linflow 1.41 ventilation fan aeroelastic analysis n rotating fan stability analysis. (courtesy of...

10
LINFLOW 1.4 1 Ventilation Fan Aeroelastic Analysis Rotating Fan Stability Analysis. (Courtesy of FläktWoods AB, Sweden)

Upload: nicole-wheeler

Post on 27-Mar-2015

215 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: LINFLOW 1.41 Ventilation Fan Aeroelastic Analysis n Rotating Fan Stability Analysis. (Courtesy of FläktWoods AB, Sweden)

LINFLOW 1.4 1

Ventilation Fan Aeroelastic Analysis

Rotating Fan Stability Analysis.

(Courtesy of FläktWoods AB, Sweden)

Page 2: LINFLOW 1.41 Ventilation Fan Aeroelastic Analysis n Rotating Fan Stability Analysis. (Courtesy of FläktWoods AB, Sweden)

LINFLOW 1.4 2

Ventilation Fan Modeling in LINFLOW

Rotating Fan Stability Analysis.

Twin blade fan model:Rotating at 987 rpmInner radius 0.68 mOuter radius 1.02 m

Page 3: LINFLOW 1.41 Ventilation Fan Aeroelastic Analysis n Rotating Fan Stability Analysis. (Courtesy of FläktWoods AB, Sweden)

LINFLOW 1.4 3

Steady Flow

Absolute Velocity Contours.

Steady Flow Analysis of Rotating Fan

Page 4: LINFLOW 1.41 Ventilation Fan Aeroelastic Analysis n Rotating Fan Stability Analysis. (Courtesy of FläktWoods AB, Sweden)

LINFLOW 1.4 4

Structural model included fan blades + hub.

Stability analysis was performed using the 8-10 first structural modes with the lowest natural frequencies.

Structural Dynamic Analysis Rotating Fan

Egenmod nummer Frekvens(Hz )

1 126.02 332.43 382.74 438.55 554.36 608.97 736.18 804.29 849.310 891.3

Tabell 1b

Eigenmode table

Structural model used

Page 5: LINFLOW 1.41 Ventilation Fan Aeroelastic Analysis n Rotating Fan Stability Analysis. (Courtesy of FläktWoods AB, Sweden)

LINFLOW 1.4 5

Ventilation Fan Aeroelastic Stability Analysis

Aeroelastic Eigenfrequency Diagram Aeroelastic Damping Diagram

One mode showed increasing damping requirements with increasing load, Which?

Page 6: LINFLOW 1.41 Ventilation Fan Aeroelastic Analysis n Rotating Fan Stability Analysis. (Courtesy of FläktWoods AB, Sweden)

LINFLOW 1.4 6

LINFLOW predicted an unstable 3.rd mode with a frequency of 382.6 Hz

Measurements at full load later show that a maximum amplitude of vibration existed at 389 Hz

Ventilation Fan Stability Analysis Evaluation

Unstable Mode Shape

Page 7: LINFLOW 1.41 Ventilation Fan Aeroelastic Analysis n Rotating Fan Stability Analysis. (Courtesy of FläktWoods AB, Sweden)

LINFLOW 1.4 7

Measurements at full load show that a maximum amplitude of vibration existed at 389 Hz

Ventilation Fan Experimental Response Evaluation

Givare 1

0

2

4

6

8

10

12

14

16

18

0 50 100 150 200 250 300 350 400 450 500

f(Hz)

2

1

8

32

1

Measured frequency response diagram.

Page 8: LINFLOW 1.41 Ventilation Fan Aeroelastic Analysis n Rotating Fan Stability Analysis. (Courtesy of FläktWoods AB, Sweden)

LINFLOW 1.4 8

Ventilation Fan Unstable Mode Animation

(Click on Picture for Animation)

Page 9: LINFLOW 1.41 Ventilation Fan Aeroelastic Analysis n Rotating Fan Stability Analysis. (Courtesy of FläktWoods AB, Sweden)

LINFLOW 1.4 10

Aeroelastic improvements of the fan design

New Improved Ventilation Fan Geometry

Damping requirements for all aeroelastic modesnow drop with increasing loading

Page 10: LINFLOW 1.41 Ventilation Fan Aeroelastic Analysis n Rotating Fan Stability Analysis. (Courtesy of FläktWoods AB, Sweden)

LINFLOW 1.4 11

Measurements at full load on the aeroelasticly improved design show more then one order of magnitude lower stress levels on the fan surface.

New Ventilation Fan, Experimental Evaluation

Givare 1:1

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300 350 400 450 500

f(Hz)

Skovelvinkel 40° Skovelvinkel 35° Multiplar

Measured frequency response diagram.(Return)