lilichen,yunancui,andyanfengzhaoย ยท research article complex convexity of musielak-orlicz function...

7
Research Article Complex Convexity of Musielak-Orlicz Function Spaces Equipped with the -Amemiya Norm Lili Chen, Yunan Cui, and Yanfeng Zhao Department of Mathematics, Harbin University of Science and Technology, Harbin 150080, China Correspondence should be addressed to Lili Chen; [email protected] Received 27 November 2013; Revised 5 April 2014; Accepted 13 April 2014; Published 8 May 2014 Academic Editor: Angelo Favini Copyright ยฉ 2014 Lili Chen et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. e complex convexity of Musielak-Orlicz function spaces equipped with the -Amemiya norm is mainly discussed. It is obtained that, for any Musielak-Orlicz function space equipped with the -Amemiya norm when 1โ‰ค<โˆž, complex strongly extreme points of the unit ball coincide with complex extreme points of the unit ball. Moreover, criteria for them in above spaces are given. Criteria for complex strict convexity and complex midpoint locally uniform convexity of above spaces are also deduced. 1. Introduction Let (,โ€– โ‹… โ€–) be a complex Banach space over the complex ๏ฌeld C, let be the complex number satisfying 2 = โˆ’1, and let () and () be the closed unit ball and the unit sphere of , respectively. In the sequel, N and R denote the set of natural numbers and the set of real numbers, respectively. In the early 1980s, a huge number of papers in the area of the geometry of Banach spaces were directed to the complex geometry of complex Banach spaces. It is well known that the complex geometric properties of complex Banach spaces have applications in various branches, among others in Harmonic Analysis eory, Operator eory, Banach Algebras, โˆ— - Algebras, Di๏ฌ€erential Equation eory, Quantum Mechanics eory, and Hydrodynamics eory. It is also known that extreme points which are connected with strict convexity of the whole spaces are the most basic and important geometric points in geometric theory of Banach spaces (see [1โ€“6]). In [7], orp and Whitley ๏ฌrst introduced the concepts of complex extreme point and complex strict convexity when they studied the conditions under which the Strong Maximum Modulus eorem for analytic functions always holds in a complex Banach space. A point โˆˆ () is said to be a complex extreme point of () if for every nonzero โˆˆ there holds sup ||โ‰ค1 โ€–+โ€– > 1. A complex Banach space is said to be complex strictly convex if every element of () is a complex extreme point of (). In [8], we further studied the notions of complex strongly extreme point and complex midpoint locally uniform con- vexity in general complex spaces. A point โˆˆ () is said to be a complex strongly extreme point of () if for every >0 we have ฮ” (, ) > 0, where ฮ” (, ) = inf {1 โˆ’ || : โˆƒ โˆˆ s.t. ยฑ โ‰ค 1, ยฑ โ‰ค 1, โ‰ฅ } . (1) A complex Banach space is said to be complex midpoint locally uniformly convex if every element of () is a complex strongly extreme point of (). Let (, ฮฃ, ) be a nonatomic and complete measure space with () < โˆž. By ฮฆ we denote a Musielak-Orlicz function; that is, ฮฆ : ร— [0, +โˆž) โ†’ [0, +โˆž] satis๏ฌes the following: (1) for each โˆˆ [0, โˆž], ฮฆ(, ) is a -measurable function of on ; (2) for -a.e. โˆˆ, ฮฆ(, 0) = 0, lim โ†’โˆž ฮฆ(, ) = โˆž and there exists >0 such that ฮฆ(, )<โˆž; (3) for -a.e. โˆˆ , ฮฆ(, ) is convex on the interval [0, โˆž) with respect to . Let () be the space of all -equivalence classes of complex and ฮฃ-measurable functions de๏ฌned on . For each โˆˆ (), we de๏ฌne on () the convex modular of by ฮฆ () = โˆซ ฮฆ (, | ()|) . (2) Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2014, Article ID 190203, 6 pages http://dx.doi.org/10.1155/2014/190203

Upload: others

Post on 08-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Research ArticleComplex Convexity of Musielak-Orlicz Function SpacesEquipped with the ๐‘-Amemiya Norm

    Lili Chen, Yunan Cui, and Yanfeng Zhao

    Department of Mathematics, Harbin University of Science and Technology, Harbin 150080, China

    Correspondence should be addressed to Lili Chen; [email protected]

    Received 27 November 2013; Revised 5 April 2014; Accepted 13 April 2014; Published 8 May 2014

    Academic Editor: Angelo Favini

    Copyright ยฉ 2014 Lili Chen et al.This is an open access article distributed under the Creative CommonsAttribution License, whichpermits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    The complex convexity of Musielak-Orlicz function spaces equipped with the ๐‘-Amemiya norm is mainly discussed. It is obtainedthat, for any Musielak-Orlicz function space equipped with the ๐‘-Amemiya norm when 1 โ‰ค ๐‘ < โˆž, complex strongly extremepoints of the unit ball coincide with complex extreme points of the unit ball. Moreover, criteria for them in above spaces are given.Criteria for complex strict convexity and complex midpoint locally uniform convexity of above spaces are also deduced.

    1. Introduction

    Let (๐‘‹, โ€– โ‹… โ€–) be a complex Banach space over the complexfield C, let ๐‘– be the complex number satisfying ๐‘–2 = โˆ’1, andlet ๐ต(๐‘‹) and ๐‘†(๐‘‹) be the closed unit ball and the unit sphereof ๐‘‹, respectively. In the sequel, N and R denote the set ofnatural numbers and the set of real numbers, respectively.

    In the early 1980s, a huge number of papers in the area ofthe geometry of Banach spaces were directed to the complexgeometry of complex Banach spaces. It is well known that thecomplex geometric properties of complex Banach spaces haveapplications in various branches, among others in HarmonicAnalysis Theory, Operator Theory, Banach Algebras, ๐ถโˆ—-Algebras, Differential EquationTheory, QuantumMechanicsTheory, and Hydrodynamics Theory. It is also known thatextreme points which are connected with strict convexity ofthe whole spaces are the most basic and important geometricpoints in geometric theory of Banach spaces (see [1โ€“6]).

    In [7], Thorp and Whitley first introduced the conceptsof complex extreme point and complex strict convexitywhen they studied the conditions under which the StrongMaximum Modulus Theorem for analytic functions alwaysholds in a complex Banach space.

