ligo-g070587-00-z gravitational waves: next window on the universe thomas nash california institute...

46
LIGO-G070587-00-Z Gravitational Waves: Next Window on the Universe Thomas Nash California Institute of Technology LIGO Scientific Collaboration Universidad del Estado de Río de Janeiro Setembro 14, 2007

Upload: eunice-malone

Post on 17-Jan-2016

216 views

Category:

Documents


2 download

TRANSCRIPT

LIGO-G070587-00-Z

Gravitational Waves:Next Window on the Universe

Thomas NashCalifornia Institute of Technology

LIGO Scientific Collaboration

Universidad del Estado de Río de JaneiroSetembro 14, 2007

LIGO Scientific Collaboration 2LIGO-G070587-00-Z

Gravity Waves?

Einstein’s General Relativity is the gauge theory of gravity

Just like Electromagnetism …… well, not quite …

… Graviton spin = 2

Einstein’s gravity describes curvature of space-time Waves are “ripples in the fabric of space-time” Newton: instantaneous action at a distance Einstein: dynamic gravity information travels at light speed

Of course!

LISA

QuickTime™ and aGIF decompressor

are needed to see this picture.

LIGO Scientific Collaboration 3LIGO-G070587-00-Z

Newton:

Unlike other forces, effect on a is independent of object property m

Einstein: G =8πTWheeler’s tensor notation - Einstein curvature tensor

- Stress energy tensor Tµv

Curvature of space-time depends on local stress-energy (mass)

Gravity is Geometry

F = ma =GmM

r2

Gμν = Rμν − 12 gμν R

California Department of Motor Vehicles License Plate GEQ8PIT is offensive to good taste!

LIGO Scientific Collaboration 4LIGO-G070587-00-Z

Conservation of energy-momentum : So, by construction: Conservation of mass-energy: no monopole source

» Just like E&M - conservation of charge

Conservation of momentum: no mass dipole source!

» Conservation of angular momentum: no “magnetic” dipole source

» No spherical sources of Gravity Waves

Gravity waves are quadrupole (& higher)» Graviton spin = 2

Gravity wave detectors must be quadrupole antennas

Conservation Laws Rule!

∇T = 0

∇G = 0

˙ ̇ d =∂ 2

∂t 2mx =∑ ∂

∂tm˙ x =∑ ˙ p = 0

LIGO Scientific Collaboration 5LIGO-G070587-00-Z

Quadrupole Sources & Waves …

Coalescing binary» Black holes and/or neutron stars

Aspherical pulsar Aspherical supernova collapse Big Bang

Linearize General Relativity in weak field limit, small

metric:

transverse traceless gauge:

gμυ = ημυ + hμυ

∇2 − 1c 2

∂ 2

∂t 2

⎝ ⎜

⎠ ⎟hμυ = 0

hμυ

LIGO Scientific Collaboration 6LIGO-G070587-00-Z

Elements of are waves, h(ω t - k•x) Transverse, traceless with 2 polarizations: h=ah++bhx

Resonant bar detectors are rung by effective forceEarly GW detector design~ 6 are still in use ~900 Hz (typ)

… Quadrupole Sources & Waves …

hμυ

h+ =

0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0

⎜ ⎜ ⎜ ⎜

⎟ ⎟ ⎟ ⎟

hΧ =

0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

⎜ ⎜ ⎜ ⎜

⎟ ⎟ ⎟ ⎟

h+ as lines of forcehX is rotated 45°

LIGO Scientific Collaboration 7LIGO-G070587-00-Z

… Quadrupole Sources & Waves

In this “TT” gauge, coordinates are worldlines of freely falling bodies

Distance between masses at corners of a square change as gravity wave passes

h+ polarization:» X expands

Y shrinks» Y expands

X shrinks …

hX polarization» Rotated 45°

LIGO Scientific Collaboration 8LIGO-G070587-00-Z

Quadrupole GW Antennas

A natural detector: interferometers measure length Test masses are mirrors

= dx dy( )1+ h+ hX

hX 1− h+

⎝ ⎜

⎠ ⎟dx

dy

⎝ ⎜

⎠ ⎟

dL2 = gμν dxμdxν

LIGO Scientific Collaboration 9LIGO-G070587-00-Z

Laser Interferometer Gravitational-wave Observatory

Livingston, Louisiana4 km

Hanford, Washington State2 km and 4 km

LIGO Scientific Collaboration 10LIGO-G070587-00-Z

Two locations, far apart

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

LIGO Scientific Collaboration 11LIGO-G070587-00-Z

Global network of interferometers

LIGO4 km

LIGO4 km & 2 km

VIRGO3 km TAMA

300m

GEO600m

AIGO-R&D facility

LIGO Scientific Collaboration 12LIGO-G070587-00-Z

Worldwide Network Gravity Wave Observatories

Why so large?» Gravity waves affect δL/L ~ h

» Need large L for high sensitivity

Why so far apart?» Sensitivity is extremely high (as we shall see)

» Require coincidence of at least 2 detectors

» Different local noise sources (seismic, electric, audio, …)

Why so many?» Antennas are somewhat directional

» Multiple observatories can triangulate sources

» Detector duty factors <100%. Missed SN1987A. Not to happen again.

