limited-data ct for underwater pipeline...

37
Limited-Data CT for Underwater Pipeline Inspection Nicolai André Brogaard Riis ([email protected]) Tuesday th September, IDA Matematik , Copenhagen, Denmark. Industrial collaborator: Joint work with: Per Christian Hansen, Yiqiu Dong – Technical University of Denmark Jacob Frøsig, Rasmus D. Kongskov – Shape Torben Klit Pedersen – FORCE Technology Arvid P. L. Böttiger – Exensor Technology Jürgen Frikel – OTH Regensburg Todd Quinto – Tus University

Upload: others

Post on 18-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Limited-Data CT for Underwater Pipeline Inspection

    Nicolai André Brogaard Riis ([email protected])

    Tuesday 24th September, 2019

    IDA Matematik 2019, Copenhagen, Denmark.

    Industrial collaborator:

    Joint work with:

    Per Christian Hansen, Yiqiu Dong – Technical University of Denmark

    Jacob Frøsig, Rasmus D. Kongskov – 3Shape

    Torben Klit Pedersen – FORCE Technology

    Arvid P. L. Böttiger – Exensor Technology

    Jürgen Frikel – OTH Regensburg

    Todd Quinto – Tu�s University

  • Subsea CT-Scanner by FORCE Technology, Denmark

    Alternative to ultrasound: use X-ray scanning to compute cross-sectional images ofoil pipes lying on the seabed, to detect defects, cracks, etc. in the pipe.

    Illustration courtesy of FORCE Technology.

    2 DTU Compute Nicolai A. B. Riis: Limited-Data CT for Underwater Pipeline Inspection 24.9.2019

  • Subsea CT-Scanner by FORCE Technology, Denmark

    https://forcetechnology.com/da/innovation/afsluttede-projekter/subsea-inspektion-konstruktion-levetid-reparation-planlaegning

    3 DTU Compute Nicolai A. B. Riis: Limited-Data CT for Underwater Pipeline Inspection 24.9.2019

    https://forcetechnology.com/da/innovation/afsluttede-projekter/subsea-inspektion-konstruktion-levetid-reparation-planlaegning

  • Subsea CT-Scanner by FORCE Technology, Denmark

    https://forcetechnology.com/da/innovation/afsluttede-projekter/subsea-inspektion-konstruktion-levetid-reparation-planlaegning

    3 DTU Compute Nicolai A. B. Riis: Limited-Data CT for Underwater Pipeline Inspection 24.9.2019

    https://forcetechnology.com/da/innovation/afsluttede-projekter/subsea-inspektion-konstruktion-levetid-reparation-planlaegning

  • Comparing Geometries

    Limitations in the scanner deviceData: Narrow high intensity X-Ray beam→

    available from a limited view.Goal: Design set-up to capture as much detail

    of the pipe as possible.

    Full illuminationNot possible

    CenteredPossible set-up

    O�-centeredPossible set-up

    4 DTU Compute Nicolai A. B. Riis: Limited-Data CT for Underwater Pipeline Inspection 24.9.2019

  • Comparing Geometries

    Limitations in the scanner deviceData: Narrow high intensity X-Ray beam→

    available from a limited view.Goal: Design set-up to capture as much detail

    of the pipe as possible.

    Full illuminationNot possible

    CenteredPossible set-up

    O�-centeredPossible set-up

    5 DTU Compute Nicolai A. B. Riis: Limited-Data CT for Underwater Pipeline Inspection 24.9.2019

  • The Computed Tomograhy Forward Model

    Continuous formulation, limited data

    Themeasured projections g for the object f are described by

    g(θ, s) = (R`f)(θ, s) + noise

    where (R`f)(θ, s) = (Rf)(θ, s) for those pairs (θ, s) corresponding to the `imitedillumination, andR is the Radon transform.

    Corresponding algebraic model

    Themeasured data b for a discretized objectx is described by

    b = A` x+ e, b ∈ Rm, x ∈ Rn, A` ∈ Rm×n,

    where e ∈ Rm with ei ∼ N(0, σ2) andA` is the discretion ofR`.

    6 DTU Compute Nicolai A. B. Riis: Limited-Data CT for Underwater Pipeline Inspection 24.9.2019

  • Full and Two Di�erent Limited Illuminations

    7 DTU Compute Nicolai A. B. Riis: Limited-Data CT for Underwater Pipeline Inspection 24.9.2019

  • Characterising What We Can Measure – Centered Beam

    Microlocal analysis: a singularity at position χwith direction ξ is visible if and onlyif data from the line through χ perpendicular to ξ is present.