    A point ๐‘ฅ โˆˆ ๐‘†(๐‘‹) is said to be a complex extreme point of๐ต(๐‘‹) if for every nonzero๐‘ฆ โˆˆ ๐‘‹ there holds sup

    |๐œ†|โ‰ค1โ€–๐‘ฅ+๐œ†๐‘ฆโ€– >

    1. A complex Banach space ๐‘‹ is said to be complex strictlyconvex if every element of ๐‘†(๐‘‹) is a complex extreme pointof ๐ต(๐‘‹).

    In [8], we further studied the notions of complex stronglyextreme point and complex midpoint locally uniform con-vexity in general complex spaces.

    A point ๐‘ฅ โˆˆ ๐‘†(๐‘‹) is said to be a complex strongly extremepoint of ๐ต(๐‘‹) if for every ๐œ€ > 0 we have ฮ”

    ๐‘(๐‘ฅ, ๐œ€) > 0, where

    ฮ”๐‘(๐‘ฅ, ๐œ€) = inf {1 โˆ’ |๐œ†| : โˆƒ๐‘ฆ โˆˆ ๐‘‹s.t. ๐œ†๐‘ฅ ยฑ ๐‘ฆ

    โ‰ค 1,

    ๐œ†๐‘ฅ ยฑ ๐‘–๐‘ฆ โ‰ค 1,

    ๐‘ฆ โ‰ฅ ๐œ€} .

    (1)

    A complex Banach space ๐‘‹ is said to be complex midpointlocally uniformly convex if every element of ๐‘†(๐‘‹) is a complexstrongly extreme point of ๐ต(๐‘‹).

    Let (๐‘‡, ฮฃ, ๐œ‡) be a nonatomic and complete measure spacewith ๐œ‡(๐‘‡) < โˆž. By ฮฆ we denote a Musielak-Orlicz function;that is, ฮฆ : ๐‘‡ ร— [0, +โˆž) โ†’ [0, +โˆž] satisfies the following:

    (1) for each ๐‘ข โˆˆ [0,โˆž], ฮฆ(๐‘ก, ๐‘ข) is a ๐œ‡-measurablefunction of ๐‘ก on ๐‘‡;

    (2) for ๐œ‡-a.e. ๐‘ก โˆˆ ๐‘‡,ฮฆ(๐‘ก, 0) = 0, lim๐‘ขโ†’โˆž

    ฮฆ(๐‘ก, ๐‘ข) = โˆž andthere exists ๐‘ข > 0 such thatฮฆ(๐‘ก, ๐‘ข) < โˆž;

    (3) for ๐œ‡-a.e. ๐‘ก โˆˆ ๐‘‡, ฮฆ(๐‘ก, ๐‘ข) is convex on the interval[0,โˆž) with respect to ๐‘ข.

    Let ๐ฟ๐‘(๐œ‡) be the space of all ๐œ‡-equivalence classes ofcomplex and ฮฃ-measurable functions defined on ๐‘‡. For each๐‘ฅ โˆˆ ๐ฟ๐‘(๐œ‡), we define on ๐ฟ๐‘(๐œ‡) the convex modular of ๐‘ฅ by

    ๐ผฮฆ(๐‘ฅ) = โˆซ

    ๐‘‡

    ฮฆ (๐‘ก, |๐‘ฅ (๐‘ก)|) ๐‘‘๐‘ก. (2)

    Hindawi Publishing CorporationAbstract and Applied AnalysisVolume 2014, Article ID 190203, 6 pageshttp://dx.doi.org/10.1155/2014/190203

  • 2 Abstract and Applied Analysis

    We define supp ๐‘ฅ = {๐‘ก โˆˆ ๐‘‡ : |๐‘ฅ(๐‘ก)| ฬธ= 0} and the Musielak-Orlicz space ๐ฟ

    ฮฆgenerated by the formula

    ๐ฟฮฆ= {๐‘ฅ โˆˆ ๐ฟ

    ๐‘(๐œ‡) : ๐ผ

    ฮฆ(๐œ†๐‘ฅ) < โˆž for some ๐œ† > 0} . (3)

    Set

    ๐‘’ (๐‘ก) = sup {๐‘ข โ‰ฅ 0 : ฮฆ (๐‘ก, ๐‘ข) = 0} ,

    ๐ธ (๐‘ก) = sup {๐‘ข โ‰ฅ 0 : ฮฆ (๐‘ก, ๐‘ข) < โˆž} ;(4)

    then ๐‘’(๐‘ก) and ๐ธ(๐‘ก) are ๐œ‡-measurable (see [9]).The notion of ๐‘-Amemiya norm has been introduced in

    [10]; for any 1 โ‰ค ๐‘ โ‰ค โˆž and ๐‘ข > 0, define

    ๐‘ ๐‘(๐‘ข) = {

    (1 + ๐‘ข๐‘)1/๐‘

    , for 1 โ‰ค ๐‘ < โˆž,max {1, ๐‘ข} , for ๐‘ = โˆž.

    (5)

    Furthermore, define ๐‘ ฮฆ,๐‘(๐‘ฅ) = ๐‘ 

    ๐‘โˆ˜๐ผฮฆ(๐‘ฅ) for all 1 โ‰ค ๐‘ โ‰ค โˆž

    and ๐‘ฅ โˆˆ ๐ฟ๐‘(๐œ‡). Notice that the function ๐‘ ๐‘is increasing on ๐‘…

    +

    for 1 โ‰ค ๐‘ < โˆž; however, the function ๐‘ โˆžis increasing on the

    interval [1,โˆž) only.For ๐‘ฅ โˆˆ ๐ฟ๐‘(๐œ‡), define the ๐‘-Amemiya norm by the

    formula

    โ€–๐‘ฅโ€–ฮฆ,๐‘ = inf๐‘˜>0

    1

    ๐‘˜๐‘ ฮฆ,๐‘(๐‘˜๐‘ฅ) , 1 โ‰ค ๐‘ โ‰ค โˆž. (6)

    For convenience, from now on, we write ๐ฟฮฆ,๐‘

    =

    (๐ฟฮฆ, โ€– โ‹… โ€–ฮฆ,๐‘); it is easy to see that ๐ฟ

    ฮฆ,๐‘is a Banach space. For

    1 โ‰ค ๐‘ < โˆž, ๐‘ฅ โˆˆ ๐ฟฮฆ,๐‘

    , set

    ๐พ๐‘(๐‘ฅ) = {๐‘˜ > 0 : โ€–๐‘ฅโ€–ฮฆ,๐‘ =

    1

    ๐‘˜{1 + ๐ผ

    ๐‘

    ฮฆ(๐‘˜๐‘ฅ)}1/๐‘

    } . (7)

    2. Main Results

    We begin this section from the following useful lemmas.

