    6.E+06

    7.E+06

    8.E+06

    9.E+06

    0.000 0.001 0.002 0.003 0.004 0.005

    Tim e (s)

    Kinetic

    ene

    rgy

    (lbf-in) No coating

    0.25" polyurea

    0.5" polyurea

  • 7/27/2019 Linzell - Computational Simulation of Blast Effects on Structural Components

    38/46

    Current focus areas

    numerical program

    z Sensitivity analyses

    z Model constructionz Constitutive model selection Polyurea (e.g. viscous or

    crushable foam vs. M-G)

    z Numerical failure mode predictionz Coated platez Pressure, temperature, impact

    z Relevant loading regimes

    z

    Failure criteria predictionz Membrane action - polyurea

    z Interface failure - polyurea and steel

  • 7/27/2019 Linzell - Computational Simulation of Blast Effects on Structural Components

    39/46

    Fluid/structure interaction

    z Numerical fluid/structure program

    z Material models

    z Comparison of ABAQUS and LS-DYNA

    z Comparison of PUMA2 and ConWep

    z Effect of polyurea on steel plate underblast loading

    z Experimental fluid/structure programz Material properties

    z Validation testing

  • 7/27/2019 Linzell - Computational Simulation of Blast Effects on Structural Components

    40/46

    Experimental program

    z Material properties

    z Characterization steel andpolyurea

    z Validation Testing

    z

    Impact and/or Blastz Coated and uncoated

    z Varying coating thickness

    z Locations

    z PSU CITEL

    z Others

  • 7/27/2019 Linzell - Computational Simulation of Blast Effects on Structural Components

    41/46

    Coupon testing - Steel

    ASTM E8Extensometer - displacement

  • 7/27/2019 Linzell - Computational Simulation of Blast Effects on Structural Components

    42/46

    Results stress vs. strain

    0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

    True s train (in/in)

    0

    20000

    40000

    60000

    80000

    100000

    120000

    True

    stres

    s

    (psi)

    M t i l t t f JC

  • 7/27/2019 Linzell - Computational Simulation of Blast Effects on Structural Components

    43/46

    Material constants for JC

    model

    z Using a least squares fitting method

    z Material constant A = 66.7 (ksi)z Material constant B = 100.4 (ksi)

    ( ) ( )[ ] m**npl T1Cln1BA ++= &

    C t f

  • 7/27/2019 Linzell - Computational Simulation of Blast Effects on Structural Components

    44/46

    Current focus areas

    experimental program

    z Coupon testing Polyurea (APCI)

    z Validation testing specimen prepz Validation testing determination and matrix

    development

  • 7/27/2019 Linzell - Computational Simulation of Blast Effects on Structural Components

    45/46

    Summary

  • 7/27/2019 Linzell - Computational Simulation of Blast Effects on Structural Components

    46/46

    Questions?

    Contact Info

    z Linzell [email protected]

    z Long [email protected]