    Measured data from oneview/projection.

    Visible from oneview/projection.

    Visible from allviews/projections.

    8 DTU Compute Nicolai A. B. Riis: Limited-Data CT for Underwater Pipeline Inspection 24.9.2019

  • Characterising What We Can Measure – O�-Center Beam

    Microlocal analysis: a singularity at position χwith direction ξ is visible if and onlyif data from the line through χ perpendicular to ξ is present.

    Measured data from oneview/projection.

    Visible from oneview/projection.

    Visible from allviews/projections.

    9 DTU Compute Nicolai A. B. Riis: Limited-Data CT for Underwater Pipeline Inspection 24.9.2019

  • Reconstruction: Incorporating Sparsity

    We need a robust algorithm that can utilize all information in the data.

    Use the algebraic system

    b = A` x+ e, b ∈ Rm, x ∈ Rn, A` ∈ Rm×n.

    and compute a sparse representation of the solution x in a “basis” that is wellsuited for the problem.If we can represent xwith few non-zero basis functions, we have fewer unknownsto determine→ same data, fewer unknowns, “easier” problem.

    10 DTU Compute Nicolai A. B. Riis: Limited-Data CT for Underwater Pipeline Inspection 24.9.2019

  • Representing pipe in a sparse “basis”

    Frame decomposition Given an object, x, we decompose it into building blocks

    x =∑µ

    cµϕµ,

    whereϕµ are the building blocks and cµ = 〈x,ϕµ〉. are coe�icients.*If the object is fully represented by few building blocks, we have a sparse representation.

    Example:

    = c1 + c2 + c3

    +c4 + c5

    Why is this useful?

    11 DTU Compute Nicolai A. B. Riis: Limited-Data CT for Underwater Pipeline Inspection 24.9.2019

  • Representing pipe in a sparse “basis”

    Frame decomposition Given an object, x, we decompose it into building blocks

    x =∑µ

    cµϕµ,

    whereϕµ are the building blocks and cµ = 〈x,ϕµ〉. are coe�icients.*If the object is fully represented by few building blocks, we have a sparse representation.

    Example:

    = c1 + c2 + c3

    +c4 + c5

    Why is this useful?

    11 DTU Compute Nicolai A. B. Riis: Limited-Data CT for Underwater Pipeline Inspection 24.9.2019

  • Representing pipe in a sparse “basis”

    Frame decomposition Given an object, x, we decompose it into building blocks

    x =∑µ

    cµϕµ,

    whereϕµ are the building blocks and cµ = 〈x,ϕµ〉. are coe�icients.*If the object is fully represented by few building blocks, we have a sparse representation.

    Example:

    = c1 + c2 + c3

    +c4 + c5

    Why is this useful?

    11 DTU Compute Nicolai A. B. Riis: Limited-Data CT for Underwater Pipeline Inspection 24.9.2019

  • Why enforce sparsity of frame coe�icients?

    Noise/artefact reduction:

    −−−−−−→Decompose

    c1 + c2 + c3

    +c4 + c5

    =

    12 DTU Compute Nicolai A. B. Riis: Limited-Data CT for Underwater Pipeline Inspection 24.9.2019

  • Why enforce sparsity of frame coe�icients?

    Noise/artefact reduction:

    −−−−−−→Decompose

    c1 + c2 + c3

    +c4 + c5

    =

    Too strong prior!

    12 DTU Compute Nicolai A. B. Riis: Limited-Data CT for Underwater Pipeline Inspection 24.9.2019

  • Why enforce sparsity of frame coe�icients?

    Noise/artefact reduction:

    −−−−−−→Decompose

    c1 + c2 + c3

    +c4 + c5

    =

    Too strong prior!Not all images arefully represented bythe decompositon.

    12 DTU Compute Nicolai A. B. Riis: Limited-Data CT for Underwater Pipeline Inspection 24.9.2019

  • Shearlets: A tight frame

    Tight frames,Φ ={ϕµ}, generalises ONB, i.e., for all images xwe have

    x =∑µ

    〈x,ϕµ〉ϕµ.

    Examples of 2D Shearlets:

    Shearlets yield a sparse representation of defects, contours, etc.