    Lemma 1 (see [9]). For any ๐œ€ > 0, there exists ๐›ฟ โˆˆ (0, 1/2)such that if ๐‘ข, V โˆˆ C and

    |V| โ‰ฅ๐œ€

    8max๐‘’|๐‘ข + ๐‘’V| , (8)

    then

    |๐‘ข| โ‰ค1 โˆ’ 2๐›ฟ

    4ฮฃ๐‘’ |๐‘ข + ๐‘’V| , (9)

    where

    max๐‘’|๐‘ข + ๐‘’V| = max {|๐‘ข + V| , |๐‘ข โˆ’ V| , |๐‘ข + ๐‘–V| , |๐‘ข โˆ’ ๐‘–V|} ,

    ฮฃ๐‘’ |๐‘ข + ๐‘’V| = |๐‘ข + V| + |๐‘ข โˆ’ V| + |๐‘ข + ๐‘–V| + |๐‘ข โˆ’ ๐‘–V| .

    (10)

    Lemma 2. If lim๐‘ขโ†’โˆž

    (ฮฆ(๐‘ก, ๐‘ข)/๐‘ข) = โˆž for ๐œ‡-a.e. ๐‘ก โˆˆ ๐‘‡, then๐พ๐‘(๐‘ฅ) ฬธ= 0 for any ๐‘ฅ โˆˆ ๐ฟ

    ฮฆ,๐‘\ {0}, where 1 โ‰ค ๐‘ < โˆž.

    Proof. For any ๐‘ฅ โˆˆ ๐ฟฮฆ,๐‘

    \ {0}, there exists ๐›ผ > 0 such that๐œ‡{๐‘ก โˆˆ ๐‘‡ : |๐‘ฅ(๐‘ก)| โ‰ฅ ๐›ผ} > 0. Let ๐‘‡

    1= {๐‘ก โˆˆ ๐‘‡ : |๐‘ฅ(๐‘ก)| โ‰ฅ ๐›ผ} and

    define the subsets

    ๐น๐‘›= {๐‘ก โˆˆ ๐‘‡

    1:ฮฆ (๐‘ก, ๐‘ข)

    ๐‘ขโ‰ฅ4โ€–๐‘ฅโ€–ฮฆ,๐‘

    ๐›ผ โ‹… ๐œ‡๐‘‡1

    , ๐‘ข โ‰ฅ ๐‘›} (11)

    for each ๐‘› โˆˆ N. It is easy to see that ๐น1โŠ† F2โŠ† โ‹… โ‹… โ‹… โŠ† ๐น

    ๐‘›โŠ† โ‹… โ‹… โ‹…

    and lim๐‘›โ†’โˆž

    ๐œ‡๐น๐‘›= ๐œ‡๐‘‡1. Then there exists ๐‘›

    0โˆˆ N such that

    ๐œ‡๐น๐‘›0> (1/2)๐œ‡๐‘‡

    1.

    It follows from the definition of ๐‘-Amemiya norm thatthere is a sequence {๐‘˜

    ๐‘›} satisfying

    โ€–๐‘ฅโ€–ฮฆ,๐‘ = lim๐‘›โ†’โˆž

    1

    ๐‘˜๐‘›

    {1 + ๐ผ๐‘

    ฮฆ(๐‘˜๐‘›๐‘ฅ)}1/๐‘

    . (12)

    For any ๐‘˜ > 0, we have

    1

    ๐‘˜{1 + ๐ผ

    ๐‘

    ฮฆ(๐‘˜๐‘ฅ)}1/๐‘

    =1

    ๐‘˜{1 + [โˆซ

    ๐‘‡

    ฮฆ (๐‘ก, ๐‘˜ |๐‘ฅ (๐‘ก)|) ๐‘‘๐‘ก]

    ๐‘

    }

    1/๐‘

    โ‰ฅ

    โˆซ๐น๐‘›0

    ฮฆ (๐‘ก, ๐‘˜ |๐‘ฅ (๐‘ก)|) ๐‘‘๐‘ก

    ๐‘˜

    โ‰ฅ โˆซ๐น๐‘›0

    ฮฆ (๐‘ก, ๐‘˜๐›ผ)

    ๐‘˜๐‘‘๐‘ก

    = ๐›ผโˆซ๐น๐‘›0

    ฮฆ (๐‘ก, ๐‘˜๐›ผ)

    ๐‘˜๐›ผ๐‘‘๐‘ก.

    (13)

    If ๐‘˜ > ๐‘›0/๐›ผ, notice that

    1

    ๐‘˜{1 + ๐ผ

    ๐‘

    ฮฆ(๐‘˜๐‘ฅ)}1/๐‘

    โ‰ฅ ๐›ผ โ‹…4โ€–๐‘ฅโ€–ฮฆ,๐‘

    ๐›ผ โ‹… ๐œ‡๐‘‡1

    โ‹… ๐œ‡๐น๐‘›0> 2โ€–๐‘ฅโ€–ฮฆ,๐‘, (14)

    which means the sequence {๐‘˜๐‘›} is bounded. Hence, without

    loss of generality, we assume that ๐‘˜๐‘›โ†’ ๐‘˜0as ๐‘› โ†’ โˆž.

    We can also choose the monotonic increasing or decreasingsubsequence of {๐‘˜

    ๐‘›} that converges to the number ๐‘˜

    0. Apply-

    ing Levi Theorem and Lebesgue Dominated ConvergenceTheorem, we obtain

    โ€–๐‘ฅโ€–ฮฆ,๐‘ = lim๐‘›โ†’โˆž

    1

    ๐‘˜๐‘›

    {1 + ๐ผ๐‘

    ฮฆ(๐‘˜๐‘›๐‘ฅ)}1/๐‘

    =1

    ๐‘˜0

    {1 + ๐ผ๐‘

    ฮฆ(๐‘˜0๐‘ฅ)}1/๐‘

    (15)

    which implies ๐‘˜0โˆˆ ๐พ๐‘(๐‘ฅ).

    In order to exclude the case when such sets ๐พ๐‘(๐‘ฅ) are

    empty for ๐‘ฅ โˆˆ ๐ฟฮฆ,๐‘\{0}, in the sequel we will assume, without

    any special mention, that lim๐‘ขโ†’โˆž

    (ฮฆ(๐‘ก, ๐‘ข)/๐‘ข) = โˆž for ๐œ‡-a.e.๐‘ก โˆˆ ๐‘‡.

    Theorem 3. Assume 1 โ‰ค ๐‘ < โˆž, ๐‘ฅ โˆˆ ๐‘†(๐ฟฮฆ,๐‘). Then the

    following assertions are equivalent:

    (1) ๐‘ฅ is a complex strongly extreme point of the unit ball๐ต(๐ฟฮฆ,๐‘);

    (2) ๐‘ฅ is a complex extreme point of the unit ball ๐ต(๐ฟฮฆ,๐‘);

    (3) for any ๐‘˜ โˆˆ ๐พ๐‘(๐‘ฅ), ๐œ‡{๐‘ก โˆˆ ๐‘‡ : ๐‘˜|๐‘ฅ(๐‘ก)| < ๐‘’(๐‘ก)} = 0.

    Proof. The implication (1) โ‡’ (2) is trivial. Let ๐‘ฅ be a complexextreme point of the unit ball ๐ต(๐ฟ

    ฮฆ,๐‘) and there exists ๐‘˜

    0โˆˆ

    ๐พ๐‘(๐‘ฅ) such that ๐œ‡{๐‘ก โˆˆ ๐‘‡ : ๐‘˜

    0|๐‘ฅ(๐‘ก)| < ๐‘’(๐‘ก)} > 0. Then we can

  • Abstract and Applied Analysis 3

    find ๐‘‘ > 0 such that ๐œ‡{๐‘ก โˆˆ ๐‘‡ : ๐‘˜0|๐‘ฅ(๐‘ก)| + ๐‘‘ < ๐‘’(๐‘ก)} > 0.

    Indeed, if ๐œ‡{๐‘ก โˆˆ ๐‘‡ : ๐‘˜0|๐‘ฅ(๐‘ก)| + ๐‘‘ < ๐‘’(๐‘ก)} = 0 for any ๐‘‘ > 0,

    then we set ๐‘‘๐‘›= 1/๐‘› and define the subsets

    ๐‘‡๐‘›= {๐‘ก โˆˆ ๐‘‡ : ๐‘˜

    0 |๐‘ฅ (๐‘ก)| + ๐‘‘๐‘› < ๐‘’ (๐‘ก)} (16)

    for each ๐‘› โˆˆ N. Notice that ๐‘‡1โŠ† ๐‘‡2โŠ† โ‹… โ‹… โ‹… โŠ† ๐‘‡

    ๐‘›โŠ† โ‹… โ‹… โ‹… and

    {๐‘ก โˆˆ ๐‘‡ : ๐‘˜0|๐‘ฅ(๐‘ก)| โ‰ค ๐‘’(๐‘ก)} = โ‹ƒ

    โˆž

    ๐‘›=1๐‘‡๐‘›; we can find that

    ๐œ‡ {๐‘ก โˆˆ ๐‘‡ : ๐‘˜0 |๐‘ฅ (๐‘ก)| โ‰ค ๐‘’ (๐‘ก)} = 0 (17)

    which is a contradiction.Let ๐‘‡0= {๐‘ก โˆˆ ๐‘‡ : ๐‘˜

    0|๐‘ฅ(๐‘ก)| + ๐‘‘ < ๐‘’(๐‘ก)} and define ๐‘ฆ =

    (๐‘‘/๐‘˜0)๐œ’๐‘‡0; we have ๐‘ฆ ฬธ= 0 and for any ๐œ† โˆˆ C with |๐œ†| โ‰ค 1,

    ๐‘ฅ + ๐œ†๐‘ฆฮฆ,๐‘ โ‰ค

    1

    ๐‘˜0

    {1 + ๐ผ๐‘

    ฮฆ(๐‘˜0(๐‘ฅ + ๐œ†๐‘ฆ))}

    1/๐‘

    =1

    ๐‘˜0

    {1 + [๐ผฮฆ(๐‘˜0๐‘ฅ๐œ’๐‘‡\๐‘‡0

    )

    +๐ผฮฆ(๐‘˜0๐‘ฅ๐œ’๐‘‡0+ ๐œ†๐‘‘๐œ’

    ๐‘‡0)]๐‘

    }1/๐‘

    โ‰ค1

    ๐‘˜0

    {1 + [๐ผฮฆ(๐‘˜0๐‘ฅ๐œ’๐‘‡\๐‘‡0

    )

    +๐ผฮฆ((๐‘˜0 |๐‘ฅ| + ๐‘‘) ๐œ’๐‘‡0

    )]๐‘

    }1/๐‘

    =1

    ๐‘˜0

    {1 + [๐ผฮฆ(๐‘˜0๐‘ฅ๐œ’๐‘‡\๐‘‡0

    )]๐‘

    }1/๐‘

    =1

    ๐‘˜0

    (1 + ๐ผ๐‘

    ฮฆ(๐‘˜0๐‘ฅ))1/๐‘

    = 1,

    (18)

    which shows that ๐‘ฅ is not a complex extreme point of the unitball ๐ต(๐ฟ

    ฮฆ,๐‘).

    (3) โ‡’ (1). Suppose that ๐‘ฅ โˆˆ ๐‘†(๐ฟฮฆ,๐‘) is not a complex

    strongly extreme point of the unit ball ๐ต(๐ฟฮฆ,๐‘),; then there

    exists ๐œ€0> 0 such thatฮ”

    ๐‘(๐‘ฅ, ๐œ€0) = 0.That is, there exist๐œ†

    ๐‘›โˆˆ C

    with |๐œ†๐‘›| โ†’ 1 and๐‘ฆ

    ๐‘›โˆˆ ๐ฟฮฆ,๐‘

    satisfying โ€–๐‘ฆ๐‘›โ€–ฮฆ,๐‘

    โ‰ฅ ๐œ€0such that

    ๐œ†๐‘›๐‘ฅ0 ยฑ ๐‘ฆ๐‘›ฮฆ,๐‘ โ‰ค 1,

    ๐œ†๐‘›๐‘ฅ0 ยฑ ๐‘–๐‘ฆ๐‘›ฮฆ,๐‘ โ‰ค 1, (19)

    which gives๐‘ฅ0ยฑ๐‘ฆ๐‘›

    ๐œ†๐‘›

    ฮฆ,๐‘

    โ‰ค1๐œ†๐‘›

    ,

    ๐‘ฅ0ยฑ ๐‘–๐‘ฆ๐‘›

    ๐œ†๐‘›

    ฮฆ,๐‘

    โ‰ค1๐œ†๐‘›

    . (20)

    Setting ๐‘ง๐‘›= ๐‘ฆ๐‘›/๐œ†๐‘›, we have๐‘ง๐‘›ฮฆ,๐‘ โ‰ฅ

    ๐‘ฆ๐‘›ฮฆ,๐‘ โ‰ฅ ๐œ€0,

    ๐‘ฅ0 ยฑ ๐‘ง๐‘›ฮฆ,๐‘ โ‰ค

    1๐œ†๐‘›

    ,

    ๐‘ฅ0 ยฑ ๐‘–๐‘ง๐‘›ฮฆ,๐‘ โ‰ค

    1๐œ†๐‘›

    .

    (21)

    For the above ๐œ€0> 0, by Lemma 1, there exists ๐›ฟ

    0โˆˆ

    (0, 1/2) such that if ๐‘ข, V โˆˆ C and

    |V| โ‰ฅ๐œ€0

    8max๐‘’|๐‘ข + ๐‘’V| , (22)

    then

    |๐‘ข| โ‰ค1 โˆ’ 2๐›ฟ

    0

    4ฮฃ๐‘’ |๐‘ข + ๐‘’V| . (23)

    For each ๐‘› โˆˆ N, let

    ๐ด๐‘›= {๐‘ก โˆˆ ๐‘‡ :

    ๐‘ง๐‘› (๐‘ก) โ‰ฅ

    ๐œ€0

    8max๐‘’

    ๐‘ฅ0 (๐‘ก) + ๐‘’๐‘ง๐‘› (๐‘ก)} ,

    ๐‘ง(1)

    ๐‘›: ๐‘ง(1)

    ๐‘›(๐‘ก) = ๐‘ง

    ๐‘›(๐‘ก) (๐‘ก โˆ‰ ๐ด

    ๐‘›) , ๐‘ง

    (1)

    ๐‘›(๐‘ก) = 0 (๐‘ก โˆˆ ๐ด

    ๐‘›) ,

    ๐‘ง(2)

    ๐‘›: ๐‘ง(2)

    ๐‘›(๐‘ก) = 0 (๐‘ก โˆ‰ ๐ด

    ๐‘›) , ๐‘ง

    (2)

    ๐‘›(๐‘ก) = ๐‘ง

    ๐‘›(๐‘ก) (๐‘ก โˆˆ ๐ด

    ๐‘›) .

    (24)

    It is easy to see that ๐‘ง๐‘›= ๐‘ง(1)

    ๐‘›+๐‘ง(2)

    ๐‘›,โˆ€๐‘› โˆˆ N. Since |๐œ†

    ๐‘›| โ†’ 1

    when ๐‘› โ†’ โˆž, the following inequalities

    ๐‘ง(1)

    ๐‘›

    ฮฆ,๐‘

    = inf๐‘˜>0

    1

    ๐‘˜{1 + [โˆซ

    ๐‘กโˆ‰๐ด๐‘›

    ฮฆ(๐‘ก, ๐‘˜๐‘ง๐‘› (๐‘ก)

    ) ๐‘‘๐‘ก]

    ๐‘

    }

    1/๐‘

    โ‰ค inf๐‘˜>0

    1

    ๐‘˜{1+

    [โˆซ๐‘กโˆ‰๐ด๐‘›

    ฮฆ(๐‘ก, ๐‘˜๐œ€0

    8max๐‘’

    ๐‘ฅ0 (๐‘ก) + ๐‘’๐‘ง๐‘› (๐‘ก)) ๐‘‘๐‘ก]

    ๐‘

    }

    1/๐‘

    โ‰ค๐œ€0

    8

    max๐‘’

    ๐‘ฅ0 + ๐‘’๐‘ง๐‘›

    ฮฆ,๐‘

    โ‰ค๐œ€0

    8

    ฮฃ๐‘’๐‘ฅ0 + ๐‘’๐‘ง๐‘›

    ฮฆ,๐‘

    โ‰ค๐œ€0

    2๐œ†๐‘›

    <3๐œ€0

    4

    (25)

    hold for ๐‘› large enough.Therefore, โ€–๐‘ง(2)

    ๐‘›โ€–ฮฆ,๐‘

    > ๐œ€0/4 which shows that ๐œ‡(๐ด

    ๐‘›) > 0

    for ๐‘› large enough. Furthermore, for any ๐‘ก โˆˆ ๐ด๐‘›, we have

    ๐‘ฅ0 (๐‘ก) โ‰ค

    1 โˆ’ 2๐›ฟ0

    4ฮฃ๐‘’

    ๐‘ฅ0 (๐‘ก) + ๐‘’๐‘ง๐‘› (๐‘ก) .

    (26)

    To complete the proof, we consider the following twocases.

    (I) One has ๐‘˜๐‘›โ†’ โˆž(๐‘› โ†’ โˆž), where ๐‘˜

    ๐‘›โˆˆ ๐พ๐‘((1/4)

    ฮฃ๐‘’|๐‘ฅ0+ ๐‘’๐‘ง๐‘›|).

  • 4 Abstract and Applied Analysis

    For each ๐‘› โˆˆ N, we get

    1 =๐‘ฅ0

    ฮฆ,๐‘

    โ‰ค1

    ๐‘˜๐‘›

    {1 + ๐ผ๐‘

    ฮฆ(๐‘˜๐‘›๐‘ฅ0)}1/๐‘

    =1

    ๐‘˜๐‘›

    {1 + [โˆซ๐‘กโˆˆ๐ด๐‘›

    ฮฆ(๐‘ก, ๐‘˜๐‘›

    ๐‘ฅ0 (๐‘ก)) ๐‘‘๐‘ก

    +โˆซ๐‘กโˆ‰๐ด๐‘›

    ฮฆ(๐‘ก, ๐‘˜๐‘›

    ๐‘ฅ0 (๐‘ก)) ๐‘‘๐‘ก]

    ๐‘

    }

    1/๐‘

    โ‰ค1

    ๐‘˜๐‘›

    {1 + [โˆซ๐‘กโˆˆ๐ด๐‘›

    ฮฆ(๐‘ก, ๐‘˜๐‘›(1 โˆ’ 2๐›ฟ

    0

    4

    ร—ฮฃ๐‘’

    ๐‘ฅ0 (๐‘ก) + ๐‘’๐‘ง๐‘› (๐‘ก) )) ๐‘‘๐‘ก

    + โˆซ๐‘กโˆ‰๐ด๐‘›

    ฮฆ(๐‘ก, ๐‘˜๐‘›

    ร— (1

    4ฮฃ๐‘’

    ๐‘ฅ0 (๐‘ก) + ๐‘’๐‘ง๐‘› (๐‘ก))) ๐‘‘๐‘ก]

    ๐‘

    }

    1/๐‘

    โ‰ค1

    ๐‘˜๐‘›

    {1

    + [ (1 โˆ’ 2๐›ฟ0)

    ร— โˆซ๐‘กโˆˆ๐ด๐‘›

    ฮฆ(๐‘ก, ๐‘˜๐‘›(1

    4ฮฃ๐‘’

    ๐‘ฅ0 (๐‘ก) + ๐‘’๐‘ง๐‘› (๐‘ก))) ๐‘‘๐‘ก

    + โˆซ๐‘กโˆ‰๐ด๐‘›

    ฮฆ(๐‘ก, ๐‘˜๐‘›

    ร—(1

    4ฮฃ๐‘’

    ๐‘ฅ0 (๐‘ก) + ๐‘’๐‘ง๐‘› (๐‘ก))) ๐‘‘๐‘ก]

    ๐‘

    }

    1/๐‘

    =1

    ๐‘˜๐‘›

    {1

    + [๐ผฮฆ(๐‘˜๐‘›(1

    4ฮฃ๐‘’

    ๐‘ฅ0 + ๐‘’๐‘ง๐‘›)) โˆ’ 2๐›ฟ0

    ร— โˆซ๐‘กโˆˆ๐ด๐‘›

    ฮฆ(๐‘ก, ๐‘˜๐‘›

    ร—(1

    4ฮฃ๐‘’

    ๐‘ฅ0 (๐‘ก) + ๐‘’๐‘ง๐‘› (๐‘ก))) ๐‘‘๐‘ก]

    ๐‘

    }

    1/๐‘

    .

    (27)

    Furthermore, we notice that

    โˆซ๐‘กโˆˆ๐ด๐‘›

    ฮฆ(๐‘ก, ๐‘˜๐‘›(1

    4ฮฃ๐‘’

    ๐‘ฅ0 (๐‘ก) + ๐‘’๐‘ง๐‘› (๐‘ก))) ๐‘‘๐‘ก

    โ‰ฅ โˆซ๐‘กโˆˆ๐ด๐‘›

    ฮฆ(๐‘ก, ๐‘˜๐‘›

    ๐‘ง๐‘› (๐‘ก)) ๐‘‘๐‘ก

    โ‰ฅ [๐‘˜๐‘

    ๐‘›

    ๐‘ง(2)

    ๐‘›

    ๐‘

    ฮฆ,๐‘โˆ’ 1]1/๐‘

    โ‰ฅ [(๐œ€0

    4๐‘˜๐‘›)

    ๐‘

    โˆ’ 1]

    1/๐‘

    .

    (28)

    Since ๐‘˜๐‘›โ†’ โˆžwhen ๐‘› โ†’ โˆž, we can see that the inequality

    ((๐œ€0/4)๐‘˜๐‘›)๐‘โˆ’ 1 > 0 holds for ๐‘› large enough. Moreover, we

    find that

    ๐ผฮฆ(๐‘˜๐‘›(1

    4ฮฃ๐‘’

    ๐‘ฅ0 + ๐‘’๐‘ง๐‘›))

    โ‰ฅ ๐ผฮฆ(๐‘˜๐‘›๐‘ฅ0)

    โ‰ฅ (๐‘˜๐‘

    ๐‘›โˆ’ 1)1/๐‘

    โ‰ฅ 2๐›ฟ0((๐œ€0

    4๐‘˜๐‘›)

    ๐‘

    โˆ’ 1)

    1/๐‘

    .

    (29)

    Then we deduce

    1 =๐‘ฅ0

    ฮฆ,๐‘

    โ‰ค1

    ๐‘˜๐‘›

    {1 + [๐ผฮฆ(๐‘˜๐‘›(1

    4ฮฃ๐‘’

    ๐‘ฅ0 + ๐‘’๐‘ง๐‘›)) โˆ’ 2๐›ฟ0

    ร— โˆซ๐‘กโˆˆ๐ด๐‘›

    ฮฆ(๐‘ก, ๐‘˜๐‘›

    ร—(1

    4ฮฃ๐‘’

    ๐‘ฅ0 (๐‘ก) + ๐‘’๐‘ง๐‘› (๐‘ก))) ๐‘‘๐‘ก]

    ๐‘

    }

    1/๐‘

    โ‰ค1

    ๐‘˜๐‘›

    {1 + [๐ผฮฆ(๐‘˜๐‘›(1

    4ฮฃ๐‘’

    ๐‘ฅ0 + ๐‘’๐‘ง๐‘›))

    โˆ’2๐›ฟ0((๐œ€0

    4๐‘˜๐‘›)

    ๐‘

    โˆ’ 1)

    1/๐‘

    ]

    ๐‘

    }

    1/๐‘

    <1

    ๐‘˜๐‘›

    {1 + ๐ผ๐‘

    ฮฆ(๐‘˜๐‘›(1

    4ฮฃ๐‘’

    ๐‘ฅ0 + ๐‘’๐‘ง๐‘›))}

    1/๐‘

    = 1,

    (30)

    a contradiction.(II) One has ๐‘˜

    ๐‘›โ†’ ๐‘˜

    0(๐‘› โ†’ โˆž), where ๐‘˜

    ๐‘›โˆˆ

    ๐พ๐‘((1/4)ฮฃ

    ๐‘’|๐‘ฅ0+ ๐‘’๐‘ง๐‘›|), ๐‘˜0โˆˆ R.

    Then for each ๐‘› โˆˆ N,

    1

    ๐œ†๐‘›

    โ‰ฅ

    1

    4ฮฃ๐‘’

    ๐‘ฅ0 + ๐‘’๐‘ง๐‘›

    ฮฆ,๐‘

    =1

    ๐‘˜๐‘›

    {1 + ๐ผ๐‘

    ฮฆ(๐‘˜๐‘›

    4ฮฃ๐‘’

    ๐‘ฅ0 + ๐‘’๐‘ง๐‘›)}

    1/๐‘

    โ‰ฅ1

    ๐‘˜๐‘›

    {1 + ๐ผ๐‘

    ฮฆ(๐‘˜๐‘›๐‘ฅ0)}1/๐‘

    โ‰ฅ๐‘ฅ0

    ฮฆ,๐‘ = 1.

    (31)

    Let ๐‘› โ†’ โˆž, we deduce that 1 = (1/๐‘˜0){1 + ๐ผ

    ๐‘

    ฮฆ(๐‘˜0๐‘ฅ0)}1/๐‘

    =

    โ€–๐‘ฅ0โ€–ฮฆ,๐‘

    .

  • Abstract and Applied Analysis 5

    From (I), we obtain that

    1 =โ€– ๐‘ฅ0โ€–ฮฆ,๐‘

    โ‰ค1

    ๐‘˜๐‘›

    {1+ [๐ผฮฆ(๐‘˜๐‘›(1

    4ฮฃ๐‘’

    ๐‘ฅ0 + ๐‘’๐‘ง๐‘›)) โˆ’ 2๐›ฟ0

    ร— โˆซ๐‘กโˆˆ๐ด๐‘›

    ฮฆ(๐‘ก, ๐‘˜๐‘›

    ร— (1

    4ฮฃ๐‘’

    ๐‘ฅ0 (๐‘ก) + ๐‘’๐‘ง๐‘› (๐‘ก))) ๐‘‘๐‘ก]

    ๐‘

    }

    1/๐‘

    .

    (32)

    Now we consider the following two subcases.(a) Consider โˆซ

    ๐‘กโˆˆ๐ด๐‘›

    ฮฆ(๐‘ก, ๐‘˜๐‘›((1/4)ฮฃ

    ๐‘’|๐‘ฅ0(๐‘ก) + ๐‘’๐‘ง

    ๐‘›(๐‘ก)|))๐‘‘๐‘ก > 0

    for some ๐‘› โˆˆ N.Then we obtain

    1 =โ€– ๐‘ฅ0โ€–ฮฆ,๐‘

    โ‰ค1

    ๐‘˜๐‘›

    {1 + [๐ผฮฆ(๐‘˜๐‘›(1

    4ฮฃ๐‘’

    ๐‘ฅ0 + ๐‘’๐‘ง๐‘›)) โˆ’ 2๐›ฟ0

    ร— โˆซ๐‘กโˆˆ๐ด๐‘›

    ฮฆ(๐‘ก, ๐‘˜๐‘›

    ร—(1

    4ฮฃ๐‘’

    ๐‘ฅ0 (๐‘ก) + ๐‘’๐‘ง๐‘› (๐‘ก))) ๐‘‘๐‘ก]

    ๐‘

    }

    1/๐‘

    <1

    ๐‘˜๐‘›

    {1 + ๐ผ๐‘

    ฮฆ(๐‘˜๐‘›(1

    4ฮฃ๐‘’

    ๐‘ฅ0 + ๐‘’๐‘ง๐‘›))}

    1/๐‘

    = 1,

    (33)

    a contradiction.(b) Consider โˆซ

    ๐‘กโˆˆ๐ด๐‘›

    ฮฆ(๐‘ก, ๐‘˜๐‘›((1/4)ฮฃ

    ๐‘’|๐‘ฅ0(๐‘ก) + ๐‘’๐‘ง

    ๐‘›(๐‘ก)|))๐‘‘๐‘ก = 0

    for any ๐‘› โˆˆ N.For ๐‘› large enough, we observe that

    ๐‘˜๐‘›>1 โˆ’ 2๐›ฟ

    0

    1 โˆ’ ๐›ฟ0

    ๐‘˜0. (34)

    Hence, we get

    0 = โˆซ๐‘กโˆˆ๐ด๐‘›

    ฮฆ(๐‘ก, ๐‘˜๐‘›(1

    4ฮฃ๐‘’

    ๐‘ฅ0 (๐‘ก) + ๐‘’๐‘ง๐‘› (๐‘ก))) ๐‘‘๐‘ก

    โ‰ฅ โˆซ๐‘กโˆˆ๐ด๐‘›

    ฮฆ(๐‘ก,

    ๐‘˜๐‘›

    1 โˆ’ 2๐›ฟ0

    ๐‘ฅ0(๐‘ก)

    ) ๐‘‘๐‘ก

    โ‰ฅ โˆซ๐‘กโˆˆ๐ด๐‘›

    ฮฆ(๐‘ก,

    ๐‘˜0

    1 โˆ’ ๐›ฟ0

    ๐‘ฅ0(๐‘ก)

    ) ๐‘‘๐‘ก โ‰ฅ 0.

    (35)

    Thus, we see the equalityโˆซ๐‘กโˆˆ๐ด๐‘›

    ฮฆ(๐‘ก, |(๐‘˜0/(1โˆ’๐›ฟ

    0))๐‘ฅ0(๐‘ก)|) ๐‘‘๐‘ก = 0

    holds for ๐‘› large enough. It follows that

    ๐‘˜0

    1 โˆ’ ๐›ฟ0

    ๐‘ฅ0(๐‘ก)

    โ‰ค ๐‘’ (๐‘ก) , ๐œ‡-a.e. ๐‘ก โˆˆ ๐ด

    ๐‘› (36)

    since ๐œ‡(๐ด๐‘›) > 0 for ๐‘› large enough.

    On the other hand, by (3), we deduce that

    ๐‘˜0๐‘ฅ0 (๐‘ก) โ‰ฅ ๐‘’ (๐‘ก) , ๐œ‡-a.e. ๐‘ก โˆˆ ๐ด๐‘›. (37)

    Hence, we get a contradiction:

    ๐‘˜0

    1 โˆ’ ๐›ฟ0

    ๐‘ฅ0(๐‘ก)

    โ‰ฅ

    ๐‘’ (๐‘ก)

    1 โˆ’ ๐›ฟ0

    > ๐‘’ (๐‘ก) , ๐œ‡-a.e. ๐‘ก โˆˆ ๐ด๐‘›. (38)

    Theorem 4. Assume 1 โ‰ค ๐‘ < โˆž; then the following assertionsare equivalent:

    (1) ๐ฟฮฆ,๐‘

    is complex midpoint locally uniformly convex;

    (2) ๐ฟฮฆ,๐‘

    is complex strictly convex;

    (3) ๐‘’(๐‘ก) = 0 for ๐œ‡-a.e. ๐‘ก โˆˆ ๐‘‡.

    Proof. The implication (1) โ‡’ (2) is trivial. Now assume that๐ฟฮฆ,๐‘

    is complex strictly convex. If ๐œ‡{๐‘ก โˆˆ ๐‘‡ : ๐‘’(๐‘ก) > 0} > 0, let๐‘‡0= {๐‘ก โˆˆ ๐‘‡ : ๐‘’(๐‘ก) > 0} and it is not difficult to find an element

    ๐‘ฅ โˆˆ ๐‘†(๐ฟฮฆ,๐‘) satisfying supp ๐‘ฅ = ๐‘‡ \ ๐‘‡

    0. Take ๐‘˜ โˆˆ ๐พ

    ๐‘(๐‘ฅ), and

    define

    ๐‘ฆ (๐‘ก) ={

    {

    {

    ๐‘’ (๐‘ก)

    2๐‘˜for ๐‘ก โˆˆ ๐‘‡

    0,

    ๐‘ฅ (๐‘ก) for ๐‘ก โˆˆ ๐‘‡ \ ๐‘‡0.

    (39)

    Obviously, โ€–๐‘ฆโ€–ฮฆ,๐‘

    โ‰ฅ โ€–๐‘ฅโ€–ฮฆ,๐‘

    = 1. On the other hand,

    ๐‘ฆฮฆ,๐‘ โ‰ค

    1

    ๐‘˜{1 + [โˆซ

    ๐‘กโˆˆ๐‘‡0

    ฮฆ(๐‘ก,๐‘’ (๐‘ก)

    2) ๐‘‘๐‘ก

    +โˆซ๐‘‡\๐‘‡0

    ฮฆ (๐‘ก, ๐‘˜๐‘ฅ (๐‘ก)) ๐‘‘๐‘ก]

    ๐‘

    }

    1/๐‘

    =1

    ๐‘˜(1 + ๐ผ

    ๐‘

    ฮฆ(๐‘˜๐‘ฅ))1/๐‘

    = 1.

    (40)

    Thus, โ€–๐‘ฆโ€–ฮฆ,๐‘

    = (1/๐‘˜)(1 + ๐ผ๐‘

    ฮฆ(๐‘˜๐‘ฆ))1/๐‘

    = 1. However, for ๐‘ก โˆˆ๐‘‡0, we find ๐‘˜|๐‘ฆ(๐‘ก)| = ๐‘’(๐‘ก)/2 < ๐‘’(๐‘ก), which implies ๐‘ฆ โˆˆ ๐‘†(๐ฟ

    ฮฆ,๐‘)

    is not a complex extreme point of ๐ต(๐ฟฮฆ,๐‘) fromTheorem 3.

    (3) โ‡’ (1). Suppose that ๐‘ฅ โˆˆ ๐‘†(๐ฟฮฆ,๐‘) is not a complex

    strongly extreme point of ๐ต(๐ฟฮฆ,๐‘). It follows fromTheorem 3

    that ๐œ‡{๐‘ก โˆˆ ๐‘‡ : ๐‘˜0|๐‘ฅ(๐‘ก)| < ๐‘’(๐‘ก)} > 0 for some ๐‘˜

    0โˆˆ ๐พ๐‘(๐‘ฅ),

    consequently ๐œ‡{๐‘ก โˆˆ ๐‘‡ : ๐‘’(๐‘ก) > 0} > 0which is a contradiction.

    Remark 5. If ๐‘ = โˆž then ๐‘-Amemiya norm equals Luxem-burg norm, the problem of complex convexity of Musielak-Orlicz function spaces equipped with the Luxemburg normhas been investigated in [8].

    Conflict of Interests

    The authors declare that there is no conflict of interestsregarding the publication of this paper.

  • 6 Abstract and Applied Analysis

    Acknowledgments

    This work is supported by Grants from HeilongjiangProvincial Natural Science Foundation for Youths (no.QC2013C001), Natural Science Foundation of HeilongjiangEducational Committee (no. 12531099), Youth Science Fundof Harbin University of Science and Technology (no.2011YF002), and Tianyuan Funds of the National NaturalScience Foundation of China (no. 11226127).

    References

    [1] O. Blasco and M. Pavlovicฬ, โ€œComplex convexity and vector-valued Littlewood-Paley inequalities,โ€ Bulletin of the LondonMathematical Society, vol. 35, no. 6, pp. 749โ€“758, 2003.

    [2] C. Choi, A. Kaminฬska, and H. J. Lee, โ€œComplex convexity ofOrlicz-Lorentz spaces and its applications,โ€ Bulletin of the PolishAcademy of Sciences:Mathematics, vol. 52, no. 1, pp. 19โ€“38, 2004.

    [3] H. Hudzik and A. Narloch, โ€œRelationships betweenmonotonic-ity and complex rotundity properties with some consequences,โ€Mathematica Scandinavica, vol. 96, no. 2, pp. 289โ€“306, 2005.

    [4] H. J. Lee, โ€œMonotonicity and complex convexity in Banachlattices,โ€ Journal of Mathematical Analysis and Applications, vol.307, no. 1, pp. 86โ€“101, 2005.

    [5] H. J. Lee, โ€œComplex convexity and monotonicity in Quasi-Banach lattices,โ€ Israel Journal of Mathematics, vol. 159, no. 1, pp.57โ€“91, 2007.

    [6] M. M. Czerwinฬska and A. Kaminฬska, โ€œComplex rotunditiesand midpoint local uniform rotundity in symmetric spaces ofmeasurable operators,โ€ Studia Mathematica, vol. 201, no. 3, pp.253โ€“285, 2010.

    [7] E. Thorp and R. Whitley, โ€œThe strong maximum modulustheorem for analytic functions into a Banach space,โ€ Proceedingsof the AmericanMathematical Society, vol. 18, pp. 640โ€“646, 1967.

    [8] L. Chen, Y. Cui, and H. Hudzik, โ€œCriteria for complex stronglyextreme points of Musielak-Orlicz function spaces,โ€ NonlinearAnalysis: Theory, Methods & Applications, vol. 70, no. 6, pp.2270โ€“2276, 2009.

    [9] S. Chen, Geometry of Orlicz Spaces, Dissertationes Mathemati-cae, 1996.

    [10] Y. Cui, L. Duan, H. Hudzik, and M. Wisล‚a, โ€œBasic theory of p-Amemiya norm in Orlicz spaces (1 โ‰ค ๐‘ โ‰ค โˆž): extreme pointsand rotundity in Orlicz spaces endowed with these norms,โ€Nonlinear Analysis: Theory, Methods & Applications, vol. 69, no.5-6, pp. 1796โ€“1816, 2008.

  • Submit your manuscripts athttp://www.hindawi.com

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical Problems in Engineering

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Differential EquationsInternational Journal of

    Volume 2014

    Applied MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical PhysicsAdvances in

    Complex AnalysisJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    OptimizationJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Operations ResearchAdvances in

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Function Spaces

    Abstract and Applied AnalysisHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of Mathematics and Mathematical Sciences

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Algebra

    Discrete Dynamics in Nature and Society

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Decision SciencesAdvances in

    Discrete MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Volume 2014 Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Stochastic AnalysisInternational Journal of