LIGO Scientific Collaboration 13LIGO-G070587-00-Z

r12 ~ 2 106 kmm1 = 1.4m; m2 = 1.36m; = 0.617

Indirect Detection of Gravity Waves Hulse & Taylor Nobel Prize

Neutron Binary Pulsar SystemPSR 1913 + 16

17 / sec

~ 8 hr

Emits gravity waves

… loses energy

General Relativity prediction:spiral in by 3 mm/orbitslowing orbital period

LIGO Scientific Collaboration 14LIGO-G070587-00-Z

Direct Detection Sensitivity Requirement

with Iμv the quadrupole moment

Binary Star

where are Schwarzschild radii

Real numbers: M ≈ 1.4 M

rorbit ≈ 20 km forbit ≈ 400 Hz

RVirgo Cluster ≈ 15 Mpc h ≈ 10-21

δLX - δLY ≈ 4 10-16 cm ≈ .003 rH nucleus over 4 km !!

hμν =2G

Rc 4˙ ̇ I μν

hxx = −hyy ≈rs1

rs2

rorbitRcos 2(2πforbit )t[ ]

rs =2GM

c 2

LIGO Scientific Collaboration 15LIGO-G070587-00-Z

Much Longer than 4 km!

Michelson interferometer with a “light storage arm” Fabry-Perot Cavity

Escaping light (r2=1)

Phase is sensitive to δL

"Finesse” of LIGO cavities F ~ 200 so like 800/π x 4 km

Eesc = EO

t12

1− r1e−2kL

≈ EO

t12

1− r1(1− i2kL)near resonance.

δφ ≈4 r1

1− r1kδL ≡

4

πFkδL =

4

πFδφMichelson

LIGO Scientific Collaboration 16LIGO-G070587-00-Z

How to Detect Phase

1.064 µm laser light is resonant in Michelson and Fabry Perot Cavities, so phase is sensitive to gravity wave h

RF phase modulate laser light at fmod= 24.463 MHz

through a “Pockels Cell” crystal which converts V to φ Sidebands are non-resonant and so not sensitive to h Lengths are locked on laser carrier dark fringe Only sidebands come out of the interferometer with

power 2ΦGW X the phase modulation:

Demodulate --> audio frequency Gravity Wave signal.

POUT ≈ 2ΦGWδ sin2πfmod t

LIGO Scientific Collaboration 17LIGO-G070587-00-Z

How to Lock the Interferometer

Suspended mirrors each have 4 magnetic sensor/controllers to adjust angles and position

One Fabry-Perot arm is length reference for laser frequency in a feed back loop locked to arm resonance

Second arm mirror positions adjusted so cavity length is locked to this frequency

Beam splitter is moved to lock on dark fringe Mirror/beam angle alignments sensed and locked at 2nd

RF modulation frequency on quad photodetectors … and more complications and locking

» Input (&output) mode cleaners. Power recycling. Future signal recycling.

LIGO Scientific Collaboration 18LIGO-G070587-00-Z

Simple diagram. Complex System.

LIGO Scientific Collaboration 19LIGO-G070587-00-Z

All-Solid-State Nd:YAG Laser

Custom-built10 W Nd:YAG Laser

LIGO Scientific Collaboration 20LIGO-G070587-00-Z

Test Mass Mirrors

Substrates: SiO2» 25 cm Diameter, 10 cm thick» Homogeneity < 5 x 10-7

» Internal mode Q’s > 2 x 106

Polishing» Surface uniformity < 1 nm rms» Radii of curvature matched < 3%

Coating» Scatter < 50 ppm» Absorption < 2 ppm» Uniformity <10-3

LIGO Scientific Collaboration 21LIGO-G070587-00-Z

Mirror Suspension & Control

Local sensors/actuators provide damping and control forces

Optics suspended as simple pendulums on 0.25 mm wire

LIGO Scientific Collaboration 22LIGO-G070587-00-Z

Corner Station Vacuum Chambers

Vacuum: 10-6 torr

~1m diameter 2 x 4 km long

Adapted from Fred Raab slide

LIGO Scientific Collaboration 23LIGO-G070587-00-Z

Vibration Isolation Systems

Reduce in-band seismic motion by 104 to 106

Actuation corrects Earth tides and microseismic at 0.15 Hz

HAM Chamber BSC Chamber

LIGO Scientific Collaboration 24LIGO-G070587-00-Z

Seismic Isolation Springs and Masses

damped springcross section

LIGO Scientific Collaboration 25LIGO-G070587-00-Z

Advanced Dynamic Seismic Isolation

First installed in Louisianato reduce anthropogenic noise

LIGO Scientific Collaboration 26LIGO-G070587-00-Z

Major noise sources for LIGO

Displacement NoiseSeismic

Thermal Noise

Radiation Pressure

Sensing NoisePhoton Shot Noise

Facilities limitsResidual Gas (scattering)

Inherent limit on groundGravity gradient noise

LIGO Scientific Collaboration 27LIGO-G070587-00-Z

Louisiana Control Room…

LIGO Scientific Collaboration 28LIGO-G070587-00-Z

…Louisiana Control Room…

Y-arm Test Mass TV images

LIGO Scientific Collaboration 29LIGO-G070587-00-Z

…Louisiana Control Room…

LIGO Scientific Collaboration 30LIGO-G070587-00-Z

…Louisiana Control Room…

LIGO Scientific Collaboration 31LIGO-G070587-00-Z

What happened 6 hours ago?