    13 DTU Compute Nicolai A. B. Riis: Limited-Data CT for Underwater Pipeline Inspection 24.9.2019

  • Shearlet-based optimization problem

    Recall discrete model of scanning process: b = A` x+ e.

    Reconstruction with a weighted shearlet-based sparsity penalty

    Optimization problem:

    argminx≥0

    12‖A`x− b‖22 + α‖W c‖1,

    s.t. c = Φx

    with α > 0 regularization parameter,W = diag(wi) ∈ Rp×p with weightswi > 0,Φ ∈ Rp×n is the shearlet analysis transform and cµ = 〈x,ϕµ〉 are coe�icients.

    Shearlet transform contains the basis functions:ΦT =[ϕ1, . . . , ϕp

    ]. hey

    14 DTU Compute Nicolai A. B. Riis: Limited-Data CT for Underwater Pipeline Inspection 24.9.2019

  • Shearlet-based optimization problem

    Recall discrete model of scanning process: b = A` x+ e.

    Reconstruction with a weighted shearlet-based sparsity penalty

    Optimization problem:

    argminx≥0

    12‖A`x− b‖22 + α‖W c‖1,

    s.t. c = Φx

    with α > 0 regularization parameter,W = diag(wi) ∈ Rp×p with weightswi > 0,Φ ∈ Rp×n is the shearlet analysis transform and cµ = 〈x,ϕµ〉 are coe�icients.

    Shearlet transform contains the basis functions:ΦT =[ϕ1, . . . , ϕp

    ].

    Data-fitting

    14 DTU Compute Nicolai A. B. Riis: Limited-Data CT for Underwater Pipeline Inspection 24.9.2019

  • Shearlet-based optimization problem

    Recall discrete model of scanning process: b = A` x+ e.

    Reconstruction with a weighted shearlet-based sparsity penalty

    Optimization problem:

    argminx≥0

    12‖A`x− b‖22 + α‖W c‖1,

    s.t. c = Φx

    with α > 0 regularization parameter,W = diag(wi) ∈ Rp×p with weightswi > 0,Φ ∈ Rp×n is the shearlet analysis transform and cµ = 〈x,ϕµ〉 are coe�icients.

    Shearlet transform contains the basis functions:ΦT =[ϕ1, . . . , ϕp

    ].

    Weighted sparsity penalty on shearlet coe�icients

    14 DTU Compute Nicolai A. B. Riis: Limited-Data CT for Underwater Pipeline Inspection 24.9.2019

  • Final algorithmRecall optimization problem:

    arg minx≥0

    12‖A

    `x− b‖22 + α‖W c‖1,

    s.t. c = Φx

    ADMM-based algorithm

    We solve it using the ADMMmethod [Boyd et. al. 2011]. Auxiliary variable c = Φx. Iterativeupdates:

    xk+1 := minx≥0

    12‖A` x−b‖22+ ρ2‖Φx−c

    k+uk‖22,

    ck+1 := minc

    α‖W c‖1 + ρ2‖Φxk+1−c+uk‖22,

    uk+1 := uk+Φxk+1−ck+1,

    where u are the scaled Lagrange multipliers and ρ > 0 the penalty parameter.

    The updates are calculated using:xk+1: CGLS + non-negativity projection.ck+1: Element-wise so� thresholding.15 DTU Compute Nicolai A. B. Riis: Limited-Data CT for Underwater Pipeline Inspection 24.9.2019

  • Subsea CT-Scanner by FORCE Technology, Denmark

    https://forcetechnology.com/da/innovation/afsluttede-projekter/subsea-inspektion-konstruktion-levetid-reparation-planlaegning

    16 DTU Compute Nicolai A. B. Riis: Limited-Data CT for Underwater Pipeline Inspection 24.9.2019

    https://forcetechnology.com/da/innovation/afsluttede-projekter/subsea-inspektion-konstruktion-levetid-reparation-planlaegning

  • Synthetic andmeasured data from both geometries

    Synthetic centered

    Projection angle

    Detectorpixel

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4Measured centered

    Projection angle

    Detectorpixel

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4Synthetic off-centered

    Projection angle

    Detectorpixel

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4Measured off-centered

    Projection angle

    Detectorpixel

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    17 DTU Compute Nicolai A. B. Riis: Limited-Data CT for Underwater Pipeline Inspection 24.9.2019

  • Reconstructions from Real Data – Both GeometriesCentered beam: there are many artifacts.

