lights, camera, and action! gr ade 10 optics unit snc2d & snc2p

33
Lights, Camera, and Action! Grade 10 Optics Unit SNC2D & SNC2P Dan Bruni York Catholic District School Board [email protected]

Upload: tolla

Post on 22-Mar-2016

54 views

Category:

Documents


2 download

DESCRIPTION

Lights, Camera, and Action! Gr ade 10 Optics Unit SNC2D & SNC2P. Dan Bruni York Catholic District School Board [email protected]. Lights, Camera, and Action! – Grade 10 Optics Unit (SNC2D & SNC2P) - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Lights, Camera, and Action!  Gr ade 10 Optics Unit  SNC2D & SNC2P

Lights, Camera, and Action!

Grade 10 Optics Unit

SNC2D & SNC2P

Dan BruniYork Catholic District School [email protected]

Page 2: Lights, Camera, and Action!  Gr ade 10 Optics Unit  SNC2D & SNC2P

Lights, Camera, and Action! – Grade 10 Optics Unit (SNC2D & SNC2P)

Examine how light can be used to create telescopes, microscopes, and eyeglasses through hands-on inquiry-based learning. Examine optical effects and illusions, and use computer simulations to aid conceptual understanding while testing hypotheses.

Time: 10:00 AM – 11:00 AM, Thursday November 10, 2011Session #1220 Presenter: Dan Bruni

Page 3: Lights, Camera, and Action!  Gr ade 10 Optics Unit  SNC2D & SNC2P

·Addressing Misconceptions: Assessement For Learning

·The Continuum of Scientific Inquiry

·Why Use Simulations in Science?

·When Can You Use Simulations in Science?

·Colour Theory, Vision and Optical Illusions

Session Outline

Page 4: Lights, Camera, and Action!  Gr ade 10 Optics Unit  SNC2D & SNC2P

DisagreeAgree

DisagreeAgree

Addressing Misconceptions: Assessement For Learning Properties of Light and Light

Reflection

DisagreeAgree

PullPull

Page 5: Lights, Camera, and Action!  Gr ade 10 Optics Unit  SNC2D & SNC2P

DisagreeAgree

PullPull

DisagreeAgree

Page 6: Lights, Camera, and Action!  Gr ade 10 Optics Unit  SNC2D & SNC2P

DisagreeAgree

PullPull

DisagreeAgree

Refraction of Light

Page 7: Lights, Camera, and Action!  Gr ade 10 Optics Unit  SNC2D & SNC2P

DisagreeAgree

Pull

Pull

DisagreeAgree

Pull

Pull

Light and Colour (SNC 2P)

DisagreeAgree

PullPull

Page 8: Lights, Camera, and Action!  Gr ade 10 Optics Unit  SNC2D & SNC2P

DisagreeAgree

Lenses an Optical Devices DisagreeAgree

Pull

Pull

PullPull

DisagreeAgree

Page 9: Lights, Camera, and Action!  Gr ade 10 Optics Unit  SNC2D & SNC2P

The Continuum of Scientific Inquiry

P.E.O.EGuided Inquiry

Open-Ended Inquiry

Questioning

Project/Problem Based Learning

Page 10: Lights, Camera, and Action!  Gr ade 10 Optics Unit  SNC2D & SNC2P
Page 11: Lights, Camera, and Action!  Gr ade 10 Optics Unit  SNC2D & SNC2P

Nile River Delta at NightOne of the fascinating aspects of viewing Earth at night is how well the lights show the distribution of people. In this view of Egypt, the population is shown to be almost completely concentrated along the Nile Valley, just a small percentage of the country’s land area.

The Nile River and its delta look like a brilliant, long-stemmed flower in this photograph of the southeastern Mediterranean Sea, as seen from the International Space Station. The Cairo metropolitan area forms a particularly bright base of the flower. The smaller cities and towns within the Nile Delta tend to be hard to see amidst the dense agricultural vegetation during the day. However, these settled areas and the connecting roads between them become clearly visible at night. Likewise, urbanized regions and infrastructure along the Nile River becomes apparent.

Scattered blue-grey clouds cover the Mediterranean Sea and the Sinai, while much of northeastern Africa is cloud-free. The thin yellow-brown band tracing the Earth’s curvature at the top of the image is airglow, a faint band of light emission that results from the interaction of atmospheric atoms and molecules with solar radiation at an altitude of approximately 60 miles (100 kilometers).

This astronaut photograph was taken by the Expedition 25 crew on Oct. 28, 2010, with a Nikon D3S digital camera using a 16 mm lens.

PullPull

This could help in the search for alien life!

http://www.popsci.com/technology/article/2011-11/find-alien-cities-look-city-lights-distant-planets

Page 12: Lights, Camera, and Action!  Gr ade 10 Optics Unit  SNC2D & SNC2P

Compare water droplets to gel balls!

Page 13: Lights, Camera, and Action!  Gr ade 10 Optics Unit  SNC2D & SNC2P

PullPull

Page 14: Lights, Camera, and Action!  Gr ade 10 Optics Unit  SNC2D & SNC2P

+Some potential for open-ended inquiry

with different variables!

