limits notes student version

Upload: yan-ting-chen

Post on 07-Jul-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/19/2019 Limits Notes Student Version

    1/36

     Limit of a Function

  • 8/19/2019 Limits Notes Student Version

    2/36

     Limit: Definition

    and

     Properties

  • 8/19/2019 Limits Notes Student Version

    3/36

    It is recommended to watch this video which

    going to start after a few seconds. Otherwise

     please go to the next slide.

    Some of the denitions refer to thereference book “Calculus – J Stwart _7th Edition”.

    Introduction to imits !"#$_m%e&'_(().a*i

  • 8/19/2019 Limits Notes Student Version

    4/36

    Definition: Suppose f(x) is defined when x is near the

    number . (This means that  f   is defined on some open

    interval that contains a, except possibly at a itself.

    Then we write

    lim (  x a

     f x L→

    =

    and say !the limit of f(x), as x approaches a, e"ual L#

    if we can ma$e the values of  f(x) arbitrarily close to L

    (as close to L as we li$e by ta$ing x to be sufficiently

    close to a (on either side of a but not e"ual to a.

  • 8/19/2019 Limits Notes Student Version

    5/36

     %otice the phrase !but x≠a” in the definition of limit. This

    means that in finding the limit of f(x) as x approaches a, we

    never consider x=a. In fact, f(x) needs not even be defined

    when x=a. The only thing that matters is how  f  is defined

    near  a.

    &ollowing figures show the graph of three functions. %ote

    that in part (c,  f(a)  is not defined and in part (b), f(a)≠L.

    'ut in each case, regardless of what happens at a, it is true

    that lim (  x a

     f x L→

    =

  • 8/19/2019 Limits Notes Student Version

    6/36

    Infinite Limits

    et f  be a function defined on both side of a, except

     possibly at a itself. Then

    means that the value of  f(x) can be made arbitrarily

    large (as large as we please by ta$ing  x  sufficiently

    close to a, but not e"ual to a.

    The symbol ) is not a number, but the expression is

    often read as

    !the limit of f(x), as x approaches a, is infinity

    (positive or negative#

    lim ( or   x a

     f x→

    = ∞ − ∞

  • 8/19/2019 Limits Notes Student Version

    7/36

    Infinite Limits

    et f  be a function defined on both side of a, except

     possibly at a itself. Then

    means that the value of  f(x) can be made arbitrarily

    large (as large as we please by ta$ing  x  sufficiently

    close to a, but not e"ual to a.

    The symbol ) is not a number, but the expression is

    often read as

    !the limit of f(x), as x approaches a, is infinity

    (positive or negative#

    lim ( or   x a  f x→ = ∞ − ∞

  • 8/19/2019 Limits Notes Student Version

    8/36

    Infinite Limits

    et f  be a function defined on both side of a, except

     possibly at a itself. Then

    means that the value of  f(x) can be made arbitrarily

    large (as large as we please by ta$ing  x  sufficiently

    close to a, but not e"ual to a.

    The symbol ) is not a number, but the expression is

    often read as

    !the limit of f(x), as x approaches a, is infinity

    (positive or negative#

    lim ( or   x a

     f x→

    = ∞ − ∞

  • 8/19/2019 Limits Notes Student Version

    9/36

    Infinite Limits

    et f  be a function defined on some interval (a,) or

    (*),a. Then

    means that the value of  f(x) can be made arbitrarilyclose to  L  by ta$ing  x  sufficiently large or large

    negative.

    lim (  x

     f x L→±∞

    =

  • 8/19/2019 Limits Notes Student Version

    10/36

    'asically to evaluate a limit of a function we use the

    following theorem.

    Direct Substitution Property:

    lim ( (  x a

     f x f a→

    =

    'ut sometimes we get some $ind the answers which

    are not clear such as (they may have different

    values in different functions. They called

    indeterminate limits.

    To know how we find the answer for indeterminate

    limit please go to through the next section.

    +,

    +

    ∞∞

  • 8/19/2019 Limits Notes Student Version

    11/36

     Indeterminate Limit 

     Part 1:+

    +

  • 8/19/2019 Limits Notes Student Version

    12/36

    To evaluate ,

    first substitute x by a so .

    If , then

    ( lim

    (  x a

     f x

     g x→

    ( ( lim( (  x a

     f x f a g x g a→

    =

    ( ( + f a g a= =

    ( ( +lim

    ( ( + x a

     f x f a

     g x g a→= =

     can be stated verbally as a very small value

    divided by a very small value. Therefore it

    may have different values based on variety

    functions.

    nl! two t!pes of them are e"aluated in this section.

    +

    +

  • 8/19/2019 Limits Notes Student Version

    13/36

    Type 1: f(x) and g(x) are polynomials.

    - - +(

    n nn n f x a x a x a x a x a−−= + + + + ++ 

    , -

    , - , +(   m m

    m m g x b x b x b x b x b

    −−= + + + + ++ 

    hen , so

     f(a)=+  and  g(a)=+ . hich means  f(x)  and  g(x) 

    have a factor of (x#a)  based on the remainder

    theorem.

    ( ( +lim

    ( ( + x a

     f x f a

     g x g a→= =

  • 8/19/2019 Limits Notes Student Version

    14/36

    Type 1: f(x) and g(x) are polynomials.

    /ccording to the division theorem:

    ,( ( (  f x x a $ x= −

    -( ( (  g x x a $ x= −

      and can be found from long division. ,( $ x - ( $ x

    - - -

    ( ( ( ( ( lim lim lim

    ( ( ( ( (  x a x a x a

     x a $ x $ x $ a f x

     g x x a $ x $ x $ a→ → →

    −= = =

  • 8/19/2019 Limits Notes Student Version

    15/36

    Type 1: f(x) and g(x) are polynomials.

    0xample: 0valuate the following limit.1 2 -

    -

    - lim

     x

     x x x x

     x→−

    − − + −−

    STEP 1, x must be substituted by *.

    ( ) ( ) ( ) ( )

    ( )

    1 2 -1 2 -

    --,

    - - +lim

    +  x

     x x x x

     x→−

    − − − − − + − −− − + −= =

    −   − −

    So this limit is indeterminate limit, since it is and

    numerator and denominator are polynomials, factortheorem must be applied to factori3e both and find a

    factor of (x*(* or (x4.

    +

    +

  • 8/19/2019 Limits Notes Student Version

    16/36

    STEP 2, factori3e the numerator and denominator:

    Long division is used to factori3e .

    ( )

    ( )

    ( )

    2 -

    1 2 -

    1 2

    2 -

    2 -

    -

    -

    - -

    - -

    +

     x x

     x x x x x

     x x

     x x x

     x x

     x x

    − +

    + − − + −− +

    − − + −

    − − −

    −− −

    ( ) ( )1 2 - 2 -- -  x x x x x x x− − + − = + − +

    So ,

     %ote that it may use identities to factori3e also (li$e denominator:

  • 8/19/2019 Limits Notes Student Version

    17/36

    ( ) ( )( ) ( )

    2 -1 2 -

    -

    - - lim lim

     x x

     x x x x x x x

     x x x→− →−

    + − +− − + − =− + −

    STEP , rewrite the limit by using the factori3ed form:

    STEP !, simplify the limit:

    ( )( )

    2 -1 2 -

    -

    - - lim lim  x x

     x x x x x x x x→− →−

    − +− − + − =− −

    STEP ", substitute x by *:

     %ote: after the last step if the answer

    is again so must go bac$ to step -

    and follow the steps again.

    +

    +

  • 8/19/2019 Limits Notes Student Version

    18/36

    Type 2: f(x) or g(x) include s#uare root function.

    ( )

    -

    -

    50S

    . ( example: 2 , - - 6

    -. ( ( : 7

    2. ( ( : 6 2 ,

     %O

    . ( : 1

     f x a x x

     f x g x example x x

     f x g x example x x x

     f x example x

    − − + −

    + − + −

    − + − − − −

  • 8/19/2019 Limits Notes Student Version

    19/36

    Type 2: f(x) or g(x) include s#uare root function.

    To evaluate this type of the limits (finding a factor of

    (x#a, it must be multiplied by con$ugate of the

    s"uare root function.

    This approach refers to the following identity:

    ( ) ( )   ( )- -

    a b a b a b− + = −&or example,

    ( ) ( )

    ( ) ( )( )( ) ( )( )

    - -

    - - 2 - - 2

    - - 2

    - - 2

    6

     x x x x

     x x

     x x

     x

    + − − + + −

    = + − −

    = + − −

    = − +

     %otice that there is no s&uare root

    after multiplied b! con'ugate.

  • 8/19/2019 Limits Notes Student Version

    20/36

    Type 2: f(x) or g(x) include s#uare root function.

    0xample: 0valuate the following limit.

    1

    -lim

    6 1 7→−

    + − − x x

     x x

    STEP 1, x must be substituted by 1.

    So this limit is indeterminate limit, since it is so a

    factor of (x#) should be found for numerator and

    denominator. Since both of them include s"uare roots

    then it must be multiplied by con8ugate of both.

    1

    - - 1 +lim

    +6 1 7 1 6 1 1 7 x

     x

     x x→− −= =

    + − − + − × −+

    +

  • 8/19/2019 Limits Notes Student Version

    21/36

    STEP 2, multiply the numerator by its con8ugate also the

    denominator by its own con8ugate.

    %otice t&at since t&e #uestion must remain t&e same so'&en it is multiplied by its con$ugate t&en must be divided.

    1

    - - 6 1 7lim

    6 1 7 - 6 1 7 x

     x x x x

     x x x x x→

    − + + − −× ×

    + − − + + − −

    ( ) ( )( )( ) ( )

    ( ) ( )( ) ( )1 1

    1 6 1 7 1 6 1 7

    lim lim6 1 7 - 2 - - x x

     x x x x x x

     x x x x x→ →

    − + − − − + − −

    =+ − − + − + +

    (nly t&e t'o con$ugate factors e)pand and t&e ot&er

    factors remain as multiplications. *do not e)pand any+

  • 8/19/2019 Limits Notes Student Version

    22/36

    STEP , rewrite the limit by using the factori3ed form:

    ( ) ( )( ) ( )1 1

    1 6 1 7-lim lim6 1 7 2 1 - x x

     x x x x x x  x x→ →

    − + + −− =+ − −   − + +

    STEP !, simplify the limit:

    ( )( )1 16 1 7-lim lim

    6 1 7 2 - x x x x x

     x x  x→ →+ + −− =

    + − −   +

    STEP ", substitute x by 1:

    ( )( )1 16 1 7

    - 9 lim lim2 1 -6 1 7 2 - x x

     x x

     x x x  x→ →

    + + −− = = =×+ − −   +

  • 8/19/2019 Limits Notes Student Version

    23/36

     Indeterminate Limit 

     Part 2:∞

  • 8/19/2019 Limits Notes Student Version

    24/36

    In , as x becomes large, both numerator

    and denominator become large, so it is not obvious

    what happens to their ratio.

    To evaluate the limit at infinity of any rational

    function, we first factori,e t&e &ig&est po'er of  x  

    occurs in t&e numerator also t&e &ig&est po'er of  x  

    occurs in t&e denominator.

    The main reason to factori3e is this theorem :

    If r + is a rational number, then

    If r + is a rational number such that is defined for

    all x, then

    ( lim

    (  x

     f x

     g x→±∞

    lim +

    r  x  x→∞

    =

    lim +

    r  x  x→−∞=

    r  x

  • 8/19/2019 Limits Notes Student Version

    25/36

    -

    - +( n n

    n n f x a x a x a x a x a−

    −= + + + + ++ 

    , -

    , - , +(   m m

    m m g x b x b x b x b x b

    −−= + + + + ++ 

    - - +

    -

    - +

    ( lim lim(

    n nn n

    m m x xm m

    a x a x a x a x a f x g x b x b x b x b x b

    −−−→±∞ →±∞

    + + + + +=+ + + + +

    + + 

    Then

    hen  x  becomes larger both functions become

    larger and it could be shown as and called

    indeterminate limit. (%ote that the we may have

     positive or negative infinity

    Type 1: f(x) and g(x) are polynomials.

  • 8/19/2019 Limits Notes Student Version

    26/36

    To evaluate, we factori3e the highest power of x 

    from numerator and denominator.

    +-

    -

    +-

    -

    ( lim lim

    (

    n nn n n n

     x xm m

    m m m m

    a aa a x a

     f x   x x x x

    b bb b g x

     x b  x x x x

    −− −

    →±∞ →±∞−

    − −

     + + + + + ÷  =  

    + + + + + ÷  

    'ased on the theorem all the terms except the first one

    approach to 3ero.

    +-

    -

    +-

    -

    ( lim lim(

    n nn n n n

     x xm m

    m m m m

    a aa a x a

     f x   x x x xb bb b g x

     x b x x x x

    −− −

    →±∞ →±∞−

    − −

     + + + + + ÷  =  + + + + + ÷  

    (

    (

    Type 1: f(x) and g(x) are polynomials.

  • 8/19/2019 Limits Notes Student Version

    27/36

    -

    - +

    -

    - +

    lim limn n n

    n n n

    m m m x xm m m

    a x a x a x a x a a x

    b x b x b x b x b b x

    −−

    −→±∞ →±∞−

    + + + + +=

    + + + + ++ 

    So the limit should be simplified as:

    So the limit is evaluated based on the three following cases:

    lim

    +

    n

    n n

    m x

    m m

    or if n m

    a x aif n m

    b x bif n m

    →±∞

    ∞ − ∞ >= =

     

  • 8/19/2019 Limits Notes Student Version

    28/36

    0xample: 0valuate the following limits.

    - -- -. lim lim lim -

    - x x x

     x x x

     x x→−∞ →−∞ →−∞

    −= = = −∞

    +

    - -

    - -- - --. lim lim2 - 2 2 x x x x x x→−∞ →−∞

    − = =+

    - -

    2 2

    - - -2. lim lim lim +

    - x x x

     x x

     x x x→−∞ →−∞ →−∞

    −= = =

    +

    Type 1: f(x) and g(x) are polynomials.

  • 8/19/2019 Limits Notes Student Version

    29/36

    Type 2: f(x) or g(x) include s#uare root function.

    STEP 1, factori3e the highest power of  x  inside the

    root function.

     %ote that :

    ;an be written as:

    , -

    , - , +lim  n n

    n n x

    a x a x a x a x a−

    −→±∞+ + + + ++ 

    , +- ,

    - ,lim

      n   nn   n n n x

    a aa a x a

     x x x x

    −− −→±∞

     + + + + +   ÷  

    so

    , -

    , - , +lim limn n n

    n n n x x

    a x a x a x a x a a x−−

    →±∞ →±∞

    + + + + + =+ 

  • 8/19/2019 Limits Notes Student Version

    30/36

    Type 2: f(x) or g(x) include s#uare root function.

    Important noteWe know that square root of any number is a

    positive number (it is impossible to be

    negative) which means that if the sign of thevariable is not clear we have to use absolute

    function.

    In this part we need to know

    ( )-

    ( (  f x f x=

    - x x=

  • 8/19/2019 Limits Notes Student Version

    31/36

    Type 2: f(x) or g(x) include s#uare root function.

    Thereforehen then is substituted by  x.

    hen then is substituted by * x.

     x → ∞ - x

     x  → −∞ - x

    STEP 2, factori3e the highest power of  x  for numerator and

    denominator and simplify.

    %otice t&at multiplying by con$ugate is not applicable for

    t&is type of indeterminate limit.

  • 8/19/2019 Limits Notes Student Version

    32/36

    0xample: 0valuate the limit.

    Type 2: f(x) or g(x) include s#uare root function.

    -1 lim

    - 2 x

     x x

     x→∞+ +

    &irst, factori3e the highest power of x for root function

    --- 11

    lim lim- 2 - 2 x x

     x x x x x

     x x→∞ →∞

     + +   ÷+ +    =− −

    Then simplify the root function

    -

    - -

    1-1

    lim lim lim- 2 - 2 - 2 x x x

     x x x x x  x x

     x x x→∞ →∞ →∞

     + + ÷ ++  = = =− − −

    (

  • 8/19/2019 Limits Notes Student Version

    33/36

    Type 2: f(x) or g(x) include s#uare root function.

    Since then x  → ∞

    - - 2lim lim lim

    - 2 - 2 - 2 x x x

     x x  x x x

     x x x→∞ →∞ →∞

    +   += = =

    − − −

     %ow , we factori3e the highest power of  x from both as

    usual.

    2 2 2 2lim lim lim

    2- 2 - --

     x x x

     x x x

     x x x

     x

    →∞ →∞ →∞= = = =

    −    −   ÷  

    What if  x → −∞

  • 8/19/2019 Limits Notes Student Version

    34/36

    0xample: 0valuate the limit.

    Type 2: f(x) or g(x) include s#uare root function.

    -1 lim

    - 2 x x x

     x→−∞+ +

    &irst, factori3e the highest power of x for root function

    -

    --

    11

    lim lim- 2 - 2 x x

     x x  x x x

     x x→−∞ →−∞

     + +   ÷+ +    =− −

    Then simplify the root function

    -

    - -1

    -1lim lim lim

    - 2 - 2 - 2 x x x

     x x x x x  x x

     x x x→−∞ →−∞ →−∞

     + + ÷ ++  = = =− − −

    (

  • 8/19/2019 Limits Notes Student Version

    35/36

    Type 2: f(x) or g(x) include s#uare root function.

    Since then x → −∞

    - -lim lim lim

    - 2 - 2 - 2 x x x

     x x  x x x

     x x x→−∞ →−∞ →−∞

    +   − −= = =

    − − −

     %ow , we factori3e the highest power of  x from both as

    usual.

    ,lim lim lim

    2- 2 - --

     x x x

     x x x

     x x x

     x

    →−∞ →−∞ →−∞

    − − − −= = = =

    −    −   ÷  

  • 8/19/2019 Limits Notes Student Version

    36/36

    Thank you,

    I hope this notes can help students tounderstand more about limit of a functions.

    Please do not hesitate to email me( [email protected]  ) your useful comments

    and feedbacks.

    Prepared by: Mohammad eza !eh"hani  #enior $ecturer   %entre for &oundation#tudies  'niersity Tunku bdulahman ('T)