    Prev. alg.

    Kaczmarz, 5 iterations

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12

    0.14

    0.16

    0.18

    0.2Shearlet, α = 0.010

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12

    0.14

    0.16

    0.18

    0.2

    Our alg.

    O�-center beam: singularities are easy to detect; artifacts are reduced.

    Prev. alg.

    Kaczmarz, 5 iterations

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12

    0.14

    0.16

    0.18

    0.2Ground truth

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12

    0.14

    0.16

    0.18

    0.2

    Our alg.

    18 DTU Compute Nicolai A. B. Riis: Limited-Data CT for Underwater Pipeline Inspection 24.9.2019

  • Reconstructions from Real Data – Zoom

    O�-center beam: singularities are easy to detect; artifacts are reduced.

    Prev. alg. Our alg.

    0

    0.05

    0.1

    0.15

    0.2

    0

    0.05

    0.1

    0.15

    0.2

    19 DTU Compute Nicolai A. B. Riis: Limited-Data CT for Underwater Pipeline Inspection 24.9.2019

  • Reconstructions from Real Data – Zoom

    O�-center beam: singularities are easy to detect; artifacts are reduced.

    arg minx≥0‖Ax− b‖22 + λ‖∇x‖2,1 Our alg. hey

    0

    0.05

    0.1

    0.15

    0.2

    0

    0.05

    0.1

    0.15

    0.2

    20 DTU Compute Nicolai A. B. Riis: Limited-Data CT for Underwater Pipeline Inspection 24.9.2019

  • Centered Versus O�-Center Beam

    Centered beam O�-center beamPros Good reconstruction in the

    center domain.Captures singularities out-side the center domain.

    Cons Terrible reconstruction outsidethe center domain.

    Less good reconstruction inthe center domain.

    Comments Requires less projections be-cause the center domain iswellcovered by rays.

    Requiresmore projections togive good reconstruction ev-erywhere.Better suited for this applica-tion.

    21 DTU Compute Nicolai A. B. Riis: Limited-Data CT for Underwater Pipeline Inspection 24.9.2019

  • Conclusions

    • For technical reasons the X-ray beam cannot cover the whole pipe.• An o�-centered beam can give a satisfactory reconstruction.• A weighted shearlets-based sparsity penalty gives better reconstructions – especially withfew projections.• It is important to include weights in the sparsity penalty.

    Future work:• Optimize the algorithm for performance and robustness.• Design heuristics for choosing the weights and the reg. parameter.• Derive more theory for the continuous model with limited data.• Quantify the uncertainties in the model and the solution.

    22 DTU Compute Nicolai A. B. Riis: Limited-Data CT for Underwater Pipeline Inspection 24.9.2019

  • Conclusions

    • For technical reasons the X-ray beam cannot cover the whole pipe.• An o�-centered beam can give a satisfactory reconstruction.• A weighted shearlets-based sparsity penalty gives better reconstructions – especially withfew projections.• It is important to include weights in the sparsity penalty.

    Future work:• Optimize the algorithm for performance and robustness.• Design heuristics for choosing the weights and the reg. parameter.• Derive more theory for the continuous model with limited data.• Quantify the uncertainties in the model and the solution.

    23 DTU Compute Nicolai A. B. Riis: Limited-Data CT for Underwater Pipeline Inspection 24.9.2019

  • IntroductionFormulation of problem

    Uncertain view angle CT

    b = A(θ)x + e, θ ∼ πθ(·), e ∼ πe(·). (1)

    Measured / fixed:b ∈ Rm: measured noisy sinogram.A ∈ Rm×n: discretized Radon transform.

    Known but with uncertainty:θ ∈ Rq : view angles.e ∈ Rm: measurement noise.

    Unknown:x ∈ Rn: attenuation coe�icients.

    πθ1 (θ

    1 )

    πθ2(θ2)

    b1

    =A

    (θ1 )x

    +e1

    b2 =A(θ2

    )x +e2

    x

    ModelMachine

    24 DTU Compute Nicolai A. B. Riis: Limited-Data CT for Underwater Pipeline Inspection 24.9.2019

  • IntroductionFormulation of problem

    Uncertain view angle CT

    b = A(θ)x + e, θ ∼ πθ(·), e ∼ πe(·). (1)

    Measured / fixed:b ∈ Rm: measured noisy sinogram.A ∈ Rm×n: discretized Radon transform.