Page 15: Lights, Camera, and Action!  Gr ade 10 Optics Unit  SNC2D & SNC2P

http://phet.colorado.edu/en/simulation/bending-light

Page 16: Lights, Camera, and Action!  Gr ade 10 Optics Unit  SNC2D & SNC2P

change to using multiple lenses

microscope

telescope

Page 17: Lights, Camera, and Action!  Gr ade 10 Optics Unit  SNC2D & SNC2P

Tips for Locating the focus of Curved Lenses and Mirrors

1. Place the converging lens or mirror in the support clip on the optics bench (ruler).

2. Aim the metre stick assembly at a relatively (5m or higher) distant that is transmitting light when all of the lights are off. Examples would be a curtain with a small section left open, or a door frame in a room with a window.

3. Move a sheet of paper back and forth behind the lens (or in front of the mirror, and slightly offset from the ruler) until you see an image as sharp as possible.

4. Mark this location with a piece of chalk on the ruler. This is the focal length of your lens. Mark twice this distance as well. This represents the centre of curvature.

5. Mark the same distances on the opposite side of the lens (mirror) as the secondary focal length and centre of curvature.

http://www.nelson.com/scienceperspectives/pd/optic10/

Page 18: Lights, Camera, and Action!  Gr ade 10 Optics Unit  SNC2D & SNC2P

This simulation allows for many different types of lenses. It can be used to model the effects in the standard single lense optics bench labs

http://phet.colorado.edu/en/simulation/geometric-optics

Page 19: Lights, Camera, and Action!  Gr ade 10 Optics Unit  SNC2D & SNC2P

This simulation allows for many different types of lenses. It can be used to model the effects in the standard single lense optics bench labs and also multiple lens

simulations, such as those present in microscopes and telescopes.

http://webphysics.davidson.edu/alumni/MiLee/java/Final_Optics/optics.htm

Page 20: Lights, Camera, and Action!  Gr ade 10 Optics Unit  SNC2D & SNC2P

Why Use Simulations in Science?

Generating and testing hypotheses about new knowledge

Teaching & Learning new knowledge directly through demonstration and explanation

Representing new knowledge in nonlinguistic/graphic contexts

Page 21: Lights, Camera, and Action!  Gr ade 10 Optics Unit  SNC2D & SNC2P

When Can You Use Simulations in Science?

·Warm-Up Exercises·New Topics·Misconceptions ·Minds On

·Inquiry Based Learning·Pre-Lab Hypothesis Testing·Post Lab Comparison With Observations

·Action

·Assessment of/for Learning·Homework Checker·Project/Problem Based Learning, CPT, Summative Evaluation for a Unit/Course

·Consolidate

Page 22: Lights, Camera, and Action!  Gr ade 10 Optics Unit  SNC2D & SNC2P

http://www.youtube.com/watch?v=URLRdcnU6Hk

Page 23: Lights, Camera, and Action!  Gr ade 10 Optics Unit  SNC2D & SNC2P
Page 24: Lights, Camera, and Action!  Gr ade 10 Optics Unit  SNC2D & SNC2P

Colour Theory, Vision and Optical Illusions

Page 25: Lights, Camera, and Action!  Gr ade 10 Optics Unit  SNC2D & SNC2P
Page 26: Lights, Camera, and Action!  Gr ade 10 Optics Unit  SNC2D & SNC2P
Page 27: Lights, Camera, and Action!  Gr ade 10 Optics Unit  SNC2D & SNC2P
Page 28: Lights, Camera, and Action!  Gr ade 10 Optics Unit  SNC2D & SNC2P
Page 29: Lights, Camera, and Action!  Gr ade 10 Optics Unit  SNC2D & SNC2P

The eye sees only three component colours – red, green and blue – which the brain combines to form the images we see.

Like all senses, parts of the vision are ‘switched off’ by the brain if the stimulus remains the same for a sufficient period of time.

Staring at the green elephant for about 1 minute causes the brain to ‘switch off’ signals from the green light receptors in the eye.

When the slide changes to a white background the green receptors cannot get their signals to the brain, which only ‘sees’ the red and blue components. It combines these to form a magenta (pink) elephant.

This effect also works with the other primary colours of light to give secondary coloured images –

red object – cyan (turquoise) imageblue object – yellow image

and secondary coloured objects to give primary coloured images –

cyan object – red imagemagenta object – green imageyellow object – blue image

Page 30: Lights, Camera, and Action!  Gr ade 10 Optics Unit  SNC2D & SNC2P

Seeing Colours

http://phet.colorado.edu/en/simulation/color-vision

Page 31: Lights, Camera, and Action!  Gr ade 10 Optics Unit  SNC2D & SNC2P

Prediction

Observation

Explain

·Explain the observed colour of the magenta dot for each of the colours of light used. Use the subtraction theory of colour to help explain your answer.

Page 32: Lights, Camera, and Action!  Gr ade 10 Optics Unit  SNC2D & SNC2P

http://www.facebook.com/nelsonschoolsciencek12

To download this presentation go to

http://www.nelson.com/stao/

Page 33: Lights, Camera, and Action!  Gr ade 10 Optics Unit  SNC2D & SNC2P

Attachments

bending-light_en.jar

geometric-optics_en.jar

10 optical illusions in 2 minutes - YouTube2.rv

color-vision_en.jar