LIGO Scientific Collaboration 32LIGO-G070587-00-Z

…Louisiana Control Room…

LIGO Scientific Collaboration 33LIGO-G070587-00-Z

Observational Searches

Science Run 5: 1 year coincident running at design luminosity 2006-7

S5 sensitivity improved by ~10x » Volume observed = Sensitivity3 = 1000x

Binary inspirals: chirp signal Pulsars: wobbling, accreting, mountainous

stars known frequency Bursts: listening for supernova… Stochastic: Cosmological Background early universe

Astrophysical background noisy present day

LIGO Scientific Collaboration 34LIGO-G070587-00-Z

How not to be fooled

Require at least 2 independent signals» 2 non-local site coincidences for inspiral and burst» External trigger for GRB or nearby supernova

Known constraints» Pulsar ephemeris» Inspiral waveform from Post-Newtonian GR numerical calculations» Time difference between sites

Veto on environmental monitors» Seismometers, accelerometers, wind-monitors» Microphones, magnetometers, line-volt meters

Monitor detector response» Hardware injections of pseudo signals (actuators move mirrors)» Software signal injections

LIGO Scientific Collaboration 35LIGO-G070587-00-Z

Upper limits now have physics significance…

Rate/L10 vs. binary total mass

L10

= 1010 L,B (1 Milky Way = 1.7 L

10)

Dark region excluded at 90% confidence

Binary Coalescence S4 Upper Limits

BH-BHBH-NSPrimordial BH

arXiv:0704-3368

LIGO Scientific Collaboration 36LIGO-G070587-00-Z

Known Pulsars (~13 months S5)

Lowest ellipticity upper limit:PSR [email protected] Hz

= 7.3x10-8

PreliminaryPreliminary

LIGO Scientific Collaboration 37LIGO-G070587-00-Z

Einstein @ Home

LIGO Scientific Collaboration 38LIGO-G070587-00-Z

Stochastic Gravity Waves Our Only Window to the Big Bang

CMB

Big Bang Gravity Waves

Adapted from LISA slide

LIGO Scientific Collaboration 39LIGO-G070587-00-Z

Stochastic Upper Limits

Cross-correlate 2 data streams: e.g. Louisiana-Wash.

S4: ΩGW < 6.5 10-5

(90% CL)

S5: expect

ΩGW < 10-5 below nuclear-synthesislimit

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

ApJ 659(2007)918

LIGO Scientific Collaboration 40LIGO-G070587-00-Z

First Gravity Wave Upper Limit All Sky Map

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

Point sources with flat power spectrum

LIGO Scientific Collaboration 41LIGO-G070587-00-Z

The Future: Advanced LIGO Major installation: 2011

Active anti-seismiclower frequencies

Lower noise optics& suspensions

Increased mass mirrors (40 kg)

Higher Laser power (180 W)

Signal recycling

DC readout

LIGO Scientific Collaboration 42LIGO-G070587-00-Z

Difficult to hide from Advanced LIGO

LIGO Scientific Collaboration 43LIGO-G070587-00-Z

Space based interferometer: LISA

LISA surfinga gravity wave

3 satellites 5 106 km apart Heliocentric orbit 20° behind the earth

NASA-ESA Launch 2013?

LIGO Scientific Collaboration 44LIGO-G070587-00-Z

LIGO and LISA are Complementary

LIGO Scientific Collaboration 45LIGO-G070587-00-Z

Universe full of surprisesNeed to keep our eyes open

LIGO Scientific Collaboration 46LIGO-G070587-00-Z

References = Acknowledgement

Books» Misner, Thorne, Wheeler, Gravitation, W.H. Freeman 1973» Saulson, Fundamentals of Interferometric Gravitational Wave Detectors,

World Scientific 1994 LIGO Papers and Talks

http://www.lsc-group.phys.uwm.edu/ppcomm/Papers.html http://admdbsrv.ligo.caltech.edu/dcc/ http://www.lsc-group.phys.uwm.edu/ppcomm/Talks2007.html

» Fred Raab LIGO-G070024-01-W» Alan Weinstein {LIGO-G000162-00-R … LIGO-G000167-00-R},» Daniel Sigg LIGO-P980007-00 - D

» Laura Cardonati LIGO-G070458-00» Gabriela Gonzalez LIGO-G070013-00» Jay Marx LIGO-G060579-00-D» Bernard Whiting LIGO-G070239-00-Z» Stan Whitcomb LIGO-G070417-01-D