    Known but with uncertainty:θ ∈ Rq : view angles.e ∈ Rm: measurement noise.

    Unknown:x ∈ Rn: attenuation coe�icients.

    πθ1 (θ

    1 )

    πθ2(θ2)

    b1

    =A

    (θ1 )x

    +e1

    b2 =A(θ2

    )x +e2

    x

    ModelMachine

    Actual data comes from b := A(θ̄) x + enoise.

    24 DTU Compute Nicolai A. B. Riis: Limited-Data CT for Underwater Pipeline Inspection 24.9.2019

  • IntroductionFormulation of problem

    Uncertain view angle CT

    b = A(θ)x + e, θ ∼ πθ(·), e ∼ πe(·). (1)

    Goal:Reconstruct x from bwith uncertainty in θ and e!

    Applications:Inaccuracies in rotation, patient motion etc.

    25 DTU Compute Nicolai A. B. Riis: Limited-Data CT for Underwater Pipeline Inspection 24.9.2019

  • IntroductionEarly results

    26 DTU Compute Nicolai A. B. Riis: Limited-Data CT for Underwater Pipeline Inspection 24.9.2019

  • IntroductionEarly results 2

    27 DTU Compute Nicolai A. B. Riis: Limited-Data CT for Underwater Pipeline Inspection 24.9.2019

  • IntroductionOngoing Research - Uncertain View Angles

    • Large scale problems (2D→ 3D)• Apply to pipe scanner (with shearlet regularizer)

    28 DTU Compute Nicolai A. B. Riis: Limited-Data CT for Underwater Pipeline Inspection 24.9.2019

  • Thank you!

    Contact:Nicolai André Brogaard [email protected] ComputeBuilding 303B Room 118

    29 DTU Compute Nicolai A. B. Riis: Limited-Data CT for Underwater Pipeline Inspection 24.9.2019

    Introduction

    anm5: 5.29: 5.28: 5.27: 5.26: 5.25: 5.24: 5.23: 5.22: 5.21: 5.20: 5.19: 5.18: 5.17: 5.16: 5.15: 5.14: 5.13: 5.12: 5.11: 5.10: 5.9: 5.8: 5.7: 5.6: 5.5: 5.4: 5.3: 5.2: 5.1: 5.0: anm4: 4.29: 4.28: 4.27: 4.26: 4.25: 4.24: 4.23: 4.22: 4.21: 4.20: 4.19: 4.18: 4.17: 4.16: 4.15: 4.14: 4.13: 4.12: 4.11: 4.10: 4.9: 4.8: 4.7: 4.6: 4.5: 4.4: 4.3: 4.2: 4.1: 4.0: anm3: 3.29: 3.28: 3.27: 3.26: 3.25: 3.24: 3.23: 3.22: 3.21: 3.20: 3.19: 3.18: 3.17: 3.16: 3.15: 3.14: 3.13: 3.12: 3.11: 3.10: 3.9: 3.8: 3.7: 3.6: 3.5: 3.4: 3.3: 3.2: 3.1: 3.0: anm2: 2.29: 2.28: 2.27: 2.26: 2.25: 2.24: 2.23: 2.22: 2.21: 2.20: 2.19: 2.18: 2.17: 2.16: 2.15: 2.14: 2.13: 2.12: 2.11: 2.10: 2.9: 2.8: 2.7: 2.6: 2.5: 2.4: 2.3: 2.2: 2.1: 2.0: anm1: 1.29: 1.28: 1.27: 1.26: 1.25: 1.24: 1.23: 1.22: 1.21: 1.20: 1.19: 1.18: 1.17: 1.16: 1.15: 1.14: 1.13: 1.12: 1.11: 1.10: 1.9: 1.8: 1.7: 1.6: 1.5: 1.4: 1.3: 1.2: 1.1: 1.0: anm0: 0.29: 0.28: 0.27: 0.26: 0.25: 0.24: 0.23: 0.22: 0.21: 0.20: 0.19: 0.18: 0.17: 0.16: 0.15: 0.14: 0.13: 0.12: 0.11: 0.10: 0.9: 0.8: 0.7: 0.6: 0.5: 0.4: 0.3: 0.2: 0.1: 0.0: