life cycle assessment of pollutants from ships

92
Life Cycle Assessment of Pollutants from Ships: The case of an Aframax tanker Anastasios Mountaneas Master Thesis Report no.: SDPO.14.002.m Delft, 24 th January 2014 Anastasios Mountaneas Student no.: 4188349 [email protected] +30 6 974 320 226 Delft University of Technology Mechanical, Maritime and Materials Engineering (3ME) Marine Technology – Shipping Management Thesis committee: Prof. dr. E.M. Van de Voorde, TU Delft Assist. Prof. ir. J.W. Frouws, TU Delft Prof. dr. ir. J.G. Vogtländer, TU Delft Dr. Nikolaos Kakalis DNV GL Dr. George Dimopoulos DNV GL Delft University of Technology

Upload: others

Post on 18-May-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Life Cycle Assessment of Pollutants from Ships

Life Cycle Assessment of Pollutants from Ships: The case of an Aframax tanker

Anastasios Mountaneas

Master Thesis

Report no.: SDPO.14.002.m

Delft, 24th

January 2014

Anastasios Mountaneas

Student no.: 4188349

[email protected]

+30 6 974 320 226

Delft University of Technology

Mechanical, Maritime and Materials Engineering (3ME)

Marine Technology – Shipping Management

Thesis committee:

Prof. dr. E.M. Van de Voorde, TU Delft

Assist. Prof. ir. J.W. Frouws, TU Delft

Prof. dr. ir. J.G. Vogtländer, TU Delft

Dr. Nikolaos Kakalis DNV GL

Dr. George Dimopoulos DNV GL

Delft

Univ

ers

ity o

f Tech

nolo

gy

Page 2: Life Cycle Assessment of Pollutants from Ships

Life cycle assessment of pollutants

from ships: the case of an Aframax tanker

By

Anastasios Mountaneas

in partial fulfilment of the requirements for the degree of

Master of Science

in Marine Technology

at the Delft University of Technology, to be defended publicly on Friday January 24, 2014 at 10:00 AM.

Student number: 4188349 Thesis committee: Prof. dr. E.M. Van de Voorde, TU Delft

Assist. Prof. ir. J.W. Frouws, TU Delft Prof. dr. ir. J.G. Vogtländer, TU Delft

Dr. Nikolaos Kakalis DNV GL Dr. George Dimopoulos DNV GL

This thesis is confidential and cannot be made public until December 31, 2018.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Page 3: Life Cycle Assessment of Pollutants from Ships

ii

Page 4: Life Cycle Assessment of Pollutants from Ships

iii

Preface

This thesis is the final assignment of the master program Marine Technology, specialisation Shipping

Management at the Delft University of Technology.

The work outlined in this report was conducted in collaboration with DNV GL Research and

Innovation (R&I) hub in Pireaus, Greece. I want to express my gratitude to DNV GL for providing me

the possibility to work on a project closely related to a core business that of sustainable shipping,

and in cooperation with people of high expertise in this field.

I would like to thank my supervisors at TU Delft, Prof. dr. E.M. Van de Voorde and ir. J.W. Frouws, for

their guidance, support and collaboration during this research. Their instructions and comments

were invaluable for delivering a dissertation of high value in both technical and methodological

aspects.

I am also grateful to my supervisors at DNV GL, N. Kakalis, head of the R&I Pireaus hub, and G.

Dimopoulos, senior researcher, for their guidance, excellent collaboration, and providing immediate

and sound solutions to all problems encountered. I need also to express my gratitude to Chara

Georgopoulou, research engineer, for her overall support and enlightening discussions about the

various topics of this work.

I also want to thank Prof. Reinout Heijungs who gave me several insightful suggestions about the

application of the LCA methodology and provided useful contacts from practitioners in the field.

Finally, I want to express my gratitude to my family and friends for their overall support and sincere

interest in my work. Special thanks go to my sister Despoina, Ioanna, Dimitris and Tonia.

Delft, January 2014

Anastasios Mountaneas

Page 5: Life Cycle Assessment of Pollutants from Ships

iv

Page 6: Life Cycle Assessment of Pollutants from Ships

v

Table of Contents 1 Introduction .................................................................................................................................... 1

1.1 Background ............................................................................................................................. 1

1.2 Sustainability measures - Environmental assessment ............................................................ 2

1.3 Problem definition .................................................................................................................. 2

1.4 Objectives................................................................................................................................ 3

1.5 Contribution to the company and the society ........................................................................ 3

1.6 Thesis outline .......................................................................................................................... 4

2 The LCA Methodology ..................................................................................................................... 5

2.1 General description of the LCA methodology ......................................................................... 5

2.2 The LCA method according to ISO 14040/14044:2006 ........................................................... 5

2.3 LCA methodological concepts and modelling frameworks ..................................................... 7

2.3.1 Attributional and consequential system modelling frameworks .................................... 7

2.3.2 Foreground and background systems ............................................................................. 8

2.4 Literature review: ship focused LCAs ..................................................................................... 9

2.4.1 LCA of “M/V Color Festival” ............................................................................................ 9

2.4.2 EVEA ‘LCA-Ship’ tool ...................................................................................................... 10

2.4.3 NMRI ‘LCA for ship’ tool ................................................................................................ 11

2.4.4 ‘Sustainable Ship Design (SSD)’ tool.............................................................................. 11

2.4.5 BAL.LCPA ....................................................................................................................... 13

2.4.6 Other attempts ............................................................................................................. 13

2.4.7 Discussion on ship-focused LCAs .................................................................................. 14

2.5 Chapter conclusions .............................................................................................................. 16

3 LCA initial specifications ................................................................................................................ 18

3.1 LCA Goal ................................................................................................................................ 18

3.2 LCA Scope .............................................................................................................................. 18

3.2.1 Product system ............................................................................................................. 18

3.2.2 Function and functional unit of the product system .................................................... 18

3.2.3 Modelling framework ................................................................................................... 19

3.2.4 System Boundary .......................................................................................................... 19

3.2.5 Basic assumptions ......................................................................................................... 21

3.3 LCIA method selection .......................................................................................................... 22

3.3.1 The ReCiPe 2008 impact assessment method .............................................................. 24

3.4 Chapter conclusions .............................................................................................................. 26

Page 7: Life Cycle Assessment of Pollutants from Ships

vi

4 Life Cycle Inventory (LCI) analysis ................................................................................................. 27

4.1 Construction .......................................................................................................................... 27

4.1.1 Electricity Consumption ................................................................................................ 28

4.1.2 Welding ......................................................................................................................... 28

4.1.3 Cutting ........................................................................................................................... 30

4.1.4 Painting ......................................................................................................................... 31

4.1.5 Overhead Electricity Consumption ............................................................................... 33

4.2 Operation .............................................................................................................................. 35

4.2.1 Sailing ............................................................................................................................ 35

4.2.2 Maintenance ................................................................................................................. 56

4.3 Ship breaking ......................................................................................................................... 58

4.3.1 Description of operation ............................................................................................... 58

4.3.2 Process Description ....................................................................................................... 59

4.4 Chapter conclusions .............................................................................................................. 60

5 Case study: Inventory analysis and impact assessment of an Aframax tanker ............................ 62

5.1 Case description .................................................................................................................... 62

5.2 Case results ........................................................................................................................... 62

6 Conclusions ................................................................................................................................... 70

7 Recommendations for future work .............................................................................................. 72

References ............................................................................................................................................ 74

Appendix A – Alternative data sources ................................................................................................... 1

Appendix B – Inventory of the case study (115000DWT tanker) ........................................................... 1

Page 8: Life Cycle Assessment of Pollutants from Ships

Chapter ‎1 Introduction

1

1 Introduction In this chapter, the background of the thesis is given with respect to the sustainability notion and the

current approaches to ship-generated pollution. The problem to be addressed is defined and specific

objectives are set. Finally, the possible contribution of the thesis outcome to the society and the hosting

company is outlined and the thesis structure is presented.

1.1 Background Sustainability is becoming key topic of the ongoing discussion about the impact of human activities on

the environment. Strategic goals of EU maritime transportation policy for 2009-2018 explicitly mention

sustainability and call maritime industry to start acting under this notion (European Commission, 2009).

However, all recent attempts towards this direction were fragmented and missed the big picture by

focusing on specific areas like energy efficiency and air emissions alone. Other approaches considered

sustainability identical with its environmental dimension and incorporated some economic aspects. All

these drew the attention to particular environmental problems which can be solved with certain

technological solutions (hardware) and misinterpret the broad view of sustainability. Omitted social and

economic dimensions could lead to a total understanding of environmental problems and provide

combinations of solutions from different fields in wider perspective. This becomes apparent when

examining ship’s life cycle; decisions in design and construction have direct impact during shipbreaking,

where non industrial practices are the standard in some sites around the world.

Ships generate different waste streams which can have a global or local effect on the environment. Air

emissions during operation are the most typical example of global impact, which shows the contribution

of shipping to the greenhouse effect and to the ozone depletion phenomenon. On the other side, local

effects are exemplified in the case of ship generated waste. A cruise ship with 2000-3000 passengers

produces daily 550,000-800,000 litres of grey water, 100,000-115,000 litres of black water, 7,000 –

10,500 litres of garbage and 60-130 kg of toxic waste (Oceana, 2008). According to MARPOL 73/78, the

aforementioned waste together with oily waste are firstly treated on board and then delivered to port

facilities for further treatment and final deposition. However, it is not rare that port waste facilities do

not have the appropriate equipment or size, and major problems are caused to the local community.

Ship related environmental impact is regulated by a complex of international conventions and national

laws and rules. Although this legal framework affects a wide spectrum of activities throughout ship’s life

cycle – from the shipyard’s location to the final dismantling practices, it could be described as

fragmented and overlapping. There is not a systematic record of pollutants while discussions to regulate

some of them e.g. particulate matter have just started. Additionally, the main focus is on the quantities

of certain waste streams and not on the actual impacts, e.g. on human health. Thus, any magnifying and

cumulative effect of pollutants throughout lifetime is neglected.

DNV GL, a leading classification society and a global provider of services for managing risk, has a

constant focus on sustainable shipping and innovation. It is an important part of the DVN strategy to

perform research and innovation within key technology areas. DNV GL Research and Innovation (R&I)

Page 9: Life Cycle Assessment of Pollutants from Ships

Chapter ‎1 Introduction

2

serves the purpose of exploring and testing new technologies and building new knowledge within

selected technology areas that are believed to be of particular significance for DNV GLs own

development and business activities in the future. In this context, DNV GL R&I would be interested in

having a tool offering a holistic view of the aforementioned topics that could assist in discovering

possible areas for further research. Life cycle assessment (LCA), an ISO standardized methodology, can

be employed for the development of such a tool and provide an alternative method to assess

continuously emerging technologies. Taking advantage of its early involvement in LCA for maritime

applications, DNV GL can develop a specialized tool that makes a step towards sustainability by using its

augmented knowledge on all ship’s lifetime phases.

1.2 Sustainability measures - Environmental assessment Sustainability is a notion with no universally accepted definition yet. However, it is based on a simple

principle: the survival and wellbeing of human race depends directly or indirectly on the natural

environment. Thus, the fulfilling of social, economic and other requirements of present and future

generations are coupled with the condition of the nature. Sustainability provides the conditions under

which human race and nature exist in harmony without the development of one inducing the

degradation of the other.

This approach of sustainability implies that the aforementioned conditions can take the form of

quantifiable limits. However, such limits have not been discovered or invented yet, mainly due to the

concept of sustainability itself. At the 2012 UN RIO+20 conference (UN, 2012), it is stated that

sustainable development “…rests on integration and a balanced consideration of social, economic and

environmental goals and objectives in both public and private decision-making”. Hence, it is evident that,

various disciplines and contexts over different scales of time and space must be considered when

applying the concept of sustainability. For example, sustainable agriculture would include the actions of

the farmer at a local level, the global balance of production and consumption and the interaction with

present and future population. Various decisions and actors are involved together with their individual

perception of well-being.

Several sustainability measures have been developed to account for this inexistence of generally

accepted limits, especially for the environmental dimension of sustainability. The measures have the

form of indicators, indices and methods that attempt to describe the impacts between the human

activities or interventions, ecology and environment. While they do not suggest criteria for sustainability,

they offer a manner to benchmark current practices/products and measure the effect of different

alternatives. Among these measures are included Life Cycle Assessment (LCA), Environmental Impact

Assessment (EIA), Environmental Risk Assessment (ERA), Cost Benefit Analysis (CBA).

1.3 Problem definition Increasing attention has been put in the recent years on the environmental impact resulting from the

ship’s construction, operation and end-of-life practices. However, the focus is usually on the

quantification of certain pollutants (e.g. air emissions from engines) and not on their real impact on the

environment. Following this path, the consequences of a certain pollutant to other impact categories

may be overlooked, as well as the consequences of less ‘popular’ pollutants. Additionally, while

Page 10: Life Cycle Assessment of Pollutants from Ships

Chapter ‎1 Introduction

3

decisions with respect to the ship’s characteristics and operational profile may have consequences for

several years ahead and span a wide geographical area, no consistent methodology has been applied to

assess the impact of these decisions on the environment. The life cycle assessment (LCA) methodology is

a promising sustainability metric that provides the framework to develop a specialized tool that records,

quantifies and assesses environmentally all the pollutants generated by a ship. All previous attempts of

LCA for ships had shortcomings (data quality problems, perceived complexity of the method, limited

understanding of the results and mal definition of the problem) that hindered the wide application of

the methodology.

1.4 Objectives The main objective of this study is the development of a DNV GL tool for recording all pollutants

generated by ship related factors and assessing their subsequent environmental impact by analysing the

entire life cycle of a ship.

The following goals should be accomplished:

Systematic recording of pollutants generated during ship construction, operation, maintenance

and scrapping.

Collection and compilation of ship relevant data regarding the interaction with the environment

in every life cycle phase.

Connection of the aforementioned environmental data with ship related parameters. In this way,

results for a particular ship can be generated and correlation between specific environmental

impacts and ship characteristics can be investigated.

1.5 Contribution to the company and the society The developed tool will enable DNV GL to improve its competence and competitive advantage in terms

of environmental performance estimation, eco-labelling and environmental product declaration (EPD)

for seagoing vessels. Such services could be useful for self-assessment, benchmarking, improvement and

branding purposes of of ship operating companies and shipyards. They can also differentiate the price of

similar vessels at the second hand market. Additionally, the tool could be used for crosschecking the

results of other LCA studies or tools, when certification of ISO compliance and results validity is required.

With respect to society, environmental organizations can use the methodology proposed in this thesis to

develop a scheme for shipping companies and shipyards to report their pollutants, as in case of US

Environmental Protection Agency (EPA). The results of this reporting, together with their impact

assessment can be used for environmental benchmarking within the sector and if further elaborated,

they can establish a metric for the environmental performance of the whole sector. Another possible

benefit with respect to society and the environment would be to integrally assess all processes related

to ship’s lifetime, in order to identify “red areas” at the material and energy inflows and outflows, where

sustainability metrics are low and there is potential for performance improvements.

Page 11: Life Cycle Assessment of Pollutants from Ships

Chapter ‎1 Introduction

4

1.6 Thesis outline The rest of this thesis is organised as follows. Chapter ‎2 presents the fundamentals of the LCA, and the

methodological procedure and requirements as set by the relevant ISO standards. Additionally, previous

attempts to apply LCA for ships are reviewed and their main aspects are identified. In chapter ‎3, the

initial specifications of the methodology are defined and documented; the system, its boundaries and

the assessment method are set. The modelling of the system is described in detail in chapter ‎4.

Chapter ‎5 contains a case study and the interpretation of the results. The conclusions derived from this

study and review against the initial objectives is presented in chapter ‎5. Recommendations for future

work are suggested in chapter ‎7.

Page 12: Life Cycle Assessment of Pollutants from Ships

Chapter ‎2 The LCA Methodology

5

2 The LCA Methodology In this chapter, the general principles of the LCA methodology are presented and the technique is

described according to the ISO standards. Modelling frameworks, methodological aspects and notions

are then discussed with respect to the scope of the present study. Previous attempts to apply LCA for

ships are also investigated and discussed.

2.1 General description of the LCA methodology Life cycle assessment is a technique to address environmental aspects and assess environmental

impacts related to all the stages of a product’s life from raw materials extraction to production, use,

maintenance and disposal or recycling. Natural resources and pollutant emissions are identified and

described quantitatively with processes composing the life cycle model. LCA usually demands extensive

data collection and processing concerning materials, compositions, products, manufacturing procedures,

energy use and corresponding environmental impacts.

Apart from calculating material and energy inflows and outflows, LCA can help in identifying areas for

improvement during a product’s life cycle, comparing alternative process technologies for the same

product or different materials while the product has the same function. Additionally, it suggests relevant

indicators and metrics of environmental performance and can be used as a tool for policy-makers and

marketing (e.g. eco labelling schemes, environmental claims, environmental product declaration). Its life

cycle perspective encourages preventative and proactive environmental management rather than

reactive end-of-pipe approach. In a broader view, LCA itself is a sustainability tool as it directly connects

to environmental impact and makes benchmarking possible.

2.2 The LCA method according to ISO 14040/14044:2006 The ISO standards 14044 and 14040 describe the typical procedure to perform a LCA study. More

specifically, the general framework and principles are provided in standard 14040, while detailed

requirements and guidelines can be found in standard 14044. The four distinct phases comprising a LCA

study are described hereafter.

Goal and scope definition

The product under study, the purpose of the study, how and to whom the results are to be

communicated is explicitly described in the goal and scope definition. The goal of a LCA affects

significantly the extent and the level of detail of the study, which are explicitly defined in the scope. This

specification of the modelling to be performed includes, according to ISO 14040, the following choices

that guide the subsequent work:

Decision of the function of a product or system. Multiple functions are possible even for a single

product and the one selected for study should be described in goal and scope.

Functional unit: expresses the function of a product system in quantitative terms and provides

the reference unit where all inputs and outputs are related. It, actually, defines precisely what is

being studied and forms a basis for comparability of LCA results.

Page 13: Life Cycle Assessment of Pollutants from Ships

Chapter ‎2 The LCA Methodology

6

System boundary: defines which processes are included in the system that performs the

function. The criteria for the choice of the processes vary according to goal and audience of the

study, assumptions and data availability. The inventory analysis that follows and the degree of

confidence of the final results depend significantly on the criteria set and the decisions made at

this step.

Environmental impacts considered: early selection of the environmental impacts of the product

system under study is important as it guides process modelling and the collection of relevant

data in inventory analysis. Usually “default” lists of environmental impacts are used including,

e.g. global warming, acidification, toxicity, but not always all of these are relevant to the product

system or the scope.

Data quality description. Data should be accompanied with a general characterization of their

quality in order for the final outcome to be interpreted to correct extend.

Life cycle inventory analysis (LCI)

Life cycle inventory analysis includes data collection relevant to the process model defined in goal and

definition, and calculation procedures that link these data with relevant input, output of the system, the

functional unit and reference flows. In principle, it is a modelling procedure of the processes of the

product system. Usually, the result of the LCI is an incomplete mass and energy balance system, as only

environmentally interesting flows are considered.

Most times LCI starts with building a flow model depicting all processes and material/energy exchanges

between them according to the system boundary set in goal and scope. Then, data are collected for

every process’ energy inputs, raw material usage, products and wastes, emissions to various

compartments and other environmental aspects. After all these data are connected to reference flows

and the flow model is completed, the usage of resources and the emissions can be calculated with

respect to the functional unit.

LCI might seem a straightforward process of collecting data; however it can become very time-

consuming and sometimes complicated due to techniques such as allocation. Allocation is a technique of

partitioning environmental impacts to different products and procedures, when not all of these are

within the scope of the study. Multiple functions can also complicate the partitioning of the

environmental impacts of even one product.

Life cycle impact assessment (LCIA)

LCIA aims to evaluate the significance of potential environmental impacts using LCI results (Baumann &

Tillman, 2004). It attempts to translate inventory data to more environmentally relevant information by

associating them with impact categories and indicators. Thus, another target is to aggregate LCI

extensive information in fewer parameters. The LCIA comprises of three mandatory and four optional

steps (ISO, 2006b):

Mandatory:

1. Selection of impact categories, category indicators and characterization models;

Page 14: Life Cycle Assessment of Pollutants from Ships

Chapter ‎2 The LCA Methodology

7

2. Classification: Assignment of LCI results to the selected impact categories;

3. Characterization : Calculation of category indicator results;

Optional:

4. Normalization: Calculation of the magnitude of category indicator results relative to reference

information;

5. Grouping: Sorting and possibly ranking of the impact categories;

6. Weighting: Aggregating indicator results across impact categories using numerical factors based

on value-choices;

7. Data quality analysis: Understanding the reliability of the collection of indicator results.

Life cycle interpretation

Life cycle interpretation is the process of assessing the results from LCI and/or LCIA to draw conclusions.

It is the phase, where raw numbers from inventory and impact assessment calculations, are refined to

provide meaningful results. Interpretation should be in accordance with goal and scope of the study and

should include check procedures to understand the uncertainty of the results. However, LCA is an

iterative process and in case unexpected results occur not in line with goal and scope, they should not

be disregarded. Instead, goal and scope could be reformulated (Baumann & Tillman, 2004).

According to ISO 14044, interpretation comprises of three elements:

1. Identification of significant issues;

2. Evaluation that considers completeness, sensitivity and consistency checks;

3. Conclusions, limitations and recommendations.

2.3 LCA methodological concepts and modelling frameworks The ISO standards provide the necessary steps and the general directions on how to conduct a thorough

and coherent LCA study. However, the provisions of the standards can be interpreted in different ways

as various approaches can be followed to define the boundaries and the modelling components

according to the initial goal and scope of a LCA study. This could result in LCAs with misleading

conclusions, yet compliant to ISO standards. Thus, a robust procedure is needed to interpret properly

the primary goal of a LCA study and specify in detail the procedural steps.

In the following sections, two significant LCA system modelling frameworks are presented. The selection

of the appropriate framework depends largely on the LCA goal and the decision context that this poses.

The specification for the present study is conducted in chapter ‎3.

2.3.1 Attributional and consequential system modelling frameworks

In attributional LCA, the system under study is modelled as it is or forecasted to be, and it is considered

to be placed into a static technological and economic environment. The environmental impacts

attributed to the system can be calculated over its total life cycle and thus can include all upstream and

downstream value chains, and its end-of-life. The data used to describe the processes comprising the

system can be average (aggregated), generic or process specific depending on the magnitude of the

Page 15: Life Cycle Assessment of Pollutants from Ships

Chapter ‎2 The LCA Methodology

8

averaging effect across the value chains. For example, the environmental impact of a single supplier

delivering a significant material to the production facility of the product under study should be ideally

based on specific data, whereas the impact of the electricity consumption of the facility could be based

on average data. As far as the origin of the data is concerned, historical, fact-based or measured data

can be used within the attributional framework.

Consequential LCA attempts to describe the consequences of a decision in the foreground system to

other systems and processes both inside and outside the life cycle of the product and the economy. In

contrast with the attributional LCA, no actual or forecasted models of the supply and value chains with

respect to the product systems under study are used, but instead, generic supply chains that interact

with the market mechanisms, political decisions etc. are modelled. A typical example of consequential

LCA application is the changing of the level of output, consumption and disposal of a product. The

modelling of the causal relationships originating from this change can include expected measures such

as material bans, green incentives, opening (or closing) of production plants, displacement of competing

products etc. The data used in consequential LCA are of higher uncertainty than in attributional, as this

the modelling depends heavily on economic models, demand and supply and market mechanisms.

2.3.2 Foreground and background systems

The modelling of the product system heavily depends on the goal of the particular LCA study and it can

differ considerably between studies of different goal, even though the same product system is of

interest. The processes of the product system can be differentiated into two levels: the processes of the

foreground system and those of the background system. The foreground system refers to the system of

primary concern while the background system provides energy and materials to the foreground system

as aggregated data sets in which individual plants and operations are not identified. The differentiation

between foreground and background systems is based on two different perspectives (EC-JRC-IES, 2010b):

(1) the specificity perspective, where the system processes are characterised with respect to whether

process specific data or average/generic data are needed, and (2) the management perspective, where

the system processes are characterised on whether they can be managed by “direct control or decisive

influence” within the decision context of the LCA study.

With respect to the specificity perspective, the foreground system contains the processes that are

specific to it and thus specific data (manuals, suppliers etc.) are the most appropriate and must be used.

For example, the foreground system for a product LCA study conducted for its producer contains all the

processes in the production facility and the specific upstream and downstream processes that cannot be

sufficiently described by the market average data. On the other side, the management perspective

identifies a wider set of processes during the lifecycle as foreground, depending on the varying impact of

the decisions made. It includes all in-house processes of the producer/ operator of the system under

study, the processes downstream and upstream which the producer/ operator can influence or specify

and processes during the usage and end-of-life of the product that can be influenced by either direct

decisions or design characteristics of the product. In the case of ship recycling for example, all related

processes are considered foreground since their environmental impact largely depends on the material

selection made by the ship owner at the design stage.

Page 16: Life Cycle Assessment of Pollutants from Ships

Chapter ‎2 The LCA Methodology

9

The background system in the specificity perspective contains all the processes that can be

appropriately represented by average and generic data due to the average effect, for example, across

the suppliers. A theoretically homogenous market is assumed to provide the processes to the

foreground system. Under these terms, the usage and end-of-line phases of a product are background

processes in a LCA study conducted on behalf of the producer. The management perspective identifies

as background processes the part of the system that no sufficient control or influence by the

producer/operator/user exists. For example, the steel production for steel parts is a background process

for the steel parts purchaser.

2.4 Literature review: ship focused LCAs Application of the LCA method in the maritime industry was attempted in the past by joint efforts of

companies and research institutes and proved that its application is possible with relative success. The

main problem in all studies was the lack of ship relevant data. Simplifying assumptions and use of data

from other sectors for similar processes did approach the magnitude of the impact, however with high

uncertainty. Herein, most thorough LCA applications for the shipping sector are presented in

chronological order, to enable observing the different approaches of researchers through time.

2.4.1 LCA of “M/V Color Festival”

LCA on the shipping sector was used for the first time on the passenger ship “M/V Color Festival”

(Johnsen & Fet, 1999). Actually, it was a screening of LCA and its purpose was to demonstrate and

evaluate the methodology on this sector. The main conclusion was that dividing ship in different systems

and subsystems can greatly facilitate data collection and process modelling. Data for the construction

phase originated from actual reports from Norwegian shipyards and where no appropriate data were

available, databases provided by the LCA software SimaPro (PRé Consultants, n.d.) were used. Generally,

this data is not specific for ships or maritime related processes, as they intent to describe the market

average or common practice in many industries.

The functional unit for the study was the “ton-km transported per year between Oslo and Hirshals”. The

vessel was considered to transport a certain number of passengers, cars and trailers per year between

Oslo and Hirshals and her life time was assumed 20 years.

Results showed that different environmental impacts were considered important at different life phases

of the ship:

Global warming, acidification, eutrophication, smog and energy consumption for the operational

phase.

Solid waste from the scrapping phase.

Local impacts like toxicity for humans and ecology for construction and maintenance.

The impact analysis concluded to the most important processes per life phase of the ship. For example,

processes related to oil combustion and antifouling paint leaching was considered as being important

during the operation phase. Processes related to painting were considered as being important during

maintenance. Finally, the recycling of materials was important for the scrapping phase assessment.

Page 17: Life Cycle Assessment of Pollutants from Ships

Chapter ‎2 The LCA Methodology

10

Using the impact assessment method Eco indicator ’95, impacts to the categories of human toxicology

and acidification were also identified. Finally, the main conclusion was that using system approach, i.e.

dividing the ship in different systems and subsystems can greatly facilitate data collection and process

modelling.

2.4.2 EVEA ‘LCA-Ship’ tool

“LCA-SHIP” (Jivén et al., 2004) is one more custom made LCA software developed by a Swedish

consortium of shipping companies, authorities and institutions. The interesting feature of this tool is the

modelling of the ship’s energy systems, energy flow and exchanges during the operation phase of the

ship.

The first step at the energy systems modelling is the calculation of the required propulsion power. The

ITTC-78 ship performance prediction method is used with most input data having default values

according to regression of all displacement ships tested at SSPA Sweden AB. The modelling of the energy

systems on board is based on a systems approach. The main components of the system, e.g. main

engine, shaft generators, economizers, are presented as interconnected blocks where the user defines

the percentage of energy consumed with respect to the energy entering the system. Types of energy

considered are: mechanical, thermal and electrical. The purpose for this kind of modelling is to allow for

checking saving strategies and optimization procedures. Yet, no optimization procedure is provided by

the tool and it should be noticed that the aforementioned user-defined percentages are directly

translated to the fuel consumption of the power production system in the beginning of its lifetime (main

engine, generators and boilers).

The inventory contains data from all the life cycle phases. However, losses and recycling rates of

materials used at the construction and scrapping phase must be defined by the user. An effort with

relative success was put in order to include the impact from cradle-to-grave of the important

materials/equipment used during the life cycle phases. The numerous assumptions made towards this

direction led to inconsistences with respect to the analysis boundary and the quality of the final results.

For example, the engines and boilers are considered to have the same environmental impact with that

of equal weight steel, aluminium’s production impact is the average of EU whereas the steel is

considered produced in Sweden, the air emissions of electricity production are based on that of the EU

at 1994. Additionally, several data of known poor quality from previous LCA studies (e.g. M/V Color

Festival) were used (e.g. the welding length during construction is based on a very small vessel). Some

other limitations of the inventory include the use of only two types of fuel (heavy and diesel oil) and that

drydockings involve only sandblasting and no painting. Sandblasting is prohibited by most countries

nowadays.

With respect to impact assessment, five impact categories are evaluated within the tool: acidification,

eutrophication, global warming, ozone depletion and photochemical ozone production. The results

obtained are endpoint impact indicators and thus, the optional elements of normalization, grouping and

weighting are implemented. The main impact assessment method is the Ecoindicator ’99, while the

following three are also available: EDIP, Tellus, EPS2000 and EPS money

Page 18: Life Cycle Assessment of Pollutants from Ships

Chapter ‎2 The LCA Methodology

11

More comprehensive and complete methods have been developed however nowadays (EC-JRC-IES,

2010a). The Eco indicator is a damage-oriented method, mainly developed for assessing industrial

products and not assemblies like ships. The EDIP method is a midpoint method which applies weighting

factors on the basis of political environmental targets set by the Danish Government or by various

international protocols(Wenzel, Hauschild, & Alting, 2000). The Tellus evaluating scheme was developed

with respect to the Swedish context and uses data on society's willingness-to-pay to calculate the

weighting factors. They use both data on emission taxes (the Swedish CO2-tax) and marginal costs for

reducing emissions down to decided emission limits for certain criteria pollutants (CO, NOX, PM10, SOX,

VOC and lead). The EPS system is mainly aimed to be a tool for a company's internal product

development process. The impact of materials used is expressed as an index which represents money

and it is linked to society’s willingness to pay for the protection of endpoint categories.

2.4.3 NMRI ‘LCA for ship’ tool

The National Maritime Research Institute of Japan (NMRI) has performed a long research program

(NMRI, 2006), which its main outcome was a ship specific LCA software focused on the Japanese

maritime context. A database was compiled by collecting data from shipping companies, shipyards and

on site investigations. More specifically, data for the LCA inventory of the construction phase were

developed from the construction of a 76000 DWT bulk carrier in a Japanese shipyard. Data for the

operation of the ship (average operating profile, trip pattern, engine load) were investigated with use of

the navigational logbooks of five specific ships: oil tanker, bulk carrier, container ship, LNG carrier,

RO/RO carrier. Shipbreaking operations in China were also surveyed, however no data are referenced

(M. Kameyama, Hiraoka, Sakurai, Naruse, & Tauchi, 2005). Additionally, LCA was performed for the

construction of a marine main engine and was incorporated in the software. The definition of the ship to

be analysed in the tool includes, apart from the main particulars, a specification list (weight, on board

position) of parts, hazardous materials etc. that has to be prepared by the user. The quantification of the

environmental loads and LCI analysis are carried out according to the matrix method, meaning that data

are treated only with linear relations. Data for background procedures were retrieved from the Japanese

LCA database

The life cycle impact assessment is performed with the LIME model, which is an indicator especially

created for the Japanese conditions (geography, population, current environmental load). The functional

unit used is ton-mile for all ship types. The software also provides indicators represented by the ratio of

the value obtained with the load on the environment products and services through its life cycle. These

indicators are intended for use in the Japanese environmental product declaration which is an eco-

labelling scheme.

Let us notice that all published literature (apart from two papers) from the aforementioned project and

the software itself are in Japanese.

2.4.4 ‘Sustainable Ship Design (SSD)’ tool

The SSD tool (SSD) is the most recent LCA application developed by a French consortium of

environmental consultants, design offices, shipyards and suppliers. The tool is an add-on for SimaPro

Page 19: Life Cycle Assessment of Pollutants from Ships

Chapter ‎2 The LCA Methodology

12

and has two versions: a complete tool for use by building sites and architectural offices and a tool

adapted to suppliers and subcontractors.

The complete tool intends to measure the environmental impacts of all the ship throughout the entire

life cycle. The modelling of the life cycle includes six stages: materials for construction (raw material

extraction, production of ship equipment, transportation to the yard), assembly on site (consumptions

and wastes at the ship yard), ship operation and maintenance, ship dismantling and end-of-life (fate of

dismantling wastes). Each life cycle step is modelled as a set of inventories of inflows and outflows of

every material used, process, consumption, machinery component etc. Thus, life cycle steps are

modelled to a large extend according to a typical bill of materials and not as expressions with respect to

ship parameters. This means that the tool user should explicitly know or approximate the types and/or

values for the inflows and outflows of all ship systems and components.

The tool for suppliers and subcontractors aims to measure impacts of their products which have an

adapted life cycle, from raw material extraction to end product life. Again here, an inventory of inflows

and outflows must be established by the user.

The assessment of the environmental impacts at both tools is accomplished by using the impact

assessment module of SimaPro and applying existing LCIA methods. The following impact indicators

have selected to describe the environmental impacts (Tincelin, Mermier, Pierson, Pelerin, & Jouanne,

2007):

Global warming – IPCC 2007 (CO2 equivalent)

Eutrophication (PO4 equivalent)

Atmospheric acidification (SO2 equivalent)

Ozone layer depletion (CFC11 equivalent)

Human toxicity (1.4-DB equivalent)

Fresh water aquatic eco toxicity (1.4-DB equivalent)

Marine aquatic ecotoxicity (1.4-DB equivalent)

Terrestrial ecotoxicity (1.4-DB equivalent)

Respiratory effects (PM2.5 equivalent)

Abiotic depletion (Antimony equivalent)

Water (m3)

Energy consumption (MJ equivalent)

Bulk waste production (kg)

Hazardous waste production (kg)

Within the SSD tool, a simplified methodology has been developed based on the Admiralty’s constant

and a simple life cycle model (Tincelin et al., 2007). The methodology uses a criterion to provide a first

evaluation of the effect of a green technology on an existing ship design and to compare green

technologies, given their LCAs.

Page 20: Life Cycle Assessment of Pollutants from Ships

Chapter ‎2 The LCA Methodology

13

2.4.5 BAL.LCPA

BAL.LCPA (BAL, 2013) is a decision making tool for shipyards and ship operators, developed under the

EU FP7 Collaborative Project BESST (Breakthrough in European Ship and Shipbuilding Technologies, 2009

– 2013). The BESST project focused at the Life Cycle Performance (LCP) assessment of ships concepts,

demonstrating the life cycle impact of maritime technological solutions compared to current designs.

The project was kicked off on 2009 and ended in February, 2013. The consortium consisted of 50

partners, including shipyards, manufacturers, universities and research institutes, classification societies

and maritime industry stakeholders. The total project cost was approximately 28 million euros.

The BAL.LCPA tool assesses the life cycle performance of vessels and their subsystems by combining

financial, environmental, safety and other societal aspects within a single methodology. The most

common application is the comparison of different technical options in the early design phase, in order

to determine the one(s) which is (are) most likely to deliver the best performance over time.

Additionally, it can be used to measure the performance of an already existing system.

Apart from modelling the technical performance of components, BAL.LCPA also considers risk of loss

and hidden costs such as repair and maintenance costs. Additionally, different scenarios with

parameters which evolve through time can be defined by taking into account environmental taxation,

fuel prices, currency exchange rates, discount rates etc.

The comparison and assessment of solutions is based on a list of Key Performance Indicators. Some of them are:

Net present Value (NPV) is a commonly used economic measure to describe the incoming and

outgoing cash flows over time at today’s value. It enables the comparison of economic

profitability among alternative solutions/investments.

Expected NPV, the NPV enhanced with the probability factors of certain accidents and the

connected costs.

Environmental indicators which measure the impact of relevant emitted gas on certain

categories. Equivalent CO2, SOX, NOX and PO4 quantities of gases are used to estimate the impact

on climate change, acidification, photochemical oxidation and eutrophication respectively.

Social Welfare Index (SWI) assesses the effects and the perception of technical components on

the human nature.

2.4.6 Other attempts

Other LCA applications in shipping sector limit the life cycle perspective to either specific environmental

impacts or specific ship type. Norwegian University of Science and Technology (NTNU) developed a LCA

application based on SimaPro especially for fishing vessels. Energy consumption and air emissions were

compared between different ship types and other transport modes in the study of (Kristensen, 2000).

Page 21: Life Cycle Assessment of Pollutants from Ships

Chapter ‎2 The LCA Methodology

14

2.4.7 Discussion on ship-focused LCAs

In this paragraph, all previous LCA studies/tools that their product system was a ship will be compared

and discussed. The target is to identify the points that the LCA practitioners agree and that would help

our research, and to locate areas which could be elaborated in the present study.

The main characteristics of the previous attempts are summarised in Table 1. In total, five documented

applications of the LCA method for ships were found. The first three , LCA of “M/V Color Festival”

(Johnsen & Fet, 1999), ‘LCA for ship’ (NMRI, 2006) and ‘LCA-Ship’ (Jivén et al., 2004), were conducted by

academia and thus, were followed by detailed documentation. The most recent, ‘Sustainable Ship

Design’(SSD, 2010) and ‘BAL.LCPA’ (BAL, 2013), were mainly driven by consultants which probably

explains their poor documentation.

In all studies, the product system defined is a vessel of particular type. The functional unit adopted by

academia studies expresses the supply of transport and hence ton-km is used for all ship types.

Alternatively, the results are presented per transported cargo unit (i.e. ton, TEU). The most recent

studies use a custom environmental index or the time dependence of the environmental assessment

results during the life time.

The tools developed cover all common ship types, although not tested. (Johnsen & Fet, 1999) is a

screening study for a specific RoPax vessel and part of the data used were collected from the ship’s

constructor and operator. The documentations of (Jivén et al., 2004), (SSD, 2010) and (BAL, 2013)

suggest that all ship types are within the scope, given that appropriate data are available. However, (SSD,

2010) is tested on special ship type, e.g. frigate and sailboat. On the other side, the tool of (NMRI, 2006)

was successfully tested for the types shown in Table 1.

The different applicability of the tools on various ship types is explained by examining the modelling of

the system for the inventory analysis and the data used. In case of extensive use of databases, either

very few or extensive details of the materials and energy used during the ships life cycle are required.

This depends on the modelling level of detail in terms of processes considered. For example, (Jivén et al.,

2004) focuses on the energy consumption on board by providing an extensive, yet simplistic, model of

the on board machinery and thus, requires details with respect to the energy flow among the different

components. The environmental impact of the shipbuilding phase is calculated based on data from the

previous study of (Johnsen & Fet, 1999). In this way, data from a RoPax vessel are extrapolated for

modelling other vessel types without considering possible discrepancies. The most consistent modelling

approach was made by (NMRI, 2006), where actual data from a panamax bulker were extrapolated for

similar ship types and databases were used only for background processes.

Every study uses different impact assessment method. The reason is that all studies were conducted at

different years and used the best available, or in other words, the most popular at that time. None of

the methods was selected based on criteria related to the maritime context. The LIME method used by

the study (NMRI, 2006) is an monetary assessment method developed specifically for the Japan,

introducing a locality of the LCA results. In contrary, all other assessment methods have a global scope.

Page 22: Life Cycle Assessment of Pollutants from Ships

Chapter ‎2 The LCA Methodology

15

Table 1 Main characteristics and comparison of previous LCA tools and studies for ships. Each row of ‘environmental impact category considered’ contains identical, similar or linked environmental phenomena. Empty cells indicate that no similar phenomenon to the other attempts was considered (Source: own composition).

Previous ship-focused LCAs

LCA of “M/V Color Festival” (Johnsen & Fet, 1999)

‘LCA-Ship’ (Jivén et al., 2004)

‘LCA for ship’ (NMRI, 2006)

‘Sustainable Ship Design’ (SSD, 2010)

‘BAL.LCPA’ (BAL, 2013)

Software used SimaPro Custom Custom Add-on for

SimaPro Custom

Ship types considered

RoPax Not specified

Tanker Bulk carrier LNG carrier Containership RoRo

Tested on: Cruise vessel Frigate Sailboat Passenger vessel

Not specified

Functional unit

ton-km

ton-km, TEU-km Distance (nm) ton, TEU

ton-km

Custom environmental design index per life time

Temporal distribution over lifecycle

Inventory data sources

Measurement Databases

Literature Databases

Measurement Literature Databases

Databases Not specified

LCIA method Ecoindicator ‘95

Ecoindicator ‘99 EDIP EPS2000 EPS MONEY Tellus

LIME Not specified Not specified

Environmental impact categories considered

Greenhouse effect Global warming Global warming Global warming Climate change

Acidification Acidification Acidification Acidification Acidification

Eutrophication Eutrophication Eutrophication Eutrophication Eutrophication

Photo-oxidant formation

Photo-oxidant formation

Photo-oxidant formation

- Photo-oxidant formation

Ozone depletion Ozone depletion - Ozone depletion -

Winter smog - Urban air pollution

Respiratory effects

-

Human toxicology - - Human toxicity -

Ecological toxicology

- - Terrestrial ecotoxicity

-

- - Fresh water ecotoxicity

-

- - Resource consumption

Resource depletion

-

- - Waste production

Waste production

-

Page 23: Life Cycle Assessment of Pollutants from Ships

Chapter ‎2 The LCA Methodology

16

The selection of impact categories for environmental assessment is free upon the choice of the LCA

practitioner according to the ISO standards. The previous studies assess the impact on various

categories depending on the availability from the selected LCIA method, yet all studies assess the impact

on global warming, acidification and eutrophication. In Table 1, each row of “Environmental impact

categories considered” contains categories corresponding to similar or linked environmental

phenomena. Where no linked phenomena are addressed, the cell is empty. Photo-oxidant formation is

not taken into account only by study, and ozone depletion by two. The air quality is also assessed by

most studies, though not the same environmental modelling and assumptions are used. Effects on

human health and natural environment are assessed by two studies. Resource consumption and waste

production are considered by two studies too, however it must be noted that LCIAs do not provide

widely accepted models for these categories. Additionally, the life cycle of the system must be fully

modelled from cradle-to-grave in order to allow for unbiased assessment, and this is the reason that

these categories are not generally used (Baumann & Tillman, 2004).

2.5 Chapter conclusions In this chapter, the general principles that a modern LCA study must follow were presented in order to

provide the appropriate framework for conducting the present thesis. The key characteristics of the

methodological steps required by the relevant ISO standards were identified and the compulsory items

were distinguished from the optional. In total four steps must be followed:

1. Goal and scope definition. Firstly, the goal of the study must be clearly stated. Then, the

function of product system under study (e.g. the supply of transport work) must be decided

along with the corresponding functional unit. The boundary of the system must then be defined

and the environmental phenomena considered in line with the goal set.

2. Life cycle inventory analysis. Here, the system must be modelled in order to calculate the

amount of releases to the environment during the life cycle. Either attributional or

consequential frameworks should be followed, and foreground and background processes

should be distinguished in order to use the appropriate data and calculate the releases correctly.

3. Impact assessment: A sound method must be applied to assess the impact assessment of the

releases calculated in the previous step.

4. Interpretation: The assessment results must be explained in order to reveal significant issues

and draw conclusions. Additionally, they must also be critically judged in terms of data used and

their quality.

Apart from recognising the procedure to be followed, previous ship-focused LCA attempts were also

reviewed and compared in this chapter. The main findings were:

The supply of transport work is the usual function decided for ships.

The data used for the modelling of the life cycle comes from actual measurements, literature

and databases. Extrapolation of actual data from specific cases is commonly used for the

modelling of other ship types.

The most popular method at the time of each study is used for impact assessment without

applying any criteria with respect to the specific product system under study, i.e. the ship.

Page 24: Life Cycle Assessment of Pollutants from Ships

Chapter ‎2 The LCA Methodology

17

The impact categories considered are global warming, acidification and eutrophication at

minimum. Photo-oxidant formation and ozone depletion are also very common.

The above findings could be useful for the present study in terms of providing data for inventory analysis

and revealing areas that could be elaborated by either using data or models of higher quality. What is

more, the impact categories that should be considered at minimum (global warming, acidification and

eutrophication) and those that could be additionally included are also revealed.

The chapters of the thesis hereafter follow the methodological procedure described previously.

Decisions with respect to modelling framework, fore-/background processes and corresponding data are

described in the relevant chapters. The findings from the literature review are met along the whole

report and the studies are citrated when appropriate.

Page 25: Life Cycle Assessment of Pollutants from Ships

Chapter ‎3 LCA initial specifications

18

3 LCA initial specifications In this chapter, the goal and scope of a LCA analysis focused on ships are defined in line with the

objectives set for the current thesis. The corresponding decision context set by the goal and its impact

on the definition of the scope items and the respective system modelling framework, processes

considered and data types needed, is discussed with regard to the concepts presented in chapter ‎2.

3.1 LCA Goal The goal of this LCA study is to monitor the environmental impact of a marine vessel during her life cycle

by calculating the amounts of the associated pollutants, and assessing their impact with a scientifically

and technically valid method. The compilation or development of specific, average or generic unit

processes and data sets for use in ship relevant LCA applications is also part of the goal.

3.2 LCA Scope The definition of several scope items are in principal determined by the information provided in the goal

definition. In the following sections, the product system (ship) and its function and corresponding

functional unit are unambiguously defined. The boundary of the system and the included processes are

clearly specified in line with the goal and the modelling framework that this implies.

3.2.1 Product system

The product system to be studied is a marine vessel of the following types: oil tanker, bulk carrier,

passenger vessel (RoPax or cruise ship), offshore supply vessel. The vessel is further specified by the

following user-defined parameters:

Main dimensions (length overall, length between perpendiculars, breadth, depth, draught);

Deadweight;

Gross tonnage;

Lightship weight;

Lightship steel weight;

Main and auxiliary engines installed power;

Main and auxiliary engines speed;

Main and auxiliary engines fuel type.

3.2.2 Function and functional unit of the product system

The principal function of all ship types within the scope is the supply of transport work. Different units

are used to measure the quantity of various cargo types and hence, different functional units should be

defined for the vessel types transporting specific cargo types. For ship types transporting cargo that is

measured with respect to its weight (e.g. crude oil, iron ore), ton-mile is selected as the functional unit.

In case of cargo measured in volume units (e.g. cement), m3-mile should be used. The cruise ships are

carrying only passengers and thus, person-mile is more appropriate as a functional unit. RoPax vessels

are carrying both passenger and vehicles, and thus an aggregating functional unit should be used. Their

payload can be calculated by the sum of the number of passengers multiplied by 75 Kg. which is the

passenger weight and total number of cars multiplied by 1500 kg which is the car weight [HSC

Page 26: Life Cycle Assessment of Pollutants from Ships

Chapter ‎3 LCA initial specifications

19

Code,2000]. In Table 2, the functional units per ship type within the scope of the present study are

illustrated:

Table 2 Functional unit for ship types within scope.

Ship type Functional unit

Bulk carrier ton-mile or m3-mile

Oil/Product carrier ton-mile

Cruise vessel passenger-mile

Roll-on/roll-off passenger (RoPax) vessel ton-mile

Offshore supply vessel ton-mile

3.2.3 Modelling framework

This decision context determines the LCI modelling frame (attributional or consequential) and in turn,

the processes included within the system boundary, the processes modelling and corresponding data

collection, and other decisions made during the inventory modelling and the impact assessment.

According to our goal definition, the study has a descriptive character and does not support any decision

directly. We are interested in the environmental impact occurring within a certain temporal window (i.e.

the ship’s life cycle) based on decisions already taken. Therefore, the system should be modelled as it

could be measured and the attributional modelling framework (see section ‎2.3.1) is the most

appropriate.

The ship is considered operating in a static economic and technological environment. Its technical

characteristics and equipment are unaltered since its construction (apart from time degradation and

maintenance substitutions). The models and parameter values used for describing the operational

profile and practices should be representative of the actual conditions during the life cycle. In this sense,

present and past data of adequate quality can be used for depicting/forecasting the real behaviour of

the ship from cradle-to-grave. Similarly, economic parameters, market mechanisms, future legislation

impact and interaction among them are not modelled and thus, not interacting with the life cycle phases

of the ship.

The attributional modelling framework adopted in this study introduces certain requirements for the

type (specific, average or generic) of data specifying the processes included within the system boundary.

This topic will be addressed in the chapter ‎4 where the system model is analysed in detail.

3.2.4 System Boundary

Ship’s life cycle is considered to start at keel laying and finish just after the final dismantling is completed.

The lifecycle is divided in three major phases: construction, operation and shipbreaking. The operation

phase consists of sailing and maintenance stages which are consecutive and repeated over time.

Therefore, the boundary of the product system is set on the fence line of the shipyard and shipbreaking

yard, and on the port. Raw materials acquisition, transportation of materials to the shipyard, production

of goods (e.g. fuels, consumables etc.) and every other process that takes place outside the shipyard’s

fence line is omitted in the present LCA analysis. Figure 1 illustrates the system boundary, the basic

processes and material/energy flows under study (within red frame).

Page 27: Life Cycle Assessment of Pollutants from Ships

Chapter ‎3 LCA initial specifications

20

Energy Sources

Materials (e.g. coatings)

Ship parts(e.g. machinery)

Shipbuilding Consumables

Electricity Production

Shipbuilding Ship

Electricity

Electricity

Sailing

Maintenance

Waste

Port Reception Facilities

Ship Shipbreaking

Recycled materials

Reused materials

Deposited materials(e.g. landfill, dump)

Figure 1 Boundary of the system under study. Framed with red colour are the main life cycle phases and product/energy flows (Source: own composition).

Page 28: Life Cycle Assessment of Pollutants from Ships

Chapter ‎3 LCA initial specifications

21

As far as the operation phase is concerned, the boundary is set exactly on the port quay. The interaction

between ship and port occurs through the delivery of wastes (oily wastes, garbage etc.) to the port

facilities as mandated by the MARPOL 73/78 convention. Normally, these wastes should be treated

before their final disposal in a landfill or an incinerator. Several treatment technologies are

available(Hess, Snuverink, Schoof, & A.M de Leeuw, 2004) with different applicability depending on the

port profile (Wolterink, Hess, Schoof, & Wijnen, 2004). However, the existence of such facilities varies

considerably according to local policies (Carpenter & Macgill, 2005; EPE, 2003).

Ideally, the life cycle of the system in attributional modelling should include the whole supply chain and

downstream, i.e. from raw materials extraction to end-of-life treatment and return of substances to

earth(ISO, 2006a). It is evident that the boundary of this study includes only the foreground processes

(see sec. ‎2.3.2) with respect to the ship’s total supply/value chain. The rationale behind this boundary

selection resides in the objective of this thesis to calculate and assess the interaction between the

environment and a ship of specific characteristics. This suggests that the point of view of the shipowner

and/or the shipbuilder is of interest for this LCA analysis.

With respect to the management perspective described in section ‎2.3.2, the boundary should include

those processes controlled directly or influenced decisively by these two actors. Thus, these processes

should be for the present study: all in-house functions (e.g. shipyard processes, ship operation profile),

processes at suppliers that are influenced by choice (e.g. blasting material type at repair yard, fuel type),

end-of-life processes since they are influenced by decision and design of the ship (shipbreaking assumed

as in third-world countries). The processes considered as background typically for attributional

modelling (EC-JRC-IES, 2010b) are those of tier-two suppliers and long term contractors/suppliers that

cannot be affected considerably.

Since the analysed ship has specific characteristics, the processes that particularise her life cycle should

also be included in foreground modelling according to the specificity perspective of section ‎2.3.2. Again

all in-house processes and tier-one suppliers should be considered as foreground and specific data

should describe them. In contrast, the processes far downstream and upstream the supply/value chain

(i.e. tier two suppliers) of the ship belongs to the background and averaged data can be used.

3.2.5 Basic assumptions

The modelling of the three phases composing ship’s lifetime is based on several assumptions with main

criterion the availability and quality of data with respect to ship-related processes. Only major

assumptions affecting the whole model are referred in this paragraph. Minor ones affecting only certain

processes (e.g. painting) will be mentioned in chapter ‎4.

At the shipbuilding phase, the environmental impact from conveyance within shipyard is not

considered. The number and capacity of cranes, trucks and forklifts vary significantly from

shipyard to shipyard and for different reasons making even estimations not a safe option.

The ship-port interaction is taken into account only as the delivery of bulk amounts of waste and

garbage. Their chemical composition has large variation depending on ship type, on board

treatment equipment (e.g. incinerator) and operator’s policy.

Page 29: Life Cycle Assessment of Pollutants from Ships

Chapter ‎3 LCA initial specifications

22

The impact of the emissions to local level (e.g. the vicinity of the shipyard or occupational

exposure) will not be assessed.

The end-of-life scenario assumes the current scrapping practices of the so-called shipbreaking

nations (India, Pakistan and Bangladesh). These countries account for more than 90% of the

industry while the Hong Kong Convention which regulates environmental, health and safety

issues of shipbreaking is estimated to come into force after 2020 (see chapter ‎0).

3.3 LCIA method selection During the ship’s lifecycle phases pollutants are released in all three compartments –air, soil and water-

and contribute to environmental impacts with different extent. Various impact assessment methods

exist that differentiate in the number of impact categories addressed and the models to assess them. In

this section, an attempt is made to determine the most relevant set of impact categories and the most

appropriate LCIA method for the life cycle of a ship from the recommended methodologies presented in

the ILCD handbook (EC-JRC-IES, 2010c).

Generally, the release of a substance to the environment triggers a series of consecutive phenomena

that finally affect three areas of protection: human health, natural environment and natural resources.

Most LCIA methods use a cause-and-effect approach to model the chain of the phenomena. Depending

on the position along this chain, the impact categories are distinguished in midpoint and endpoint. The

endpoint categories coincide with the aforementioned areas of protection and express the relative

importance of emissions and their consequences at the end of the cause-and-effect chain. Midpoint

impacts are defined as the link between the initial releases and final consequences, and each one can

cause more than one endpoint impact. The ILCD handbook proposes ten midpoint impact categories to

be checked for relevance in all sectors: climate change, ozone depletion, human toxicity, respiratory

inorganics, ionising radiation, photochemical ozone formation, acidification in land and water,

eutrophication, ecotoxicity, land use and resource depletion.

In line with the objectives of the thesis, the environmental impact assessment of a ship should include

the widest possible set of impact categories. Review of the categories considered in the previous ship

relevant LCA attempts (see section ‎2.4) and communication with industry professionals revealed that

the following impacts should be at least assessed: global warming, acidification, eutrophication,

photochemical oxidation, ozone depletion, toxicity for humans and ecology. The set of the midpoint

categories is a trade-off between the available categories of each LCIA method and the quality of the

underlying models, since different methods categorise the environmental impact differently. In the

present study, the ReCipe 2008 method was selected (see below) and the following midpoint categories

will be assessed:

Climate change;

Ozone depletion;

Terrestrial acidification;

Freshwater eutrophication;

Human toxicity;

Photochemical oxidant formation;

Page 30: Life Cycle Assessment of Pollutants from Ships

Chapter ‎3 LCA initial specifications

23

Particulate matter formation;

Terrestrial ecotoxicity;

Freshwater ecotoxicity;

Marine ecotoxicity.

It should be noticed that no model assessing the impact of invasive species due to ballast water

transportation could be found. The ionising radiation impact, although available by ReCiPe, will not be

assessed since it is found irrelevant with ship’s lifecycle (only smoke detectors contribute insignificantly

if not recycled/reused after ship dismantling).

The models used to calculate the midpoint impacts of the pollutants are less complex than those for

endpoints, as the amount of forecasting and effect modelling is reduced (Bare, 2002). Less

environmental mechanisms have to be modelled and thus assumptions and value choices are minimised.

While endpoint modelling allows for aggregation across impact categories (e.g. comparison climate

change and ozone depletion categories on human health), the requirement for reliable data and robust

models, which are often not available, reduces the level of comprehensiveness (Bare, 2002) and

increases the uncertainty of the results (Baumann & Tillman, 2004). This is the reason that impact

assessment at midpoint level is implemented at the present study.

Numerous LCIA methods are available with modelling at midpoint, endpoint or both levels. The EC-JRC-

IES provides the most recent attempt (EC-JRC-IES, 2010c) to distinguish the most up-to-date, thorough

and reliable methods used currently, based on a comparison methodology including a set of uniform

criteria including geographic differentiation, i.e. varying the impact of a substance with the region’s

characteristics ,such as population density, type of use (urban, rural) etc. To select the appropriate LCIA

method among the recommended by EC-JRC-IES with respect to the objectives of the present thesis, the

following criteria were set:

Range of impact categories and number of relevant substances covered;

Appropriateness of impact categories covered for ship’s LCA study;

Quality of modelling at midpoint level.

Based on these, the ReCiPe 2008 method was proved to be the most appropriate. It covers all the

midpoint impact categories selected above and provides the most extensive list of assessed substances

(covers 3000 substances while the next most extensive covers 1000 approximately). Additionally,

groups of pollutants that are difficult to speciate are used as reference substance in certain categories

and hence, the uncertainly is reduced. For example, NMVOCs, which are a collection of numerous

organic compounds is used as reference substance in the photochemical ozone formation category.

With respect to midpoint impact modelling, ReCiPe provides a harmonised approach in terms of

modelling principles and value choices (EC-JRC-IES, 2010c; M. Goedkoop et al., 2009). Thus, the

calculated results refer to the same point of the cause-and-effect chain and are uniform as far as the

regional and compartment conditions are concerned. This approach increases the validity of the results

and allows for selecting the location of e.g. the shipyard, between urban or rural area. The main

characteristics of the selected ReCiPe 2008 method are presented in the following section.

Page 31: Life Cycle Assessment of Pollutants from Ships

Chapter ‎3 LCA initial specifications

24

3.3.1 The ReCiPe 2008 impact assessment method

The ReCiPe method(M. Goedkoop et al., 2009) is a life cycle assessment model which incorporates the

advantages of two other models: the CML2001 (Guinée, 2002) and Eco-indicator ’99 (M. Goedkoop, R.

Spriensma, 1999). It uses the approach of the CML2001 for assessing the midpoint impacts and the main

characteristics of the endpoint impact assessment of the Eco-indicator ’99. Contrary to the other models,

ReCiPe provides 18 midpoint impact categories and three endpoint indicators, in order to evaluate the

life cycle impact.

Figure 2 Flowchart of ReCiPe model. Left: LCI parameters, middle: midpoint categories, right: endpoint categories (M. Goedkoop et al., 2009).

Figure 2 illustrates the categories and the connections among different impact levels. At the first level,

the results of the life cycle inventory are connected to the 18 midpoint categories and they are

converted to equivalent amount of the reference substance per category. At the second level, each

midpoint category is connected to the relevant endpoint categories, using the same categorization as in

the Eco-indicator 99 model. It should be noticed that a midpoint category can be connected with more

than one endpoint category. Where no adequate assessment method exists for linking the categories

between the two impact levels, the corresponding impact is not taken into account in the endpoint

results. An important category for the present study which falls within this case is marine eutrophication.

Another advantage of the ReCiPe model is that it provides factors for each level category (midpoint,

endpoint) with respect to three cultural perspectives:

Page 32: Life Cycle Assessment of Pollutants from Ships

Chapter ‎3 LCA initial specifications

25

Individualist: short term perspective, optimism that technology will ameliorate many problems

in the future

Hierarchist: mid-term perspective, consensus scientific model

Egalitarian: long-term perspective, precautionary attitude for the future

These perspectives represent a set of choices for time perspective and for expectations for the

environmental effect of management and future technology development. Table 3 presents the

quantitative connection between the midpoint and endpoint categories. The second column contains

the reference unit used for the quantification of the corresponding category. And the next three

columns contain the factors for translating midpoint results to the endpoint categories with respect to

the three different cultural perspectives. For example, 1kg of CO2 at the climate change midpoint

category can be converted to human health endpoint category by multiplying with 1.19x10-6 year/kg for

the individualist perspective, 1.40x10-6 for the hierarchist perspective and 3.51x10-6 for the egalitarian

perspective.

Table 3 Midpoint to endpoint factors (M. Goedkoop et al., 2009). The (-) mark indicates that no connection is established between the categories. The (*) mark indicates that the value depends on the type of substance or land use. “I, H, E” correspond to individualist, hierarchist, egalitarian perspective respectively. Up-to-date values are presented (M. Goedkoop et al., 2013).

Midpoint impact category

Unit

Endpoint impact category

Human health (DALY)

Ecosystems (species.yr)

Resources ($)

Climate change kg (CO2 eq. to air)

1.19E-06 (I) 8.73E-09 (I) -

1.40E-06 (H) 8.73E-09 (H) -

3.51E-06 (E) 1.87E-08 (E) -

Ozone depletion kg (CFC-11 eq. to air) * - -

Terrestrial acidification kg (SO2 eq. to air)

- 1.52E-09 (I) -

- 5.80E-09 (H) -

- 1.42E-08 (E) -

Freshwater eutrophication kg (P eq. to freshwater) - 4.44E-08 -

Human toxicity kg (1,4-DB eq. to air) 7.00E-07 (I,H,E) - -

Photochemical oxidant formation kg (NMVOC to air) 3.90E-08 - -

Particulate matter formation kg (PM10 eq. to air) 2.60E-04 - -

Terrestrial ecotoxicity kg (1,4-DB eq. to soil) - 1.51E-07 (I,H,E) -

Freshwater ecotoxicity kg (1,4-DB eq. to freshwater) - 8.61E-10 (I,H,E) -

Marine ecotoxicity kg (1,4-DB eq. to marine water)

- 1.76E-10 (I,H,E)

-

Ionising radiation kg (U235 eq. to air) 1.64E-08 - -

Agricultural land occupation m2/year - * -

Urban land occupation m2/year - * -

Natural land transformation m2 - * -

Fossil depletion kg (oil eq.) - - 5.17E-02 (I)

- - 1.65E-01 (H +E)

Metal depletion kg (Fe eq.) - - 7.15E-02

Page 33: Life Cycle Assessment of Pollutants from Ships

Chapter ‎3 LCA initial specifications

26

3.4 Chapter conclusions The first two steps of the standardised LCA procedure as described in chapter ‎2 were carried out in the

previous paragraphs. The goal of the study was set and its key points are the quantification of pollutants

during ship’s life cycle, their assessment and the compilation of ship-relevant data wherever possible.

Within the scope definition, two significant characteristics that influence the rest of the study were

made.

The first is the selection of the attributional modelling framework which determines how the system

should be modelled. According to this, the system should be modelled and appropriate data should be

used as it can be measured now, i.e. no future changes in technology, legislation, or market are taken

into account. This facilitates the models of the next chapter, since they can be static (i.e. time invariant),

and the respective data which can be past of present and still used for forecasting/depicting the

behaviour of the ship over its life cycle, although its spans many years ahead. For example, the currently

common ship breaking practices can be used for calculating the impact of ship’s end-of-life, although

new legislation might come into force and thus, change the final impact.

The definition of the system boundary in section ‎3.2.4 is the second item which is critical for the

selection of the relevant processes to be modelled in the next chapter. The boundary includes the

construction, operation and dismantling of a ship and is set on the fence line of the respective facilities.

The processes included are the so called “foreground” in paragraph ‎2.3.2, and are those that are under

the direct control of the ship owner or the shipyard management. This is a clear criterion for selecting

the processes to be modelled per life cycle phase in the next chapter.

The conclusion that our study includes the attributional modelling of the foreground processes out of a

ship’s life cycle also suggests which data types should be used for modelling in the following chapter.

Specific data, i.e. data either collected from a specific case or specific to maritime processes, are the

most appropriate, and should be used when available. Average data representing the current situation

should be the second option. Finally, generic data (e.g. combustion pollutants calculated through

stoichiometry) can also be used when no other data is available.

In this chapter, the impact categories considered and the assessment were also selected. All categories

addressed in previous studies (see sec. ‎2.4) are included, apart from resource depletion since raw

material extraction is outside the boundary of our study. The assessment method to be used is the

ReCiPe and its application will be demonstrated through a case study in chapter ‎5.

All the decisions taken and the specifications of the LCA method made in this chapter are of paramount

importance for the rest of the study. The objectives of the thesis were interpreted in the definition of

LCA goal and the boundary of the life cycle. The next chapter implements the inventory analysis step of

the LCA methodology according to process selection criterion, attributional modelling framework and

the data requirements set in the previous paragraphs.

Page 34: Life Cycle Assessment of Pollutants from Ships

Chapter ‎4 Life Cycle Inventory (LCI) analysis

27

4 Life Cycle Inventory (LCI) analysis The life cycle of the ship is divided in three distinct phases: construction, operation and dismantling.

Further, operation comprises of sailing and maintenance occurring in regular periods.

Modelling of each phase was based on how inflow of materials and energy are converted to products

and releases to the environment. This approach, apart from the apparent physical meaning, facilitates

data collection and discovering the relation between inputs and outputs. Thus, construction and

dismantling are modelled as sets of interconnected work processes, while, for the operation phase, a

system based approach is followed. However, transition from one phase to another does not affect final

results as the functional unit remains the same and reference flows are process specific.

For each process, material and energy inputs and outputs are identified and then a transfer function

that links them is constructed, usually involving several parameters that vary with the ship type, size,

materials used etc. The identification and specification of these parameters introduces the problem of

data quality and results uncertainty, when applying LCA in the shipping sector, something already

diagnosed in previous LCA attempts (see chapter ‎2.4). Stakeholders in the three phases have different

interest in the processes and, therefore, information is organized in a different way than that required

by the LCA methodology. Shipyards use semi-empirical ways of generating production material

information (Roh & Lee, 2007) from concept design level information, in order to plan block erection

and materials procurement, and to start construction as soon as possible. Only after detailed design,

accurate information for all construction stages becomes available. Of course, this information is not

openly available. Finding generic correlation functions is also very difficult as production material

information is mainly based on shipyard practice and not on ship parameters.

In operation phase, coupling of environmental impacts and ship characteristics is more straightforward,

as most releases to the environment are system-bound and have been thoroughly researched. However,

certain releases, such as coatings leaching, are product specific and depend on shipping companies’

policy making their association with ship parameter difficult.

Dismantling phase data gathering exhibits one major problem: data scarcity. Most of the global

dismantling activity takes place in third world countries, where collection of data appropriate for LCA is

the least concern.

4.1 Construction Construction includes all work within the shipyard’s area. Environmental impacts related to materials

entering or leaving this boundary are not considered part of this phase. Therefore, six main processes

were identified: welding, cutting, painting, conveyance, sea trials and overhead (lighting, heating, office

work etc.). However, sea trials and conveyance are not included in the analysis. Sea trials have a minor

contribution to environmental impact, while relations between conveyance and ship parameters could

not be found in the literature.

Page 35: Life Cycle Assessment of Pollutants from Ships

Chapter ‎4 Life Cycle Inventory (LCI) analysis

28

4.1.1 Electricity Consumption

Electricity is used in most shipbuilding processes. While not producing direct environmental impact

within the shipyard area, its consumption can be accounted for aerial pollutants at the power plants.

The quantity and mix of the pollutants depend on the energy mix of the country where the shipyard is

located. For example, countries with extensive renewable energy usage produce less greenhouse gases

per kW. For this reason, data for three representative countries (Japan, USA, EU-27) can be selected

depending on where the ship was build. Total emissions of CO2, CO, CH4, N2O, NOX, NMVOC, SO2 from

total electricity and heat production for the year 2010 were taken from national reports submitted to

UNFCCC (UNFCCC). Allocation of the total electricity output and heat emission was based on the

International Energy Agency (IEA) 2010 reports. 2010 is the most recent year that data were available

for all three countries both in UNFCCC and IEA. The emission factors calculated are shown in Table 4.

Table 4 Emission factors for greenhouse and acidification gases due to electricity production in three representative geographical areas.

Emission Type Emission Factor (gr/kWh)

Japan USA EU-27

CO2 3.408E+02 5.058E+02 3.156E+02

CH4 1.217E-03 4.850E-03 3.460E-02

N2O 5.279E-03 1.325E-02 6.840E-03

NOX 2.468E-01 3.993E-01 3.615E-01

CO 6.923E-02 1.427E-01 1.354E-01

NMVOC 3.276E-03 1.041E-02 1.544E-02

SO2 1.767E-01 1.160E+00 6.499E-01

4.1.2 Welding

Four welding methods are the most common in shipbuilding worldwide (Eyres & Bruce, 2012a; Jackens,

2012): flux core arc welding (FCAW), shielded metal arc welding (SMAW), gas metal arc welding

(GMAW), submerged arc welding (SAW). All methods incorporate electrodes (wire or rod), electricity

and possibly shielding gas, apart from the base metal to be welded.

All welding calculations for a specific ship are based on the amount of consumed electrodes and their

allocation per method. Yet, this information is derived more accurately only after the detailed design

stage. Estimation in earlier stages is possible by semi-empirical methods developed by each shipyard

according to its practices and experience (Roh & Lee, 2007). In our study, welding material is a function

of steel weight. According to a study for a panamax bulk carrier (Hiraoka et al., 2001), the actual welding

length to steel weight ratio is 0.0323 km/ton. The total amount of welding material accounted for a

panamax bulker at DSME shipyards is 140 tons, according to the actual documents delivered by the

shipyard. Based on that, the welding material consumed over the welding length can be derived; the

calculated value is 0.0112 ton/m. The allocation of this material to the welding methods is shown in

Table 5 (Jackens, 2012).

Page 36: Life Cycle Assessment of Pollutants from Ships

Chapter ‎4 Life Cycle Inventory (LCI) analysis

29

Table 5 Common welding methods mix in shipbuilding industry (Jackens, 2012).

Welding method

Allocation of weld material consumed

FCAW 82.00%

SMAW 7.00%

GMAW 1.00%

SAW 10.00%

Figure 3 shows the sequence for calculating air and health hazardous emissions from welding processes

in a shipyard.

WELDING

Wsteel

Electricity

PM10

Metal emissionsWeld method mix

Air emissions

Welding lenth

Welding consumables

Figure 3 Calculation sequence for emissions from welding process.

Metal substances are normally contained in the electrode to improve the quality of the weld. When the

electrode melts, part of them is released in the air together with particulate matter with diameter less

than 10 μm (PM10). Table 6 shows the emission factors of most significant metals (chromium, hexavalent

chromium, manganese, nickel, lead) and particulate matter. The emission factors express the quantity of

the pollutant released per consumed weld material.

Table 6 Emission factors for common shipbuilding welding processes (US-EPA, 1995).

Metal emission Unit Welding method

FCAW SMAW GMAW SAW

Chromium gr/kg 0.02 0.06 0.01 -

Chromium (VI) gr/kg - - - -

Manganese gr/kg 6.62 10.3 - -

Nickel gr/kg 0.04 0.02 3.18 -

Lead gr/kg - - - -

Particulate matter (PM10) gr/kg 12.2 18.2 5.2 0.05

Electricity needed to create the welding arc is a function of the thermal energy as required by each

electrode’s specifications. Review of electrodes’ data sheets of major manufacturers (ESAB, ELGA and

Page 37: Life Cycle Assessment of Pollutants from Ships

Chapter ‎4 Life Cycle Inventory (LCI) analysis

30

Hyundai) revealed that operating parameters do not vary considerably. Table 7 shows common

parameters values per welding method. Consumption rate and electricity consumption refer to the

actual purchased electrode weight, while deposition rate is the actual weld material that stays on the

base metal per unit time for the given pair of voltage and amperage. The efficiency couples deposition

and consumption rate, as it is the ratio of the actually deposited over the initially purchased weld

material.

Table 7 Common parameter values for welding methods used in shipbuilding

Weld parameter Unit Welding method

FCAW SMAW GMAW SAW

Voltage V 33 26 28 31

Amperage A 290 135 250 615

Deposition rate kg/hour 11.0 1.3 7.9 19.0

Efficiency - 0.87 0.70 1.00 0.99

Consumption rate kg/hour 12.61 1.90 7.85 19.22

Electricity consumption kWh/kg 0.82 1.98 1.16 1.35

Shielding gas is used in FCAW and SMAW methods to isolate the weld area from atmospheric gases and

thus, prevent lowering the weld quality and facilitate the procedure. Pure noble gas (usually argon), CO2

or more often in shipbuilding, a mixture of both is used as shielding gas. The amount of CO2 released to

atmosphere can be derived by the optimal volumetric flow rate of the shielding gas, its CO2 content and

the weld material consumption rate that are prescribed by the manufacturers. Noble gases are not

considered having significant environmental impact and thus are not measured. Review of data sheets

of major manufacturers (ESAB, ELGA and Hyundai) showed that the aforementioned parameters do not

alter considerably for different weld materials. Additionally, the common parameter values in practice

(Weisman & Kearns, 2001) are in accordance with the values from manufacturers. Table 8 contains the

most usual in practice shielding gas flow rate, CO2 volumetric content and the derived CO2 quantity

released in the atmosphere per unit weight of consumed weld material.

Table 8 Common values in shipbuilding practice for shielding gas (mix) flow rate, its CO2 content and the respective CO2 release in atmosphere per weld material consumed (Weisman & Kearns, 2001).

Parameter Unit Welding method

FCAW SMAW GMAW SAW

Shielding gas flow rate litres/min 18 23 not appl. not appl.

CO2 content %(volume) 25% 20% not appl. not appl.

CO2 release per weld material consumed

litres/kg 21 145 not appl. not appl.

4.1.3 Cutting

Most common methods in use for forming plates into the required shapes in shipbuilding are plasma arc

and oxy-fuel flame (Eyres & Bruce, 2012a, 2012b). For most steel parts, numerically controlled cutting

Page 38: Life Cycle Assessment of Pollutants from Ships

Chapter ‎4 Life Cycle Inventory (LCI) analysis

31

machines with plasma arc are used, whereas oxy-fuel (natural gas or propylene) is used for planning and

minor cutting done with hand.

In plasma-arc method, an electricity arc turns a high flow rate inert gas into plasma with enough

temperature to melt the steel plate. Considerable amount of particulate matter is released in the air, if

cutting is performed in open air. However, underwater cutting can decrease this amount significantly.

Table 9 shows the emission factors for particulate matter production per meter cut in open air and

underwater.

Table 9 Particulate matter (PM10) emission factors for plasma cutting in different conditions. The values are given per length cut (Steiner, Bach, Windelberg, & Georgi, 1988) .

Plasma cutting method

PM10 Emission Factor [gr/m]

Minimum value Maximum

Open air 10 1000

Underwater 0.03 10

To calculate the total emissions from the cutting process per ship, estimation for the total cutting length

is required. In this study, cutting is considered correlated with welding. Based on actual data (M.

Kameyama, Hiraoka,K.,Tauchi,H., 2007), cutting per weld length ratio has a value of 0.482 m/m and

electricity consumed per meter cut is 2.222 kWh/m. Figure 4 illustrates the sequence to calculate the

pollutants from cutting.

CUTTING

Welding length

Cutting method mix

Electricity

PM10

Air emissions

Cutting length

Figure 4 Calculation sequence for air emissions and PM10 from cutting process.

Total cutting work depends on ship size and shipyard organization. Several parts can be cut from a single

steel plate (nesting). However, the size of the plate is affected by several factors, e.g. crane capacity,

cutting machine size and capacity, ship’s plate thickness, making accurate calculations per ship very

difficult.

4.1.4 Painting

Material inputs for painting are primarily paints and solvents. Paints contain the pigments and binder

which provide the desired characteristics to the final coating. Solvents are used to dilute the paint,

Page 39: Life Cycle Assessment of Pollutants from Ships

Chapter ‎4 Life Cycle Inventory (LCI) analysis

32

facilitate the process and clean the equipment. The solvent portion of the paint is released into the

atmosphere through diffuse emissions during painting, paint drying and the use of cleaning solvents.

Typical solvents include toluene, ethyl benzene, xylene, methyl ethyl ketone, ethylene glycol, acetone

and water (US-EPA, 1997b). Volatile organic compounds (VOCs) are a generic term for all these organic

chemicals with high vapour pressure at ordinary conditions.

Marine coating systems need to fulfil different functions; must be: (a) anticorrosive for the external ship

surfaces, (b) antifouling for the ship hull and (c) finishing for not-immersed surfaces. To provide all these

characteristics different coating systems must be chosen for different ship areas. In general, shipboard

paint requirements can be divided per ship area as follows (Celebi & Vardar, 2008; Hempel, 2011):

Topside and superstructures;

Internal spaces and tanks (cargo and ballast);

Weather decks;

Hull below the waterline (flat bottom and vertical bottom);

Hull above the waterline (boottop);

Loose equipment.

To quantify VOC emissions related to painting, the following data are required (Malherbe & Mandin,

2007):

Area of the painted surfaces;

Nature of paints to apply and the number of layers required by each type of surface;

Technical characteristics of the paint.

Total VOC quantities released per surface unit and per ship area are shown in Table 10. The given

emission factors are based on actual measurements during painting operations for newbuildings.

Table 10 Unit amount of VOC emitted per ship area (Celebi & Vardar, 2008).

Ship Area VOC emission factor [gr/m2]

Flat Bottom 362.92

Vertical bottom & boottop 420.87

Topside 181.69

Main decks 112.00

Superstructure 221.50

Cargo Tanks/Holds 112.66

Ballast Tanks 189.43

The VOC speciation profile for solvent based marine coatings is provided in Table 11. Only the share of

major compounds could be found in literature and thus, the large fraction of the total VOCs remains

unspecified.

Page 40: Life Cycle Assessment of Pollutants from Ships

Chapter ‎4 Life Cycle Inventory (LCI) analysis

33

Table 11 VOC speciation profile for solvent based coatings (NPI, 1999).

Compound VOC mass fraction

Ethyl acetate 2.04%

Acetone 1.27%

Xylene 8.17%

Toluene 37.87%

Other VOCs 48.69%

The areas of external painted surfaces (flat bottom, vertical bottom and boottop, topside, main decks)

can be calculated by the following simple geometric formulas (Hempel, 2011), which are based on ship

main dimensions:

Bottom (including boottop): ( )

Topsides: ( )

Weather decks:

Where A: surface (m2), d: draught maximum (m), B: breadth extreme (m), LOA: length overall (m), LPP:

length between perpendiculars (m), H: height of topsides (depth-draught, in m), p: 0.90 for big tankers,

0.85 for bulk carriers, 0.70-0.75 for dry cargo liners, N: 0.92 for big tankers and bulk carriers, 0.88 for

cargo liners, 0.84 for coasters.

Internal surfaces (cargo tanks, holds, ballast tanks) are difficult even to approximate as their area largely

depends on their shape which in turn varies with their on board position, hull block coefficient etc. In

(Johnsen & Fet, 1999) internal surfaces are assumed equal to external, yet this is an educated guess.

Statistics from ballast water transportation cannot help, as shape is the key parameter, and thus internal

areas are required as an input by the program.

Figure 5illustrates the sequence to calculate the pollutants (VOCs) from painting within shipyard.

PAINTING

Main ship dimensions

Internal surfaces

VOCs

External surfaces

Figure 5 Calculation sequence for VOCs from painting process.

4.1.5 Overhead Electricity Consumption

Electricity consumption that does not correspond to the aforementioned work processes is included in

the overhead electricity consumption (i.e. lighting, heating, office work, electricity during design stage

etc.). The amount of the overhead electricity consumption varies from country to country and from

Page 41: Life Cycle Assessment of Pollutants from Ships

Chapter ‎4 Life Cycle Inventory (LCI) analysis

34

shipyard to shipyard. Northern countries are to consume more electricity due to heating and lighting

comparing to southern ones. Additionally, a more environmentally concerned shipyard could be more

efficient by using e.g. led lamps or smart energy management systems. Therefore, the amount of the

overhead electricity consumed in a shipyard is correlated with the size of the vessel build and the

fabrication practices of the shipyard. To capture this effect, we consider the electricity consumption of

the welding and cutting processes as a proxy variable and we assume that the overhead electricity is

2.37 times greater than the sum of the electricity consumed in the aforementioned two processes (M.

Kameyama, Hiraoka,K.,Tauchi,H., 2007).

Page 42: Life Cycle Assessment of Pollutants from Ships

Chapter ‎4 Life Cycle Inventory (LCI) analysis

35

4.2 Operation The operation phase of a ship comprises of two parts: (a) sailing and (b) maintenance. During the sailing

phase, the ship delivers transport work, while in the maintenance phase the ship is off-hire for regular

repairs. In our model, an annual operating profile is assumed which is repeated over her lifetime.

Maintenance is assumed to occur in certain intervals and comprise of certain shipbuilding processes; the

weatherdecks, superstructure and ballast/cargo tanks are blasted and painted every 10 years whereas

underwater hull surface and topsides are blasted and painted every 5 years. Total maintenance

environmental impact is assumed to be caused only by these processes. Impact from engines’

maintenance and overhauling is considered marginal and is not included.

4.2.1 Sailing

This chapter contains mathematical models that estimate the quantities of air and other emissions to

land and sea. The work for air emissions is based on the DNV report (Øyvind Endresen et al., 2003).The

environmental relevantreleases estimated are:

Air emissions (CO, CH4, N2O, CO2, SO2, NOX PM, NMVOC) from main and auxiliary engines;

Biocides from underwater coating leaching;

Ballast water;

VOC emissions from oil transport;

Slop tank and cargo residues from oil and product tankers;

Solid and liquid oily wastes from engineroom;

Oily wastes from sludge system and bilge system;

Black and grey water;

Garbage.

Air emissions from fire fighting system, cooling system, HVAC systems and incinerators are not taken

into account in the present study.

4.2.1.1 Air emissions from ship’s engines

This category includes all air emissions from hydrocarbon combustion on board the ship. In the following

model, the amount of air emissions is a function of ship size, operating mode (open sea sailing,

manoeuvring and harbour), specific fuel consumption and engines’ installed power. An average load

factor is introduced varying with ship type and size, engine type and operating mode. Emission factors

per pollutant type are used to calculate the final amount emitted for a time period. All the above are

expressed computationally with the equations Εq.1 and Εq.2 (Ø. Endresen & Sørgård, 1999; Trozzi &

Vaccaro, 1998):

Εq.1

where

Εq.2

Page 43: Life Cycle Assessment of Pollutants from Ships

Chapter ‎4 Life Cycle Inventory (LCI) analysis

36

Table 12 explains the symbols and subscripts of equations Εq.1 and Εq.2.

Table 12 Explanation of symbols in equations Εq.1 and Εq.2.

Subscripts

Pollutant type, * +

Ship type, * + Table 14

Fuel type: Heavy fuel=1,Marine distillates=2

Ship size category Table 14

Operating mode: Open sea =1, Harbouring =2, Other=3

Engine type , s: Main engine=1, Auxiliary engine =2, Boilers=3

Symbols

Exhaust gas emission of pollutant type g

Amount of pollutant emitted [kg] of type g for a ship of type i of size k with engine

type s burning fuel type j at mode m

Fuel based emission factor[kg pollutant/kg fuel] for pollution type g at mode m in

relation to engine type s and fuel type j

Fuel consumption [kg fuel] for engine type s at mode m, for ship type i and ship size k

Specific fuel consumption [kg fuel/kWh] for engine type s at mode.

Average engine load for an engine type s at mode m, ship type i and ship size k

Annual average number of operating hours [hours/year] for engine type s at mode

m, installed on ship type i of ship size k

Average installed engine power [kW] of engine type s, ship type i and ship size k

Equations Εq.1 and Εq.2 require a lot of data which are not always available. Therefore, the following

assumptions can be made:

a) The emissions from category (i.e. boilers) is assumed to be small and omitted.

b) The manoeuvring mode is included in the Open sea mode , taken into account by

an average load factor.

c) The average engine loads are not dependent of ships size. See Table 15.

d) The energy consumption by main engines during port visiting is assumed small and omitted.

Page 44: Life Cycle Assessment of Pollutants from Ships

Chapter ‎4 Life Cycle Inventory (LCI) analysis

37

e) Each ship is assumed to have all engines shut down for ten days on average during a year (for

repairs, drydocking etc.). It should be noted though that this figure will vary depending upon

ship type and age.

f) It is assumed that engines above 3500 kW are burning heavy fuel oils (HFO) and engines below

this limit are burning marine gas oils (diesel oils) (1995).

According to aforementioned simplifying assumptions equation Εq.1 becomes:

∑{⌊

}

Εq.3

where

Εq.4

Table 13 explains the (modified) symbols of equations Εq.3 and Εq.4, and lists the tables with relevant

data.

Table 13 Explanation of symbols in equations Εq.3 and Εq.4.

Specific fuel consumption [kg fuel/kWh] for engine type s Table 16

Average engine load at mode m and ship type i Table 15

Annual average number of operating hours [hours/year] at mode m,

installed on ship type i of ship size k Table 17

Average installed power [kW] for ship type i and ship size k -

Fuel based emission factor[kg pollutant/kg fuel] for pollution type g in

relation to engine type s and fuel type j Table 18

Table 14 presents basic ship types and their categorization with respect to gross tonnage.

Table 14 Main ship types and size categories

Ship type Abbr. Size Categories (GT)

Cargo Ship

Liquid bulk

Chemical Tanker CT < 999

1000-4999

5000-9999

10000-24999

25000-49999

50000-99999

>100000

Liquefied Gas Tanker LGT

Oil Tanker OT

Dry bulk

Bulk Ship B

Container Ship C

General Cargo GC

Reefers R

Ro-Ro Cargo RO

Passenger Vessel P

No-cargo Ship

Service

Offshore Supply Vessel OSV

Offshore Other Activities OOA

Other Activities OA

Page 45: Life Cycle Assessment of Pollutants from Ships

Chapter ‎4 Life Cycle Inventory (LCI) analysis

38

Table 15 shows average load factors for main and auxiliary engines in two different operating modes (at

sea and in port). The main engines of all types of vessels when sailing in open sea are assumed to

operate with an average load factor of 70%. While it is common to run the engines on 85% of maximum

continuous rating (MCR) , other factors such as slow steaming, ballast cruise, port manoeuvring (see

assumption ‎b) above), etc. must be taken into account and lower the value of the average load factor at

70%. It should be noticed that this definition of load factor does not include the effect of biofouling,

since it has a systematic effect on fuel consumption and thus is treated separately in section ‎4.2.1.2.

However, the main engine load factor should be adjusted by the user to account for weather conditions

(sea margin), if they have a significant impact over life time depending on ship’s operational area (e.g.

North Sea).

When the ship is in port, the load factor of main engines is zero, according to the assumption ‎d) above.

The load factor for the auxiliary machines when at sea is assumed 25%. A higher value of 35% is used

when in port, as more power is required for cargo handling apart from the hoteling.

Table 15 Average engine load for different modes.

Open sea mode Port Mode

ME AUX ME AUX

All ship types

0.70 0.25 0.0 0.35

Specific fuel consumption values are taken from bibliography and are presented in Table 16. Specific

fuel consumption is mainly a function of engine load and speed and therefore is affected by engine’s

operating profile, maintenance schedule, degradation etc. However, the engine is usually properly

maintained and the effect of the aforementioned factors is marginal for life cycle calculations.

Table 16 Specific fuel consumption per ship type (Harrington, 1992; Klokk, 1994).

Engine Type Specific fuel consumption [kg/kWh]

Slow speed 0.195

Medium speed 0.215

High speed 0.230

Turbine machinery 0.290

The average activity profile per ship type and size category is given in Table 17. The annual time in port

can be calculated taking into account the assumptions ‎b) and ‎e) mentioned above. The data for the main

ship types are based on an analysis of the operating profiles for 6712 individual ships(AMVER, 2001). A

good correlation between the size of the vessel and time in service is observed. The operational profile

of the service ship types, data from the Norwegian registered fleet were used, as it is representative for

this type of vessels.

Page 46: Life Cycle Assessment of Pollutants from Ships

Chapter ‎4 Life Cycle Inventory (LCI) analysis

39

Table 17 Annual operating hours per ship type and ship size (AMVER, 2001; Statistics Norway, 2000).

Ship size [GT]

CT LGT OT B C GC R RO P OSV OOA OA

<999 - - 3900 3900 - 3300 - - 5300 6300 4600 4600

1000-4999 5300 4400 4300 4300 5000 3400 3400 5000 5300 6300 4600 4600

5000-9999 5300 4500 4700 4700 5000 3600 3600 5000 - - - -

10000-24999 5300 4700 5100 5100 5000 3900 - 5000 - - - -

25000-49999 5300 5200 5400 5400 5000 4100 - 5000 - - - -

50000-99999 5300 6200 5700 5700 - - - 5000 5300 - - -

>100000 - - 6100 6100 - - - - - - - -

Table 18 presents the emission factors per pollutant type and engine type. The amount of a particular

pollutant produced by the combustion in the main and auxiliary ship machines depends on various

parameters, with most significant being the fuel type, engine type, ambient conditions and specific fuel

consumption. To directly estimate the air emissions of a particular ship, data from on board

measurements of exhaust gas emissions and fuel flow rate are needed (Salonen, Heikkinen, & Ilus, 2012).

However, these measurements are not typically present on board and are rarely published. Thus, only

indirect estimation methods based on average data compiled from emission inventories. In the present

study, data from three different studies were compiled to produce the emission factors of Table 18.

Table 18 Emission factors for gas compounds related to the engine types (European environment agency, 2000; Lloyd's Register, 1995; Statistics Norway, 2000).

Gas Component Slow Speed

Medium Speed

High Speed

Turbine machinery

Carbon monoxide (CO) kg/kg fuel

7.4 7.4 7.4 0.4

Non Methane Volatile Organic Compounds (NMVOC)

kg/kg fuel

2.4 2.4 2.4 0.1

Methane (CH4) kg/kg fuel

0.3 0.3 0.3 0.08

Nitrous oxide (N2O) kg/kg fuel

0.08 0.08 0.08 0.08

Carbon dioxide (CO2) kg/kg fuel

3170 3170 3170 3170

Sulphur dioxide (SO2)

Residual Fuel 2.7% sulphur content

kg/kg fuel

54 54 54 54

Distilate Fuel 0.5% sulphur content

kg/kg fuel

10 10 10 -

Nitrogen oxides (NOX) kg/kg fuel

87 57 57 7

Particulate Matter (PM10) 7.6 1.2 1.2 2.5

Finally, Table 19 contains the ratio of auxiliary over main engine installed power per ship type.

Page 47: Life Cycle Assessment of Pollutants from Ships

Chapter ‎4 Life Cycle Inventory (LCI) analysis

40

Table 19 Auxiliary engine (AUX) power versus main engine (ME) power (DNV, 2002; Trozzi, 2010).

Ship type AUX/ME (%) Ship type AUX/ME (%)

CT 30 R 24

LGT 20 RO 20

OT 30 P 45

B 30 OSV 35

C 25 OOA 35

GC 23 OA 10

4.2.1.2 Hull performance

Hull and propeller performance refers to the relation between the condition of the underwater hull and

propeller and the propulsion power required to move the vessel at a given speed. Generally, the

performance deteriorates over time due to the increase of the hull and propeller surface roughness.

Roughness is a key parameter that affects frictional resistance and it can be categorized in two types

(Willsher, 2008):

Physical or basic roughness that results from coatings build up, coatings cracking, detachment,

corrosion, repeated spotblasting, welds, mechanical damages etc.

Biological roughness that the accumulation of unwanted living organisms on underwater

surfaces (bio-fouling).

Bio-fouling is a biological phenomenon whose type, severity and extent vary greatly depending on the

type of the antifouling coating, ship’s trading pattern and operational profile (i.e. vessel speed and

activity) (T. Smith, 2013; Willsher, 2008). At dry-docking, the ship’s underwater hull and propeller are

blasted and repainted and thus bio-fouling is totally removed. Biological roughness is eliminated,

however the physical roughness is not (even the blasting for preparing the hull surface for painting

creates some) and it accumulates over ship’s life time. Therefore, the deterioration of the hull

performance during the total life time can be assumed as the superposition of two phenomena:

1. The constant accumulation of mechanical damage over lifetime.

2. The periodical effect of bio-fouling over a sailing interval (the interval between dry dockings)

that builds over the abovementioned mechanical damage.

From an operational perspective, the permanent accumulation of mechanical damage onto the hull and

the respective physical roughness built up, is observed as the increase in fuel consumption measured

exactly after the ship leaves the drydock (bio-fouling is removed) with respect to the previous drydock.

According to discussions with two ship-operating companies the increase is approximately .

This suggests that the phenomenon follows a geometric progression pattern over life time with common

ratio ( ) . The fuel oil consumption exactly after the th dry-docking ( )can be

calculated by applying basic geometric progression formulas:

, Εq.5

Page 48: Life Cycle Assessment of Pollutants from Ships

Chapter ‎4 Life Cycle Inventory (LCI) analysis

41

Where,

is the number of drydockings during life cycle

is the common ratio

is the initial fuel oil consumption of the unfouled newbuilt ship

is the fuel oil consumption exactly after the th dry-docking (bio-fouling totally removed)

Due to the small value of the common ratio, the increase of fuel consumption follows an almost linear

pattern with respect to time for the longest part of life cycle (see Figure 6). However, the increase

becomes sharper and deviates from linear as the ship approaches her last dry-docking and end-of-life.

This is in accordance with the studies of Townsin (R. L. Townsin, 2000; R. L. Townsin, Byrne, D., Svensen,

T.E. and Milne,A., 1986), which proposed a linear increase of the average hull roughness over time (until

approximately 20 years) due to mechanical damage and thus an almost linear increase in fuel

consumption. It should be noticed that no reblasting was considered in the studies of Townsin.

Reblasting plays a major role in the accumulation of mechanical damage over life time and it is taken

into account in our case.

Figure 6 Geometric and linear evolution of fractional FOC increase for due to mechanical damages during lifetime. The ship is scrapped after 27.5 years of service. The vertical red lines indicate the drydockings. Notice the increasing difference between the two curves after the 17

th year.

The cyclical effect of bio-fouling between dry-dockings is complex phenomenon influenced by various

parameters such as coating type, ship type , speed, intermediate hull washings, geographical locations

of ports of call (Chad Hewitt, 2011). With respect to life cycle calculations and current market average

conditions, it can be adequately modelled as a linear increase of the fuel oil consumption exactly after

the th drydocking ( ). This assumption can be verified by observing published data by coating

manufacturers and measurement equipment suppliers (ENIRAM, 2012; International Paint, 2004;

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

9.00%

0 5 10 15 20 25 30

Frac

tio

anal

FO

C in

cre

ase

Years after launch

Geometric Linear

Page 49: Life Cycle Assessment of Pollutants from Ships

Chapter ‎4 Life Cycle Inventory (LCI) analysis

42

Kjølberg, 2013; Wallentin, 2012). According to this data, the fuel consumption increase ( ) to maintain

a certain speed before a 5-year dry-docking, can range between 5-30%, with most common values being

between , with lower values observed for new coating types. It should be noticed that

this measured fuel consumption increase includes the effect from both mechanical damage and bio-

fouling. The fuel oil consumption at a given time is calculated as follows:

( ) ( )

( )

(

)

Εq.6

With

The fuel consumed during a sailing interval , - can be calculated using the Εq.8:

( ) ∫ ( )

( ) (

) Εq.7

The total fuel oil consumed during lifetime is ( and denote the scrapping and last drydock time

respectively):

∫ ( )

∫ ( )

∫ ( )

Εq.8

For convenience, the two integrals are treated separately:

∫ ( )

( ) (

)

( ) (

)

Εq.9

∫ ( )

∑ ∫ ( )

∑ , ( ) ( ) -

( ) ∑ [( ) ]

Εq.10

Page 50: Life Cycle Assessment of Pollutants from Ships

Chapter ‎4 Life Cycle Inventory (LCI) analysis

43

If the drydockings occur at constant sailing intervals and

, then the time

period between the last drydocking and the scrapping, and the total life cycle duration can be written

respectively:

Εq.11

( ) Εq.12

Hence, the equations Εq.9 and Εq.10 yield to:

∫ ( )

( )

Εq.13

∫ ( )

( ) ∑ [ ]

( )

Εq.14

Therefore, the total fuel oil consumed during lifetime is:

[ ( ) ( )

]

Εq.15

Or

[ ( )

( )

]

Εq.16

From the above equation, the total fractional fuel oil consumption increase ( ⁄ ) over a ship’s

life time can be derived:

[ ( )

( )

]

Εq.17

For a ship undergoing drydockings every 5 years, scrapped after 27.5 years and mechanical damage and

biofouling impact to fuel oil consumption equal to and respectively, equation

Εq.17 gives a 9.38% total fuel oil increase over life time .

The total fractional fuel oil consumption increase ( ⁄ ) according to Εq.17 is plotted in Figure

7 for (green line). The total fractional FOC increase (green line) follows a linear pattern

between the FOC increase at the start and the end of the sailing interval (blue and green marks

respectively). The FOC increase at the end of the sailing interval is calculated as an increase ( ) of the

FOC at the beginning of the interval, as shown by the stepwise curve (blue line). The dashed line (light

Page 51: Life Cycle Assessment of Pollutants from Ships

Chapter ‎4 Life Cycle Inventory (LCI) analysis

44

blue) is the FOC growth due to the physical roughness of the hull over time (see equation Εq.5 and

Figure 7).

Figure 7 Total fractional FOC increase (green line) during a 27.5 year life cycle. Red vertical lines indicate the drydockings. Green marks and blue marks indicate respectively the FOC increase just before and exactly after drydockings. The rightmost green point corresponds to the end of operational life (27.5 years) and thus, the FOC increase has not reached the maximum possible value, like in the previous drydock intervals.

4.2.1.3 Ballast water

Total annual ballast quantity transported by a ship depends on her type and size and can be calculated

by equation Εq.18:

Εq.18

where Εq.19

Table 20 explains the symbols and subscripts of equations Εq.18 and Εq.19 and enlists the tables with

relevant data. The number of ballast trips is assumed equal to the number of load trips, and thus

can be taken from Table 22. Utilization rate is assumed equal to 0.86. According to equation Εq.19,

average ballast capacity and DWT are correlated in a linear fashion, where the slope is given in Table

21. The correlation coefficient has high values, confirming the validity of the linear relation. The results

also agree with other studies (Carlton, Reid, & Leeuwen, 1995; D. Smith, Wonharn, McCann, Reid, &

Carlton, 1996).

0.00%

5.00%

10.00%

15.00%

20.00%

0 5 10 15 20 25 30

Frac

tio

nal

FO

C in

cre

ase

Years after launch

Total FOC fractional increase FOC fractional increase growth after drydocks Fractional FOC after drydocks

σ2

σ1

Page 52: Life Cycle Assessment of Pollutants from Ships

Chapter ‎4 Life Cycle Inventory (LCI) analysis

45

Table 20 Explanation of symbols and subscripts in equations Εq.18 and Εq.19.

Subscripts

Ship type, * + Table 14

Ship size category Table 14

Symbols

Total annual ballast water per ship type i and ship size k , -

Average ballast capacity for ship type i and ship size k , -

Annual average ballast trips for ship type i and size k Table 22

Average ballast capacity utilization rate for ship type i and size k

Relative ballast capacity for hip type i Table 21

Average DWT of ship type k and size i -

Table 21 Correlation between DWT and normal ballast capacity for different ship types. αi denotes relative ballast capacity for ship type i and r denotes correlation coefficient.

Ship type Number of ships

Minimum DWT Maximum DWT Mean DWT

Oil tanker 0.34 0.97 25 5121 312638 120993

Bulk ships 0.35 0.97 21 25439 224222 95275

Container 0.37 0.95 13 5500 51880 27487

Chemical tanker 0.43 0.90 13 9176 45000 24126

Liquefied gas tanker 0.40 0.97 12 3451 77591 39521

RoRo 0.58 0.90 12 1640 12488 8146 General cargo & Reefers 0.36 - - - - -

All ships 0.36 0.98 96 1640 312638 65297

Table 22 Annual average number of load trips (DNV, 2002; Lloyd’s List, 2002; Statistics Norway, 2000).

Ship size [GT]

Annual average number of trips with cargo

CT LGT OT B C GC R RO P OSV OOA OA

<999 - - 35 35 - 50 - - 100 15 7 12

1000-4999 30 30 30 30 30 45 50 75 100 15 7 12

5000-9999 15 15 15 15 25 45 50 75 - 15 7 12

10000-24999 12 12 12 12 20 40 - 75 - 15 7 -

25000-49999 11 11 11 11 15 40 - 75 - - - -

50000-99999 10 10 10 10 - - - - 100 - - -

>100000 8 8 8 8 - - - - - - - -

Page 53: Life Cycle Assessment of Pollutants from Ships

Chapter ‎4 Life Cycle Inventory (LCI) analysis

46

4.2.1.4 Underwater hull coating leaching

Two types of hull coatings are used today to prevent the adherence and accumulation of biofouling on

ship’s underwater hull: antifouling (AF) coatings and fouling release (FR) coatings.

Antifouling coatings gradually release toxic substances into the water to kill off the fouling and after a

period of 3-5 years they become depleted and need replacement. After the ban of the tributyltin (TBT)

based coatings by IMO (IMO, 2001), the most common biocides used copper based (mainly cuprous

oxide Cu2O) and in some cases zinc oxides (ZnO). Because copper and zinc based coatings are not as

effective as the previous TBT based, co-biocides (or boosters) are added as supplementary to make

them effective against a broader variety of aquatic species. Combinations of different co-biocides in the

same coating are common, usually containing two biocides (the main one and the co-biocide). Most

common co-biocides are diuron, irgarol 1051, chlorothalomil, seanine 211 and zinc pyrithione. Cuprous

oxide and co-biocides are harmful to the marine environment and through the food chain can be

hazardous to humans too. Thus, different countries have banned different components, leading to a

fragmented legislation at a worldwide level with significant differences in approved products. The paint

manufacturers report this only to the institutions charged with approval of the specific product in their

country and the information of the market share of a specific product is company confidential.

Fouling release coatings, also known as “non-stick”, are not using biocides to prevent biofouling, but

they are forming a very slick surface onto which organisms cannot easily adhere and in case they do, the

surface can be washed off by the ship’s motion when sailing or by cleaning equipment. As FR coatings

are not leaching biocides to prevent biofouling, they are considered environmentally safe, although

some minor complications might exist (Hydrex, 2012).

Extensive literature exists for the calculation of the release rates of the aforementioned biocides.

However, the results vary widely due to differences between the measurement methods and the

representiveness of the measurements with respect to actual leaching in practice. For the present study,

the arguments for the selection of emission factors for the Netherlands emission registry (Cotteleer,

2012) are adopted. Table 23 shows the emissions factors of Cu2O and co-biocides for copper based

antifouling coatings. Fouling release coatings are considered to have marginal releases to the

environment and thus their emission factor is zero.

Table 23 Leaching rates (emission factors) of cuprous oxide and co-biocide for antifouling and foul release coating types (Cotteleer, 2012). The leaching rate unit express the biocide released per painted unit area per day.

Coating type Component Leaching rate [μg/cm2/day]

Sailing At port

Antifouling (AF) Cuprous oxide (Cu2O) 6.0 4.500

Co-biocide 0.9 0.675

Foul release (FR) - 0 0

In the absence of appropriate release rates for the different types of co-biocides, it is assumed that each

antifouling coating contains the main biocide (Cu2O) and one co-biocide. Table 24 lists the most

Page 54: Life Cycle Assessment of Pollutants from Ships

Chapter ‎4 Life Cycle Inventory (LCI) analysis

47

common co-biocides in use worldwide (Dutch national waterboard, 2008a) and their CAS (chemical

abstracts service) numbers.

Table 24 Common co-biocides and corresponding CAS numbers.

Co-biocide CAS number

Irgarol 1051 28159-98-0

Zineb 12122-62-7

Diclofluanid 1085-98-9

Zinc pyrithion 13463-41-7

Seasine 211N 64359-83

Tolyfluanide 731-27-1

4.2.1.5 Sacrificial anodes

All metal surfaces that are in contact with sea water are susceptible to corrosion, i.e. dissolution of the

metal into the water. Corrosion leads to severe degradation of the strength properties and thus, can

have destructive results. The areas of the ship that are the most susceptible to corrosion are the

underwater part of the hull and the ballast tanks. Coatings are used to prevent corrosion, yet the

protective layer is not always sufficient as damages can occur and certain areas (e.g. the propeller) are

not coated. For this reason, two types of cathodic protection (passive and active) are also used to

prevent corrosion.

Passive cathodic protection makes use of sacrificial anodes, which are metallic parts fitted on the hull

and ballast tanks and dissolve into the water, protecting steel of the ship’s structure. Zinc and aluminium

are the most common anode metals for marine application (Willems, Schouten, & Heidbuurt, 2003).

Active cathodic protection uses impressed current (IC) to protect the metal. The system includes a

transformer, a rectifier, power source and non-consumable anodes. The IC system is considered to have

no direct environmental emissions, since it does not dissolve into the water, unlike the sacrificial anodes.

Active cathodic protection is not used in ballast tanks due to the risk of fire/ explosion from the

formation of hydrogen gas in combination with the electrical system. For the exterior surfaces of the

ships, IC systems are often used together with sacrificial anodes in order to protect certain areas that

are more susceptible to corrosion, such as the bow thruster tunnel and the rudder. Table 25 shows the

application percentages of the protection methods for the seagoing vessels. It is noticeable that 60% of

the ships are only coated and they do no use cathodic protection at all.

Table 25 Application percentages of the corrosion protection methods per ship area (Willems et al., 2003).

Protection system Ship area

Underwater hull Ballast tanks

Zinc anodes 70% 10%

Aluminium anodes 12.5% 30%

IC system 17.5% 0%

No anodes 0% 60%

The amount of the anodes consumed over a period of time can be calculated by the equation Εq.20.

Page 55: Life Cycle Assessment of Pollutants from Ships

Chapter ‎4 Life Cycle Inventory (LCI) analysis

48

Εq.20

Table 26 provides the explanation of symbols and subscripts of equation Εq.20, and enlists the tables

and sections with relevant data.

Table 26 Explanation of symbols and subscripts in equation Εq.20.

Subscripts

Protection system: zinc or aluminium anode -

Ship type, * + Table 14

Ship size category Table 14

Operating mode: Sailing =1, At port =2

Ship area: Underwater hull or ballast tanks

Symbols

Amount of anode dissolved of type g for a ship of type i of size k with

protection system s at mode m, -.

Average utilisation factor for the ship area s for a ship of type i.

Surface of protected ship area s for a ship of type i , - Sec. ‎4.1.4

Corrosion rate for protection system g at mode m

, -. Table 27

Average number of operating days during a year at mode m for protection

system s installed in ship of type i and size k [days].

Equation Εq.20 can be used to calculate the amount of anode dissolved into the water of a particular

ship area. It should be reminded that the IC system does not produce direct releases to the environment.

The final amount depends on the time that the anode actually works, i.e. it is submerged into the water.

For the underwater hull, the working time is considered that of the total operating days per year, as it is

given in Table 17 per ship type and size category. For the ballast tanks, the working time can be taken

equal to half of that for the underwater hull, based on the assumption that the ship operates on round

trips. An average utilisation factor for the surfaces is also introduced, in order to compensate for the

actual part of the ship area that is submerged into seawater. Again the anodes protect only the surfaces

that are fully submerged. For the underwater hull, the utilisation factor should account for the variation

of draught during the considered time period. Yet, no correlation formulas for the draught variation with

the operating profile of ships could be found in the literature. For ballast tanks, the average ballast

capacity utilization introduced in paragraph ‎4.2.1.3 could be used as an approximation.

The corrosion rates of both anode types change considerably when the ship sails at open sea and when

at berth, as it can be seen in Table 27. Therefore, the total operating time must be partitioned between

Page 56: Life Cycle Assessment of Pollutants from Ships

Chapter ‎4 Life Cycle Inventory (LCI) analysis

49

the two different operating modes. The annual port time has already been calculated based on Table 17

and on the assumptions ‎b) and ‎e) mentioned in paragraph ‎4.2.1.1.

Table 27 Corrosion rates of zinc and aluminium anodes per ship area and per ship type for two different situations: sailing and when at berth. Elaborated from (Dutch national waterboard, 2008b).

Ship area Ship type

Corrosion rate *μg/cm2/day]

Zinc Aluminium

Sailing At port Sailing At port

Underwater hull

Bulk Ship 46.2 11.5 13.8 3.5

Container Ship 46.2 11.5 13.8 3.5

Chemical Tanker 46.2 11.5 13.8 3.5

General Cargo 61.5 15.4 18.5 4.6

Liquefied Gas Tanker 46.2 11.5 13.8 3.5

Other Activities 67.7 16.9 20.3 5.1

Offshore Other Activities 67.7 16.9 20.3 5.1

Offshore Supply Vessel 67.7 16.9 20.3 5.1

Oil Tanker 46.2 11.5 13.8 3.5

Passenger Vessel 61.5 15.4 18.5 4.6

Reefers 46.2 11.5 13.8 3.5

RoRo vessel 61.5 15.4 18.5 4.6

Ballast tanks All types 276.9 - 83.1 -

The corrosion rates presented in Table 27 have been derived using the Dwight’s formula, the required

electrical current density and the electrical capacities of the anodes’ materials(Dutch national

waterboard, 2008b). Zinc has a considerably lower capacity than the aluminium (780 Ah/kg versus 2,600

Ah/kg) that results in higher corrosion rate, in order to achieve required electrical densities for

protecting the steel of the ship structure. The high values of the rates for the ballast tanks are due to the

conditions met there. The tanks contain stationary water for long time periods and air which is

extremely humid with poor ventilation; hence, a highly corrosive environment is created.

4.2.1.6 Produced Waste

A general model for estimating the amounts of produced waste from different subsystems on board as

ship is described in the present chapter (Ø. Endresen & Sørgård, 1999; NMD, 1994; Schnitler, 1995).

Equation Εq.21 gives a general description of the model:

Εq.21

where

Εq.22

Additionally, equation Εq.23 should be used for sewage and garbage production:

Page 57: Life Cycle Assessment of Pollutants from Ships

Chapter ‎4 Life Cycle Inventory (LCI) analysis

50

Εq.23

Symbols of equations Εq.21, Εq.22 and Εq.23are explained in Table 28.

Table 28 Explanation of symbols in equations Εq.21, Εq.22 and Εq.23.

Subscripts

Waste type -

Ship type, * + Table 14

Ship size category Table 14

Operating mode: Open sea =1, Harbouring =2, Other=3

Waste system type

Symbols

Waste production of type g from a ship, -.

Amount of waste produced of type g for a ship of type i of size k with waste systems s at

mode m , - .

Waste based production factor for waste type g in relation to ship system s at mode

m,( ) ⁄ .

Number of persons on board (passengers + crew) at mode m for a ship of type I of size k

(persons).

Waste production rate at mode m for a ship of type I of size k ,( )

-

Average number of operating days during a year at mode m for waste system s installed

in ship of type I and size k [days].

Equations Εq.21, Εq.22 and Εq.23 need detailed data for waste production rates for different operating

modes and subsystems. These data are not always available and for this reason average production

rates are used which are not always varying with operating mode and subsystem type.

4.2.1.6.1 Sludge system

Sludge system waste cannot be discharged in sea according to MARPOL Annex I. After separation,

residues are stored in special tanks or barrels and are delivered in appropriate port reception facilities.

The amount of sludge system waste can be estimated by equations Εq.21, Εq.22 ( ) and

data of Table 29. Let us notice that these numbers are based on studies of Norwegian ports (NMD, 1994;

NSFI, 1977) and include lubricating oil residues too.

Page 58: Life Cycle Assessment of Pollutants from Ships

Chapter ‎4 Life Cycle Inventory (LCI) analysis

51

Table 29 Estimates for produced amount of sludge per day as function of ship type and ship size category (NMD, 1994).

Ship size [GT]

Sludge System , -

CT LGT OT B C GC R RO P OSV OOA OA

<999 - - 45 45 - 45 45 45 45 110 100 45

1000-4999 240 240 240 240 240 240 240 240 140 350 350 240

5000-9999 500 500 500 500 500 500 500 500 650 700 700 500

10000-24999 500 500 500 500 500 500 500 500 650 700 700 500

25000-49999 500 500 500 500 500 500 - - 650 - - 500

50000-99999 500 500 500 500 - - - - 650 - - 500

>100000 - - 500 500 - - - - - - - 500

4.2.1.6.2 Bilge oil

Bilge oil is a mixture of water and oily residues that leaks from machinery, piping etc. and accumulates in

the lower spaces of the engine room (bilge). Apart from fuel and lubricating oils quantities, it can also

contain water from oil separators and small quantities of metals and detergents. Bilge oil is separated

and the oily fraction is stored in a settling tank (usually with sludge). The water fraction can be

discharged into the sea only if its oil content is less than . Assuming that every ship does not

exceed the maximum allowed oil content (Schnitler, 1995), the annual production of bilge oil can be

calculated through equations Εq.21, Εq.22 ( ) and Table 30.

Table 30 Average quantities of bilge water as function of ship type and ship size category (NMD, 1994).

Ship size [GT]

Bilge System , -

CT LGT OT B C GC R RO P OSV OOA OA

<999 - - 120 120 - 120 120 120 120 100 100 120

1000-4999 500 500 500 500 500 500 500 500 300 500 500 500

5000-9999 1200 1200 1200 1200 1200 1200 1200 1200 400 1100 1100 1200

10000-24999 1200 1200 1200 1200 1200 1200 1200 1200 400 1100 1100 1200

25000-49999 1200 1200 1200 1200 1200 1200 - - 400 - - 1200

50000-99999 1200 1200 1200 1200 - - - - 400 - - 1200

>100000 - - 1200 1200 - - - - 400 - - 1200

4.2.1.6.3 Liquid oily waste

This category contains oily wastes from waste oil collectors, lubricating oil basins, hydraulic oil changes,

oil separators etc. The quantities that are not collected end in the engine room bilge spaces. The biggest

part of liquid oily waste is either incinerated or delivered at reception facilities ashore. The annual

production of liquid oily waste can be calculated through equations Εq.21, Εq.22 ( ) and

Table 31.

Page 59: Life Cycle Assessment of Pollutants from Ships

Chapter ‎4 Life Cycle Inventory (LCI) analysis

52

Table 31 Average quantities of liquid waste oil as a function of ship type and ship size category (NMD, 1994).

Ship size [GT]

Liquid oily waste , -

CT LGT OT B C GC R RO P OSV OOA OA

<999 - - 35 35 - 35 35 35 40 10 25 35

1000-4999 75 75 75 75 75 75 75 75 75 20 50 75

5000-9999 80 80 80 80 80 80 80 80 100 30 60 80

10000-24999 80 80 80 80 80 80 80 80 100 30 60 80

25000-49999 80 80 80 80 80 80 - - 100 - - 80

50000-99999 80 80 80 80 - - - - 100 - - 80

>100000 - - 80 80 - - - - - - - 80

4.2.1.6.4 Solid oily waste

Solid oily waste contains materials and parts which are contaminated with oil residues (e.g. oil filters).

Additionally, sediments from fuel tanks comprising of a mixture of oil, rust, sand etc. are included in this

category. Annual solid oily waste can be estimated by equations Εq.21, Εq.22 ( ) data from

Table 32 .

Table 32 Average quantities of solid oily waste as a function of ship type and ship size category (NMD, 1994).

Ship size [GT]

Solid oily waste , -

CT LGT OT B C GC R RO P OSV OOA OA

<999 - - 6 6 - 6 6 6 7 5 4 4

1000-4999 12 12 12 12 12 12 12 12 15 12 10 12

5000-9999 15 15 15 15 15 15 15 15 20 15 12 15

10000-24999 15 15 15 15 15 15 15 15 20 15 12 15

25000-49999 15 15 15 15 15 15 - - 20 - - 15

50000-99999 15 15 15 15 - - - - 20 - - 15

>100000 - - 15 15 - - - - - - - 15

4.2.1.6.5 Wastewater (black and grey water)

Ship produced wastewater consists of the black and grey water. Black water is defined as the sewage

from toilettes and medical facilities, while grey water is the effluent from kitchen, pantries, laundries,

galleys, baths and showers. Wastewater can either be treated on board or stored untreated in

appropriate tanks. According to MARPOL Annex IV, untreated black water can be discharged into the sea

only at distance greater than 12 nm from shore and when ship sails at a minimum speed of four knots.

Treated black water can be discharged anywhere, provided local rules are followed. Untreated grey

water can be discharged overboard at distance greater than 3nm from shore, apart from protected

areas such Alaska and Carribean.

Wastewater quantity can be calculated by equations Εq.21, Εq.22 and Εq.23. However, a more

convenient expression Εq.24 can be derived by simplifying equation Εq.23:

Page 60: Life Cycle Assessment of Pollutants from Ships

Chapter ‎4 Life Cycle Inventory (LCI) analysis

53

( ) ⌋

( ) ⌋

Εq.24

where

( ) Black water production rate , - in mode m for ship type I and

size category k. ( ) Grey water production rate , - in mode m for ship type I

and size category k.

Average produced quantities of black and grey water per person per day , - are

presented in Table 33. The two flushing technologies (conventional or vacuum system) common in use

today, consume considerably different quantities of water and thus different production rate should be

used (US-EPA, 2008a). On many ships there is a connection between black and grey water systems and

thus, an allocation between the two different systems must be made (HELCOM, 1990). Passenger ships

considered, 65% uses vacuum systems while 35% uses conventional technology.

Table 33 Amounts of black and grey water produced per person per day (DNV, 2002; HELCOM, 1990; NMD, 1994).

Ship type

Wastewater production [litres/person/day]

Black water, Grey water,

Conventional system Vacuum system Conventional system Vacuum system

Passenger/cruise vessels 70 25 230 185

Non passenger vessels 70 25 180 135

4.2.1.6.6 Garbage

Ship-produced garbage is either incinerated or delivered at ports or discharged in sea. MARPOL Annex V

specifies certain criteria for permitting discharge in sea. Paper, food etc. can be discharged only when in

a greater than a minimum distance from shore. In special areas, only food can be discharged in sea and

not within a distance of 12 nm from shore. Garbage quantity is a direct function of total people on board.

Table 34 contains garbage production rates (kg/person/day) which agree with other studies (Lloyd's

Register, 1995).

Table 34 Amounts of garbage produced per person per day (NMD, 1994).

Ship type Dry garbage [kg/person/day]

Food waste [kg/person/day]

Total [kg/person/day]

Passenger/cruise vessels 1.26 0.84 2.10

Non passenger vessels 0.90 0.60 1.50

4.2.1.6.7 Crew and Passenger numbers

Table 35 presents data for the average number of people on board per ship type and size category,

which are needed for estimating the quantities of garbage and black/grey water per ship.

Page 61: Life Cycle Assessment of Pollutants from Ships

Chapter ‎4 Life Cycle Inventory (LCI) analysis

54

Table 35 Average numbers of personnel and passengers (DNV, 2002; NMD, 1994).

Ship size [GT]

Number of personnel and passengers

CT LGT OT B C GC R RO P OSV OOA OA

<999 - - 4 6 - 4 5 6 200 8 8 4

1000-4999 11 11 11 11 11 11 11 11 500 10 15 12

5000-9999 20 20 20 18 20 20 19 20 800 15 15 40

10000-24999 25 23 25 25 25 25 25 25 1200 20 20 50

25000-49999 27 25 27 27 25 25 - - 1500 - - 50

50000-99999 30 30 30 30 - - - - 2000 - - 50

>100000 - - 30 30 - - - - - - - 50

4.2.1.7 Slop system – cargo residues from oil tankers

The cargo oil tankers need to be washed at least in two occasions: (a) changing the type of cargo after a

trip, (b) prior to maintenance being carried out on tanks, pipes, or valves either on board or in shipyards.

Normally, the tank washings should be collected and settled in slop tanks. Then, these slops should be

separated via water or oil separator with oil being retained and water disposed of. The amount of this

water is estimated at 4-8% of DWT (Schnitler, 1995) and its contamination with oil residues varies

considerably with cargo type and washing system type. The frequency of tank washings depends mainly

on operating policy and cargo variation.

According to MARPOL Annex I Reg.9., the total quantity of oil discharged into the sea shall not exceed

1/30000 of the total quantity of the particular cargo (1/15000 for tankers built before 1980) (see eq.

Εq.25). The tanker must proceed en route at distance greater than 50 nm from nearest land and not

within a special area. The rate of discharge of oil content shall not exceed 30 litres per nautical mile (see

eq. Εq.26). The final discharged amount (see eq. Εq.27) is the minimum of the two values calculated by

equations Εq.25 and Εq.26.

( )

Εq.25

( ) Εq.26

( ( ) ( )) Εq.27

Table 36 explains the symbols and subscripts of equations Εq.25 and Εq.26 and enlists the tables with

relevant data. Annual cargo transported , - for a ship of size can be estimated from equation

Εq.18, and using the data of Table 17 and assuming a utilization rate , (Johnsen, 2000;

Wijnolst & Wergeland, 1997). An estimation of ship’s speed is provided in Table 37, if no real data are

available. The main assumptions of aforementioned model are: (a) all ships discharge the maximum

allowed quantity and (b) rules are followed in any occasion.

Page 62: Life Cycle Assessment of Pollutants from Ships

Chapter ‎4 Life Cycle Inventory (LCI) analysis

55

Table 36 Explanation of symbols and subscripts in equations Εq.25 and Εq.26.

Subscripts

Ship type, * + Table 14

Ship size category Table 14

Symbols

Total annual production, ⁄ - of oil from slop operations for oil tankers of size

-

Annual cargo transported , ⁄ - by an oil tanker of size Εq.18

Maximum cargo fraction allowed to be discharged at sea, i.e. 1/30000 for tankers delivered after 01.01.1980 and 1/15000 for tankers delivered before this date

Specific gravity of oil, on average 0.85 , - -

Operational hours , - at sea Table 17

Average operating speed Table 37

Average factor of mileage conducted in areas where discharge is legal. This factor will be low for small ships engaged in short sea and coastal transportation and bigger for large ship conducting transcontinental voyages.

Table 37

The mean speed of a ship is a critical parameter that is often used as a basis for calculating the average

load of the ship engines and hence, the fuel consumption. However, the mean speed given in Table 37 is

used only for the calculations of this paragraph in the present thesis. The coupling of the speed with the

fuel consumption would introduce complexity that is not desired for life cycle modelling and

assumptions that would increase the uncertainly of the final results. For this reason, the engine load

factor was introduced in paragraph. ‎4.2.1.1.

Table 37 Average operating speed and fraction of distance travelled within areas where discharge is legal (DNV, 2002).

Ship size [GT]

Mean speed [knots]

Fraction of distance travelled in “legal area”

<999 11 0

1000-4999 13 0

5000-9999 13 0.1

10000-24999 15 0.3

25000-49999 14 0.4

50000-99999 15 0.5

>100000 15 0.5

4.2.1.8 Volatile Organic Compounds (VOCs) from oil tankers

Emissions to the atmosphere occur during the carriage of organic cargo by oil tankers. The emissions are

mainly volatile organic compounds (VOCs) that arise from the evaporation of the volatile compounds of

the cargo being transported. The quantity and composition of the VOCs varies with the cargo type and

Page 63: Life Cycle Assessment of Pollutants from Ships

Chapter ‎4 Life Cycle Inventory (LCI) analysis

56

the stage of the tanker’s trip, i.e. loading, transit, unloading and ballast leg. Approximately 0.1% of

payload can be lost and emitted to the atmosphere as VOCs (Ø. Endresen & Sørgård, 1999; European

environment agency, 2000; Martens, 1993).

The loading stage is the most severe with respect to the amount of VOCs released to the atmosphere, as

organic vapours in "empty" cargo tanks are displaced to the atmosphere by the liquid being loaded into

the tanks. These vapours are a composite of (1) residual vapours from previous loads, (2) vapours

generated from the new cargo being loaded, and (3) vapours transferred to the tank in vapour balance

systems. Thus, the quantity of evaporative losses from loading operations depends on the following

parameters (MEPC, 2013; US-EPA, 2008b):

Physical and chemical properties of the previous cargo;

Method of unloading the previous cargo;

Operations to transport the empty carrier to a loading terminal;

Method of loading the new cargo;

Physical and chemical properties of the new cargo.

Significant amount of vapours are also emitted during the transit stage of a trip due to the heating of the

cargo to preserve it at an adequate viscosity and avoid phase separation, and due to the sloshing of the

tanks depending on the sea state(MEPC, 2013).

The large variation of the aforementioned parameters with the numerous cargo types and the

operational pattern of the ship does not allow for a universal modelling of the VOC generation

mechanism within the scope of the present study. Thus, emission factors for the two most severe

carriage stages (loading and transit) are adopted for the six most important cargo types in terms of

annual volume transported. The emission factors can be seen in Table 38:

Table 38 VOC emission factors for crude oil losses during the loading and transit stages (US-EPA, 2008b).

Cargo type Loading

[mg/litre] Transit

[mg/week/litre]

Gasoline 215 320

Crude oil 73 150

Jet Naphtha 60 84

Kerosene 0.63 0.60

Distillate 0.55 0.54

Residual 0.004 0.003

It should be noticed that the quantity of methane and ethane is negligible in VOC emissions of all

products other than crude oil (US-EPA, 2008b). For the crude oil, ethane and methane account for 15%

of the amount emitted.

4.2.2 Maintenance

The maintenance part of the operational phase normally includes all the processes carried out during

the drydockings and the minor repairs needed between the drydocking intervals, i.e. steelwork,

Page 64: Life Cycle Assessment of Pollutants from Ships

Chapter ‎4 Life Cycle Inventory (LCI) analysis

57

machinery and equipment replacement, painting and respective surface preparation. However, only

painting and surface preparation operations are considered to have significant environmental impact

(US-EPA, 1997b) and thus are taken into account in the present life cycle modelling. Only the modelling

of the surface preparation (blasting) process will be presented below, since the painting process model

is identical to that described in section ‎4.1.4 for the shipbuilding phase.

4.2.2.1 Surface Preparation (Blasting)

Surface preparation methods are used to remove impurities such as rust, corrosion, and old coatings

from a substrate and create a profile with better adhesion for new coating. Swedish standards are often

quoted, SA 3 being white metal and SA 2.5 being near white metal. SA 2.5 is common as a reasonably

achievable standard for shipyards (Eyres & Bruce, 2012b).Dry abrasive blasting is the most widely used

method in shipbuilding and ship repair. In this method, an abrasive material is mixed with compressed

air and this mixture is projected onto the surface. Traditionally, sand was used as the abrasive, but it is

being replaced by other materials due to the adverse health and environmental effects of silica dust

(silicosis) (NPI, 1999). Nowadays, common abrasive materials used in shipbuilding are barshot

(hematite), coal slag, copper slag, garnet, steel grit/shot, and specialty sand (Kura, 2005). The process

waste is a mixture of used abrasive, paint chips and eroded material. Total suspended particles, PM10

and metal emission per unit blasted area can be calculated by using the emission factors of Table 39.

Table 39 Total suspended particles (TSP), PM10 and metal emission factors per blasted unit area for six blasting materials (Kura, 2005).

Blasting Material

TSP [kg/m

2]

PM10 [kg/m

2]

As [mg/m

2]

Ba [mg/m

2]

Pb [mg/m

2]

Co [mg/m

2]

Cr [mg/m

2]

Cu [mg/m

2]

Coal Slag 1.892 0.73% 0.000E+00 2.323E-02 2.427E-03 5.630E-03 1.842E-04 8.854E-04

Copper Slag 1.396 0.03% 5.337E-04 0.000E+00 1.868E-02 1.136E-03 3.255E-04 1.978E-02

Specialty Sand 2.972 0.20% 0.000E+00 0.000E+00 1.722E-02 0.000E+00 0.000E+00 2.264E-03

Barshot 2.095 1.52% 0.000E+00 2.478E-04 3.900E-03 3.566E-04 5.479E-05 7.821E-05

Garnet 3.400 0.36% 0.000E+00 4.689E-03 2.099E-03 4.174E-03 5.372E-04 6.262E-04

Steel Grit 0.920 0.10% 0.000E+00 0.000E+00 3.153E-03 0.000E+00 2.056E-03 1.057E-03

Blasting Material

Hg [mg/m

2]

Mn [mg/m

2]

Mo [mg/m

2]

Ni [mg/m

2]

Se [mg/m

2]

Ti [mg/m

2]

Zn [mg/m

2]

Fe [mg/m

2]

Coal Slag 7.404E-04 3.185E-03 3.936E-03 1.340E-04 1.348E-05 2.079E-02 9.192E-03 9.297E-01

Copper Slag 0.000E+00 1.047E-03 5.226E-03 6.760E-05 0.000E+00 3.903E-03 2.395E-02 9.254E-01

Specialty Sand 1.162E-04 5.792E-03 5.615E-02 4.250E-05 0.000E+00 3.222E-02 1.265E-02 8.735E-01

Barshot 7.761E-05 9.912E-05 5.501E-05 0.000E+00 0.000E+00 1.605E-03 2.180E-04 9.933E-01

Garnet 1.782E-04 1.636E-02 9.059E-04 8.717E-05 0.000E+00 2.954E-02 4.867E-03 9.359E-01

Steel Grit 4.087E-05 7.943E-03 1.049E-03 0.000E+00 0.000E+00 3.379E-03 1.666E-03 9.797E-01

The factors of Table 39 are the results of experiments of the aforementioned common abrasive

materials on a painted steel plate and are the most recent and relevant to ship repair conditions. Other

literature data (NIOSH, 1999; US-EPA, 1997a) are thought not to be applicable to the shipbuilding

Page 65: Life Cycle Assessment of Pollutants from Ships

Chapter ‎4 Life Cycle Inventory (LCI) analysis

58

industry as most come from different sources not relevant to ship building and ship repair sector (e.g. no

painted plate).

4.3 Ship breaking

Ship breaking (also called dismantling, decommissioning, recycling, scrapping, demolition) is the process

of dismantling an obsolete vessel’s structure for scrapping or disposal. Conducted at a pier, dry dock or

beach, it includes a wide range of activities, from removing all gears and equipment to cutting down the

ship’s infrastructure. Ship breaking is a challenging process, due to the structural complexity of ships and

the many environmental, safety, and health issues involved (OSHA, 2001).

Nowadays, Asian demolition yards account for over 95% of the industry (SRIA, 2006). Until 1960s,

industrialized countries (USA, UK, Germany, Italy) were dominating the industry as ship demolition was

considered a highly mechanized operation, although labour intensive. However, the abundance of cheap

labour and the continuous growth of re-rolling steel market continually shifted the industry towards

semi industrialized and developing countries (Misra, 2005). During the 1960s and 70s, ship breaking

activities migrated to Spain, Turkey and Taiwan, and from early 1980s to India, China, Pakistan,

Bangladesh, the Philippines and Vietnam, where health and safety standards are low and cheap labour is

highly available(M. Hossain & Islam, 2006). Alang in India is the world’s largest scrapping site for ocean

going ships, accounting for an average of 70% of tonnage, and an average of 50% of worldwide

demolition sales. Chittagong in Bangladesh holds the second position in terms of volume of recycling,

while Gadani in Pakistan comes third, although operations are more mechanized (FIDH, 2002).

4.3.1 Description of operation

Several on site investigations identified and described the steps of ship demolition at Asian yards

(Demaria, 2010; Frey, 2013; M. Hossain & Islam, 2006; Sarraf et al., 2010). First, the ship is anchored in

international waters off demolition yard and various legal formalities are completed. The ship is

inspected, checked and made gas free. Then Port Authority issues the permit for the ship to enter

territorial waters for beaching. When at high tide, the vessel is beached by own propulsion power at full

speed so that she is lying stable on her flat bottom. The higher up on the beach the easier to conduct

dismantling operations and cost is reduced. After beaching, cutters and their helpers start cutting the

vessel into parts according to her structural design. Large holes are hammered or punched in the

interior to vent flammable gases and wash out fuel tanks with seawater during high tide.

Ship equipment and other materials (asbestos, generators, life boats, navigation equipment, toilets etc.)

are stripped off and sold in local second-hand market. Larger parts are dragged to the dry part of the

shore with the help of winches and workers. There, another group of cutters, helpers and workers start

cutting the dragged parts of the ship into smaller pieces to be loaded on trucks or piled up at stack yards.

The steel is usually recycled in local re-rolling mills, often in the form of reinforcement rods. Demolition

procedure for an average size (approximately 15000 tons) usually requires 3 to 6 months and a variable

number of workers (150 to 300) involved at different stages (Demaria, 2010).

Page 66: Life Cycle Assessment of Pollutants from Ships

Chapter ‎4 Life Cycle Inventory (LCI) analysis

59

4.3.2 Process Description

Several investigations and measurements have been conducted at three major shipbreaking sites (Alang,

Gadani, Chittagong) in Southeast Asia. However, the majority focused on health and safety aspects and

thus material concentration, accumulation, dispersion and soil contamination were mainly investigated.

Quantified waste streams per ship are only dealt in few reports (DNV, 2000; K. A. Hossain, Iqbal, &

Zakaria, 2010; Melissen & Molemaker, 2005; Sarraf et al., 2010; Tilwankar, Mahindrakar, & Asolekar,

2008).

The Inventory of Hazardous Materials (IHM) is a key requirement under the still unratified Hong Kong

Convention and contains all hazardous and potentially hazardous materials on board the ship prior to

scrapping. It is to be completed by the ship-owner and delivered to the recycler before commencement

of activities. Today, few ships are accompanied with IHM and even these are difficult to find in public

domain. However, the predecessor of IHM-the Green Passport (IMO Guidelines on Ship Recycling

A23/Resolution 962) - is more common, yet proprietary and confidential. IHM is a valuable document as

the recycler gets knowledge of the type of hazardous substances and their location on board the ship so

that he can adequately remove, store or treat them.

In shipbreaking context, the most meaningful quantity is the light displacement in tons (LDT). It

corresponds to the displacement of the ship when it arrives at the recycling yard and it can be used as a

basis for estimating the quantities of materials to be recovered. LDT is defined as the extreme

displacement of a ship without cargo, fuel, lubricating oil, ballast water, fresh water and feed water,

consumable stores and passengers and crew and their effects, but including liquids in piping

(Chatzinikolaou & Ventikos, 2008). In our study, LDT consists of IHM enlisted items and the non-

hazardous materials. IHM quantities of most important hazardous and potentially hazardous materials

are calculated based on a review of merchant ships’ inventories(Sarraf et al., 2010). Table 40 contains

the quantity per GT of available items. The extent of hazardous materials can vary with the ship type,

place and year of building and repairs etc., however limited availability of data does not allow

considering this kind of correlations.

Table 40 Unit quantities of hazardous and potentially hazardous materials on board before shipbreaking. Derived from (Sarraf et al., 2010)

Hazardous materials Unit Average Min Max

Asbestos ton/GT 5.090E-04 7.600E-07 3.667E-03

PCB solids kg/GT 1.660E-06 2.900E-07 5.870E-06

Hydraulic oil ton/GT 1.130E-04 9.986E-05 2.313E-03

ODS solid ton/GT 1.760E-03 6.040E-06 8.634E-03

Paints TBT ton/GT 4.290E-04 7.650E-06 6.625E-05

Cadmium ton/GT 1.900E-06 2.100E-07 1.910E-06

Mercury kg/GT 4.375E-05 0.000E+00 1.461E-04

Reusable organic liquids (HFO, diesel) ton/GT 3.208E-03 9.072E-04 1.280E-02

Sewage m3/GT 6.610E-04 - -

Garbage ton/GT 2.300E-06 - -

Incinerator Ash ton/GT 1.900E-06 - -

Batteries lead ton 2.230E-06 - -

Page 67: Life Cycle Assessment of Pollutants from Ships

Chapter ‎4 Life Cycle Inventory (LCI) analysis

60

The disposition of the wastes can follow different streams depending on the facilities available in each

country and mainly on the market value and further use of materials, machinery, appliances, furniture

etc. Potential distribution of the total quantity per ship of the aforementioned materials can be seen at

Table 41 (Sarraf et al., 2010):

Table 41 End-of-life scenario of wastes after ship dismantling. Derived from (Sarraf et al., 2010).

Hazardous/potentially hazardous material on board prior to scrapping

Remain at yard/beach sediment

Sold with equipment or as item

Re-rolling mills Unknown or Informal waste disposal site

Asbestos 47.50% 5.00% 0.00% 47.50%

PCB (mainly in cables) 10.00% 90.00% 0.00% 0.00%

ODS (PU foam) 20.00% 1.00% 0.00% 79.00%

Paints (metals, PCB) 5.00% 5.00% 85.00% 5.00%

Heavy metals 25.00% 25.00% 50.00% 0.00%

Waste (liquid organic) 100.00% 0.00% 0.00% 0.00%

Miscellaneous (e.g. sewage) 100.00% 0.00% 0.00% 0.00%

Waste liquids (inorganic) 24.90% 50.19% 0.00% 24.90%

Reusable liquids (organic) 5.00% 90.00% 0.00% 5.00%

Apart from IHM items, ship’s LDT consists of steel, furniture, machine parts etc. which might not be

hazardous, yet they constitute significant material flows. Several breakdowns of LDT can be found in

literature (DNV, 1999; Melissen & Molemaker, 2005; Sarraf et al., 2010; Srinivasa Reddy, Basha, Sravan

Kumar, Joshi, & Ghosh, 2003; Tilwankar et al., 2008), with most of them based on experience rather

than actual measurements. Table 42 shows the estimations per ship as provided by the Indian

Shipbrokers association.

Table 42 Estimation of lightship displacement breakdown. Derived from (Melissen & Molemaker, 2005) .

Items Oil Tanker Bulk Carrier General Cargo

Recycled Steel 86.50% 83.00% 78.00%

Non-ferrous metals 1.00% 1.00% 1.00%

Machinery 3.00% 4.00% 6.00%

Accommodation equipment 1.50% 3.00% 5.00%

Waste 8.00% 9.00% 10.00%

4.4 Chapter conclusions In this chapter, all the particular processes of the three life cycle phases were modelled and data were

collected in order to calculate the amount of releases to the environment. The current technologies and

materials used for the construction, operation and dismantling of ships were identified and linked to

characteristics of the ship and its operation pattern. The modelling of the processes has two stages:

firstly, calculating the quantities of materials and energy as functions of the product system

Page 68: Life Cycle Assessment of Pollutants from Ships

Chapter ‎4 Life Cycle Inventory (LCI) analysis

61

characteristics; then, this input of materials and energy is converted by the process models to the final

environmental releases, or in other words, to the life cycle inventory of the system. The inventory serves

in turn as the input to the impact assessment method. It is converted to the potential environmental

impact with respect to the categories selected in section ‎3.3.

Problems in data collection were encountered and revealed gaps in the literature. More specifically,

correlations of the superstructure and cargo space areas could not be found, meaning that the impact

related with this data can only be calculated for specific cases. Additionally, no emission factors for oxy-

fuel cutting were located in the literature, despite the fact that it is the main process in ship breaking. It

was also concluded that the hazardous materials found on board and released after ship dismantling are

very different from ship to ship and cannot be easily calculated.

The procedure described above is exemplified in the next chapter, where the inventory of an aframax

tanker is calculated using the models of the present chapter. Its potential environmental impact is

quantified using the ReCipE LCIA method, as well as the contribution of each particular process to the

total result.

Page 69: Life Cycle Assessment of Pollutants from Ships

Chapter ‎5 Case study: Inventory analysis and impact assessment of an Aframax tanker

62

5 Case study: Inventory analysis and impact assessment of an Aframax

tanker According to the specifications set in chapter ‎3 and implementing the models developed in chapter ‎4, a

computational tool was developed. The tool has a spreadsheet form and was built on the MS Excel

software. In this section, the environmental impact of an existing 115000 DWT oil carrier are calculated

and assessed using the tool. Results concerning the total life cycle are presented, as well as the

contribution of particular processes and life cycle phases.

5.1 Case description The parameters defining the ship and its life cycle are shown in Table 43. The LCA analysis and impact

assessment results are presented hereafter.

Table 43 Main particulars and machinery specification for an 115000 DWT oil tanker.

Parameter Unit Value

Main particulars:

Deadweight tons 115000

Gross tonnage GT 62216

Steel weight tons 12502

LPPxBxDxTmax m 239x44x21x14.8

Crew persons 30

Machinery specs.: Main engines Auxiliary engines

Installed power kW 14342.0 2868.4

Type - slow speed medium speed

Fuel type - residual fuel oil (2.7% sulphur)

marine diesel oil (0.7% sulphur)

SFOC kg/kWh 0.195 0.215

Load factor (sailing) - 0.70 0.25

Load factor (at berth) - 0 0.35

In the next paragraphs the life cycle inventory results and their impact assessment is demonstrated. For

each phase, process key parameters calculated within the model are presented together with the

material outflows and energy consumption.

5.2 Case results In this section, the environmental releases per life cycle phase are explained and their impact

assessment per impact category is illustrated with charts. The results of the total life cycle and the

phases/ processes contributing the most are identified. The full life cycle inventory of the case study can

be found in the appendix B.

Construction phase

The construction of the ship under investigation is assumed to take place in Japan. Therefore, the air

emissions due to electricity consumption are those of the Japanese energy mix. For the ship under

investigation, the total length of welds was 404.6 km, 4531 kg of welding consumables (rod/wires) are

Page 70: Life Cycle Assessment of Pollutants from Ships

Chapter ‎5 Case study: Inventory analysis and impact assessment of an Aframax tanker

63

used and the corresponding electricity consumption was 4342 kWh. The carbon dioxide emitted from

the welding shielding gas is estimated to 1618 kg. A total of 195km of various thickness steel is cut, of

which 60% was cut with underwater plasma cutting and the rest with atmospheric plasma cutting. The

electricity consumed due to cutting was 433575 kWh. All internal and external surfaces of the ship were

painted, resulting in the release of 32111 kg non methane VOC in the atmosphere. The overhead

electricity consumption which accounts offices, ventilation, air conditioning etc. was calculated

683042.5 kWh. Table 44 presents the amounts of the materials released directly into the air in the

shipyard area and outside the shipyard due to electricity consumption.

Table 44 Direct (within shipyard) and indirect (electricity consumption) material releases during the construction phase.

Air pollutant Unit Quantity Process

Direct emissions (within yard):

Chromium kg 0.09 welding

Manganese kg 33.43 welding

Nickel kg 0.36 welding

PM10 kg 61.63 welding

CO2 kg 1674.51 welding

PM10 kg 47986.21 cutting

NMVOC kg 32111.33 painting

Indirect (outside the yard):

CO2 kg 177292.406 electricity consumption

CH4 kg 0.633 electricity consumption

N2O kg 2.746 electricity consumption

NOX kg 128.392 electricity consumption

CO kg 36.014 electricity consumption

NMVOC kg 1.704 electricity consumption

SO2 kg 91.933 electricity consumption

Figure 8 shows the impact assessment with the ReCiPe methodology for the releases of the construction

phase. The results are normalized with respect to the total equivalent amount of each category. The

same approach will be followed for all impact assessment diagrams hereafter. The welding process

dominates the ecotoxicity impact categories due to the release of heavy metals in the air. The high

number of particulate matter produced during the cutting process explains its large effect to the

relevant category. The painting, being the only process which produces VOCs prevails at the

photochemical oxidant formation. At the climate change, marine eutrophication and terrestrial

acidification categories, the overhead electricity consumption plays a significant role as expected, as it

produces the highest amount of combustion gases among the other processes.

Page 71: Life Cycle Assessment of Pollutants from Ships

Chapter ‎5 Case study: Inventory analysis and impact assessment of an Aframax tanker

64

Figure 8 Share of different construction processes to the total per impact category, for the oil tanker case study.The calculations are based on the ReCiPe method.

Operation phase: Sailing

The ship is considered to operate over a life cycle of 26 years and complete a total number of 260

roundtrip voyages at an average speed of 15 knots. Annually, the ship spent 3600 hours at sailing and

manoeuvring , 4920 hours at berth and 240 hours was off-hire for repairs, inspections etc.

The cargo type is assumed crude oil with 0.851 ton/m3 density and the total amount transported per

year was 861218 tons. For ballast legs, the utilization rate of the ship’s ballast capacity was 89%.

Annually the ship consumed 12245 tons of residual oil (main engines) and 1487 tons of low sulphur

marine diesel oil (auxiliary engines). The degradation of the hull over life time and the periodic effect of

biofouling between the drydockings (see paragraph ‎4.2.1.2) has been taken into account and resulted in

9.73% increase in fuel consumption). Table 45 shows the air emissions (annual and lifetime) due to the

engines’ combustion.

Table 45 Annual and lifetime air emissions from ship engines' (main and auxiliary) operation.

Air pollutant Unit Annual Lifetime

Carbon monoxide (CO) tons 101.62 2642.14

Non methane VOCs tons 32.96 856.91

Methane (CH4) tons 4.12 107.11

Nitrous oxide (N2O) tons 1.10 28.56

Carbon dioxide (CO2) tons 43072.08 1119874.16

Sulphur dioxide (SO2) tons 676.11 17578.78

Nitrogen oxides (NOX) tons 1030.98 26805.36

Particulate matter (PM10) tons 83.68 2175.63

Triggered by the ship’s operation, three types of material outflows are continually produced: ballast

water, underwater coating leaching, anode corrosion and various wastes. For ballast water, the

0%10%20%30%40%50%60%70%80%90%

100%

Cutting Overhead Painting Welding

Page 72: Life Cycle Assessment of Pollutants from Ships

Chapter ‎5 Case study: Inventory analysis and impact assessment of an Aframax tanker

65

cumulative effect over time to certain geographical areas has been proven to cause the appearance of

invasive species (D. Smith et al., 1996). The underwater coating is assumed to be of the antifouling type

and thus cuprous oxides and irgarol are leached into the sea. As far as corrosion protection is concerned,

zinc anodes are considered for the total life time. In the case of oil tankers, an extra pollutant enters the

marine environment due to the cargo tanks washings before cargo type change or before repairs: slop

tanks wash water. The quantities of the aforementioned continually produced pollutants are shown in

Table 46. The litre is used as unit for those wastes that their composition and density are unknown.

Table 46 Lifetime amounts of coating leakage, ballast discharged at sea, slop tank water and wastes produced on board.

Pollutant Unit Annual Lifetime

Ballast water tons 386340 10044843

Cuprous oxide tons 0.36 9.4

Irgarol tons 0.054 1.4

Zinc tons 41.3 1073.9

Slop tank water tons 28.7 746.4

Wastes:

Oil sludge litres 177500 4615000

Bilge water litres 426000 11076000

Liquid oily waste litres 28400 738400

Solid oily waste tons 5.3 138.5

Black water litres 314175 8168550

Grey water tons 2209.9 57456.8

Garbage tons 15.9 415.4

VOCs are emitted to the atmosphere during the cargo loading, unloading and transit of oil/product

carriers. Table 47 shows the total VOCs produced and their breakdown to methane, ethane and non-

methane VOCs.

Table 47 Annual and lifetime quantity of VOCs emitted during cargo handling operations of an oil tanker.

Unit Annual Lifetime

Total VOC amount tons 5233.5 136070.4

Breakdown:

Ethane (C2H6) tons 461.0 11987.2

Methane (CH4) tons 324.0 8423.4

NMVOCs tons 4448.5 115659.8

The environmental impact assessment of the pollutants is conducted by applying the ReCiPe method

(see chapter ‎3.3.1). Three problems were met:

The composition of the wastes discharged into the sea is unknown and their impact could not be

assessed.

The introduction of invasive species due to the ballast water transportation has not been

modelled yet and thus it is not included in ReCiPe.

Page 73: Life Cycle Assessment of Pollutants from Ships

Chapter ‎5 Case study: Inventory analysis and impact assessment of an Aframax tanker

66

No characterization factors in certain impact categories are provided for some pollutants (e.g.

VOCs are not assessed at the ecotoxicity categories, although it is a reference unit in

photochemical oxidant formation category)

Thus, the impact assessment step of the LCA method cannot be carried out for the pollutants of the

above list, leading to a biased assessment to the ecotoxicity categories. Figure 9 illustrates the impact

assessment of the sailing part of the operation phase.

Figure 9 Share of the different processes of the sailing phase to the total impact of that phase. Calculations are based on ReCiPe method.

The processes of the sailing part of the operation phase have impact in all categories apart from the

ozone depletion. This is due to the fact that ozone depletion is mainly affected by the fugitive emissions

of refrigerants which were not taken into account in the inventory analysis. The thesis scope does not

include ship types such as reefers and fishing vessels which use considerable amounts of refrigerants for

their operation.

Operation phase: Maintenance

The repair stage includes two processes (painting and blasting) which are performed with different

frequency on ship’s surfaces during her life cycle, depending on the condition of the ship and the policy

of the operating company. In our case, the hull’s bottom, topsides and cargo tanks were blasted

completely and repainted every 5 years. The weatherdeck, superstructure and ballast tank surfaces

were blasted and repainted every 10 years.

The total emissions due to the repair painting over the life cycle are 95.7 tons of non-methane VOCs.

Blasting with steel grit as abrasive material accounts for 463.2 tons of total suspended particles, of

which 463.2 kg are particulate matter with diameter less than 10μm. The air compressors used at

blasting are equipped with high speed diesel engines producing the following air emissions over life

cycle:

0%10%20%30%40%50%60%70%80%90%

100%

Air Emission Anodes Paint leaching VOC_tankers

Page 74: Life Cycle Assessment of Pollutants from Ships

Chapter ‎5 Case study: Inventory analysis and impact assessment of an Aframax tanker

67

Figure 10 Air emissions from diesel oil combustion air compressors for blasting.

Air pollutant Unit Lifetime

Carbon monoxide (CO) kg 208.6

Non methane VOCs kg 67.7

Methane (CH4) kg 8.46

Nitrous oxide (N2O) kg 2.26

Carbon dioxide (CO2) kg 89941.9

Sulphur dioxide (SO2) kg 282.0

Nitrogen oxides (NOX) kg 1691.7

Particulate matter (PM10) kg 31.0

The contribution of the two processes of the repair stage are shown in Figure 11. Non methane VOCs

from the painting processes contribute only to the photochemical oxidant formation category. Releases

from blasting contribute to four categories due to the particulate matter speciation and the air

emissions from the air compressors diesel fuel compustion.

Figure 11 Share of the blasting and painting processes to the total impact of the repair phase. Calculations are based on ReCiPe method.

It should be noted again that the appearance of zero impact on the ecotoxicity categories due to the

maintenance properties is not actually true. The lack of speciation profile for the painting NMVOCs

hinders the assessment for these categories.

Shipbreaking phase

The shipbreaking is assumed to be conducted with the practices described in paragraph ‎0. The

environmental impact comes from two processes: the air emissions from the acetylene cutting torches

and the releases to the environment from the untreated/unrecycled materials abandoned on the beach

or at the unformal waste disposal sites. Table 48 presents part of the materials that can be found on

board prior to demolition and their fate after the ship is completely dismantled. The total carbon dioxide

coming from the acetylene torches was estimated at 1960 tons.

0%10%20%30%40%50%60%70%80%90%

100%

Blasting Painting

Page 75: Life Cycle Assessment of Pollutants from Ships

Chapter ‎5 Case study: Inventory analysis and impact assessment of an Aframax tanker

68

Table 48 Materials quantities before and their fate after ship dismantling.

Material Name Unit Quantity prior to

demolition

Fate Totals with

environmental impact

Remain at beach sediment

Sold with equipment

Re-rolling mills

Unformal waste disposal site

Asbestos ton 31.67 15.04 1.58 0.00 15.04 30.08

Polychlorinated biphenyls (PCB)

kg 0.10 0.01 0.09 0.00 0.00 0.01

Ozone depleting substances

tons 109.50 21.90 1.10 0.00 86.51 108.41

Cadmium & Compounds

kg 118.21 29.55 29.55 59.11 0.00 29.55

Lead and Compounds

kg 138.74 34.69 34.69 69.37 0.00 34.69

Mercury and Compounds

kg 2.72 0.68 0.68 1.36 0.00 0.68

Hydraulic Oil ton 7.03 0.35 6.33 0.00 0.35 0.70

Bunkers: fuel oil tons 199.59 9.98 179.63 0.00 9.98 19.96

Raw sewage m3 41.12 41.12 0.00 0.00 0.00 41.12

Incinerator ash ton 0.12 0.12 0.00 0.00 0.00 0.12

Garbage ton 0.14 0.14 0.00 0.00 0.00 0.14

Apart from the PCBs and the heavy metals releases to the environment, the impact of the rest of the

materials could not be assessed due to the lack of characterisation factor (e.g. asbestos) or the lack of

their composition. The results of the assessment are shown in Figure 12. Two processes are shown

(torch cutting and dumbing), since they are the only having impact within the boundary of the product

system, i.e. the fence line of the ship breaking yard.

Figure 12 Share of the two shipbreaking processes to the total of the phase. Cutting accounts only for CO2 release and thus affects the climate change category solely. Calculations are based on ReCiPe method.

0%10%20%30%40%50%60%70%80%90%

100%

Cutting Dumping

Page 76: Life Cycle Assessment of Pollutants from Ships

Chapter ‎5 Case study: Inventory analysis and impact assessment of an Aframax tanker

69

Aggregated results

The impact assessment of all the pollutants produced during the life cycle is present in Figure 13 per

phase:

Figure 13 Share of the three life cycle phases to the total per impact category, for the oil tanker case study.The calculations are based on the ReCiPe method.

It can be seen that the operational phase is dominant at the categories of climate change, marine

eutrophication, particle matter formation, photochemical oxidant formation and terrestrial acidification,

mainly due to the air emissions produced by the ship’s engines during the life. Shipbreaking prevails at

terrestrial ecotoxicity and ozone depletion due to the heavy metals that remain onto the soil and the

ozone depleting substances that are released in the air respectively. The release of heavy metals is also

the reason that the shipbreaking and construction phases dominate the ecotoxicity categories. More

specifically, the heavy metals that contaminate the soil at the scrapping are responsible for human and

freshwater toxicity while the direct releases from the welding process at the shipyard are responsible for

marine ecotoxicity.

0%10%20%30%40%50%60%70%80%90%

100%

Construction Operation Scrapping

Page 77: Life Cycle Assessment of Pollutants from Ships

Chapter ‎6 Conclusions

70

6 Conclusions The target of this thesis was to assess the environmental impacts caused by the pollutants generated

during a ship’s life cycle using the LCA methodology. Relevant modelling concepts and LCA approaches

were investigated to determine the most appropriate one for applying the LCA method in the maritime

context. Correspondingly, the life cycle was divided in three phases (shipbuilding, operation and

dismantling) that were recognised as those directly related to the ship as product system and include

the foreground processes that the shipowner/shipbuilder can control or decisively influence. In line with

initial thesis objectives, a record of the total pollutants was created and their quantities were

parameterised with respect to ship parameters. Thus, the crucial parameters that control certain

environmental consequences were revealed.

The environmental impact from the ship construction phase was found to be strongly influenced by the

ship’s size, as this defines the key parameters for main processes conducted within the shipyard. For the

welding and steel cutting operations, the ship size in terms of lightship steel weight defines the total

weld material consumed and the total cut length. The welding emissions affect mainly the toxicity

impact categories (human, marine, freshwater and terrestrial), while cutting processes generate mainly

particulate matter emissions which affect climate change, marine eutrophication, respiratory damage

and terrestrial acidification. The painting operations for the vessel result in large NMVOC releases to the

atmosphere and are dominant in the photochemical oxidant formation category. The key parameter

controlling the amount of NMVOC generated is the total surface painted, which again is a function of

ship’s size in terms of main dimensions. An interesting finding was the significant contribution of the

electricity consumption emissions for overhead shipyard operations (offices’ lighting, heating etc.). The

electricity generation aerial emissions account for approximately half of the impact in in climate change,

marine eutrophication and terrestrial acidification categories compared to the rest of the shipyard

processes.

In the operational phase, several generated pollutants were quantified; however, only air emissions

from fuel combustion, leaching from antifouling coatings and anodes, and oil tankers’ VOC fugitive

emissions were possible to be linked to an impact category of the ReCiPe method. These contribute to

all impact categories apart from ozone depletion. Air emissions dominate marine eutrophication,

climate change terrestrial acidification and particulate matter formation and their quantity is a function

principally of the installed power on board, the fuel type consumed and the average load factor over life

time. Another interesting finding is that the dissolution of the anodes used to prevent corrosion

dominates human and marine ecotoxicity categories, in spite of the leaching of antifouling paints which

results in the release of pesticides. No key ship parameters were identified to control these two

processes, apart from the selection of the paint type (e.g. pesticide free) and the type of corrosion

prevention method (e.g. imposed current instead of anodes).

No representative composition of oily wastes, garbage and grey/black water discharged into the sea

could be found in the literature and, hence, their impact could not be calculated by the LCIA method.

Additionally, no assessment method or model was found that dealt with impact of invasive species from

Page 78: Life Cycle Assessment of Pollutants from Ships

Chapter ‎6 Conclusions

71

ballast water. Thus, while the quantities of these pollutants is known, their specific environmental

impact remains unknown and suggests further future research.

For the dismantling phase, no particular processes were identified apart from CO2 release from torch

cutting, since most materials from the ship are either dumped or recycled/reused directly, assuming

practices in the shipbreaking nations. The impact categories addressed are: climate change, ecotoxicities

and ozone depletion. As in the ship construction phase, the amount of the releases is controlled by the

size of the vessel, since the amount of the equipment, steel and machinery is directly related to it.

To calculate the total life cycle environmental impact, the results from all the phases were aggregated.

The contribution of each phase was exemplified in the case of an aframax tanker, as presented in

chapter ‎5. The operational phase was proved dominant in most impact categories, with ship dismantling

affecting significantly only ozone depletion and terrestrial ecotoxicity. The main reason is the different

time scale of the phases. The operation lasts more than 20 years, whereas construction and dismantling

last less than a year and the pollutants generated are more concentrated in both temporal and

geographical scale. This finding suggests that the main parameters controlling the total life cycle of a

ship are the operational profile and in turn, all controlling parameters recognised for the operation

phase processes. So, a ship could become greener, mainly, if her operation is greener. However,

greening of construction and dismantling phases would lower considerably the footprint to certain

categories (ozone depletion, freshwater and terrestrial ecotoxicity) which have a strong local impact.

As a concluding remark, the application of the LCA methodology for ships fulfilled the initial objectives of

the present thesis. Modern modelling concepts were used to further specify the relevant standards and

create a robust and scientifically sound procedure to implement the LCA in the maritime context. The

initial objectives of the thesis were fulfilled and the widest possible range of pollutants were recorded,

assessed and linked to ship key parameters. The environmentally significant hotspots were identified, as

well as their main causes. Additionally, areas of missing data and environmental mechanisms models

that could further assist in understanding the drivers of the problems caused and in decreasing the total

footprint of a ship to the environment, were located. The work accomplished led to the development of

modular tool that assesses the ship’s environmental footprint over her lifecycle and can serve as a basis

for easy further development.

Page 79: Life Cycle Assessment of Pollutants from Ships

Chapter ‎7 Recommendations for future work

72

7 Recommendations for future work In the present study, the standard LCA methodology was applied to calculate the environmental impact

from the processes included within shipbuilding, operation and dismantling, in line with the initial thesis

objectives. During the study, areas requiring improvement or expansion were identified in terms of the

modelling and the data used, or aspects of the LCA methodology itself.

Firstly, the system boundary could be expanded beyond the fence lines of the shipyard and the

dismantling yard, including the supply/value chains from raw material extraction to the final waste

recycling and disposition. This boundary expansion would include the processes preceding the

shipbuilding (i.e. the mining of minerals such as iron and carbon, their initial processing, transportation

to production facilities, coating manufacturing, transportation to the shipyard), and the processes

following the dismantling (e.g. re-rolling steel mills, transportation, recycling facilities, incineration). The

same approach should also be followed regarding the value chains related with the operational phase of

a ship, i.e. waste delivered to ports and fuels. This suggests modelling the various port waste treatment

technics used worldwide and the modelling of the life cycle (production, refining etc.) of various marine

fuels.

Specialised databases containing LCI data for various goods, services and products could considerably

decrease the effort to model that extensive supply chains and assure the data quality. The data from

such databases should, however, be used with caution regarding their derivation method (aggregated or

specific values), geographical and time representativeness. Recommended LCI databases are: Ecoinvent,

Idemat, the Gabi databases and the NREL database for the US territory.

Inadequate process models and areas of missing data in literature were identified during the

compilation of the ship’s life cycle inventory. For example, the chemical composition of the ship

generated pollutants discharged into the sea (e.g. grinded garbage, incinerator ash, oily wastes) is

unknown and thus their impact assessment was hindered. Only a limited number of the pesticides used

in antifouling coatings are currently included in impact assessment schemes. Additionally, the

composition of certain substances groups (e.g. VOC, PM10) is not known for all cases or is of high

uncertainty and thus can affect their impact assessment. Measurements or simulations with respect to

marine areas of interest, such as the main engine emissions with various fuels, VOC emissions in tanker

terminals and blasting PM10 emissions are recommended to provide representative results and thus

increase the confidence and completeness of the LCA analysis.

The development of an impact assessment method specific for marine applications would also help in a

more precise and complete description of the environmental impact during a ship’s life cycle. Certain

phenomena (e.g. invasive species from ballast water) are not addressed by current methodologies and

thus their environmental burden remains unquantified. Additionally, the geographical differentiation of

certain pollutants’ impact could be included by developing new characterisation factors and/or applying

the ISO optional LCIA steps (normalisation) with appropriate data for certain geographical areas.

Furthermore, a single score indicator depicting the total environmental assessment could be achieved, if

Page 80: Life Cycle Assessment of Pollutants from Ships

Chapter ‎7 Recommendations for future work

73

a set of weighting factors among the different impact categories could be decided upon wide

acceptance by the stakeholders of maritime industry.

The impact of the pollutants generated during a ship’s life cycle could also be assessed in terms of

monetary value by using alternative assessment methods such the ExternE and the Ecocosts. In this way,

the so-called ‘external’ costs could be calculated and thus, a basis could be formed to measure the

actual cost to make the ship’s life cycle sustainable following some schools of thought. This basis could

also assist in assessing perhaps future maritime market based mechanisms(MBMs) in terms of

pollutants trading.

Page 81: Life Cycle Assessment of Pollutants from Ships

74

References AMVER. (2001). Atlantic Merchant Vessel Emergency Reporting (AMVER). Annually reporting frequency

for the AMVER vessels: provided by Carroll, E., US Coast Guard. Babcock, R. E. (2004). Data for design of vapor recovery units for crude oils stock tank emissions. BAL. (2013). BAL.LCPA Retrieved 11/10, 2013, from http://lcpa.bal.eu/L3C/index.xhtml Bare, J. C. (2002). TRACI, The Tool for the Reduction and Assessment of Chemical and Other

Environmental Impacts. Journal of Industrial Ecology, 6(3-4), 49-78. doi: 10.1162/108819802766269539

Baumann, H., & Tillman, A.-M. (2004). The Hitch Hiker's Guide to LCA. An orientation in life cycle assessment methodology and application: External organization.

Carlton, J. T., Reid, D. M., & Leeuwen, H. (1995). The Role of Shipping in the Introduction of Nonindigenous Aquatic Organisms to the Coastal Waters of the United States (other than the Great Lakes) and an Analysis of Control Options Shipping Study I (pp. 75): USCG

Carpenter, A., & Macgill, S. M. (2005). The EU Directive on port reception facilities for ship-generated waste and cargo residues: The results of a second survey on the provision and uptake of facilities in North Sea ports. Marine Pollution Bulletin, 50(12), 1541-1547. doi: http://dx.doi.org/10.1016/j.marpolbul.2005.06.021

CCPA. (2008). Guidline for quantifying emissions from chemical facilities: Canadian Chemical Producers' Association.

Celebi, U. B., & Vardar, N. (2008). Investigation of VOC emissions from indoor and outdoor painting processes in shipyards. Atmospheric Environment, 42(22), 5685-5695. doi: http://dx.doi.org/10.1016/j.atmosenv.2008.03.003

Chad Hewitt, M. C., Ashley Coutts, Nick Rawlinson. (2011). Short Report: Vessel Biofouling Risk Assessment: The Department of Agriculture, Fisheries & Forestry (DAFF).

Chatzinikolaou, S., & Ventikos, N. P. (2008). Hazardous waste management and ship recycling: friends or foe? HazWasteManagement, A5(1).

Cotteleer, A. (2012). Coating emissions of sea shipping for 2010. Netherlands continental shelf,dutch port areas and OSPAR region II: MARIN.

Demaria, F. (2010). Shipbreaking at Alang–Sosiya (India): An ecological distribution conflict. Ecological Economics, 70(2), 250-260. doi: http://dx.doi.org/10.1016/j.ecolecon.2010.09.006

DNV. (1999). Decommissioning of ships: Environmental Protection and Ship Demolition Practices. In D. N. Veritas (Ed.).

DNV. (2000). Decommissioning of Ships: Environmental Standards, Ship-Breaking Practicies, On-Site Assessment: Bangladesh–Chittagong. In Det Norske Veritas (Ed.).

DNV. (2002). Det Norske Veritas, Internal databases, containing information on DNV classed vessels. Dua, S. K., Aponte, C. A., Srinivasamurthy, A. K., Rupani, K., Allen, M., Rose, R. W., & Ebadian, M. A.

(2000). Size distribution and rate of production of airborne particulate matter generated during the cutting of metals. Paper presented at the International Decommissioning Symposium.

Dutch national waterboard. (2008a). Antifoulants in marine coatings, merchant shipping and fisheries (Version dated June 2008 ed.): Netherlands national water board - Water unit in cooperation with Deltares and TNO.

Dutch national waterboard. (2008b). Sacrificial anodes, merchant shipping and fisheries: Netherlands national water board - Water unit in cooperation with Deltares and TNO.

EC-JRC-IES. (2010a). International Reference Life Cycle Data System (ILCD) Handbook—Framework and Requirements for Life Cycle Impact Assessment Models and Indicators. Joint Research Centre—

Page 82: Life Cycle Assessment of Pollutants from Ships

75

Institute for Environment and Sustainability. Publications Office of the European Union, Luxembourg.

EC-JRC-IES. (2010b). International Reference Life Cycle Data System (ILCD) Handbook—general guide for life cycle assessment—detailed guidance. Joint Research Centre—Institute for Environment and Sustainability. Publications Office of the European Union, Luxembourg.

EC-JRC-IES. (2010c). International Reference Life Cycle Data System (ILCD) Handbook: Analysing of existing Environmental Impact Assessment methodologies for use in Life Cycle Assessment. Joint Research Centre—Institute for Environment and Sustainability. Publications Office of the European Union, Luxembourg.

Endresen, Ø., & Sørgård, E. (1999). Reference values for ship pollution: Det Norske Veritas. Endresen, Ø., Sørgård, E., Sundet, J. K., Dalsøren, S. B., Isaksen, I. S. A., Berglen, T. F., & Gravir, G. (2003).

Emission from international sea transportation and environmental impact. Journal of Geophysical Research: Atmospheres, 108(D17), 4560. doi: 10.1029/2002jd002898

ENIRAM. (2012). Study of hull fouling on cruise vessels across various seas. EPE. (2003). Activity A: Collection and treatment of solid and liquid wastes. In REMPEC (Ed.), Port

reception facilities for collecting ship-generated garbage, bilge waters and oily wastes: Environmental protection engineering S.A.

European Commission. (2009). Strategic goals and recommendations for the EU’s maritime transport policy until 2018 COM(2009) 8 final.

European environment agency. (2000). EMEP/CORINAIR Emission Inventory Guidebook: Shipping Activities – Activities 080402-080404.

Eyres, D. J., & Bruce, G. J. (2012a). 9 - Welding and cutting processes used in shipbuilding Ship Construction (Seventh Edition) (pp. 81-101). Oxford: Butterworth-Heinemann.

Eyres, D. J., & Bruce, G. J. (2012b). 13 - Plate and section preparation and machining Ship Construction (Seventh Edition) (pp. 135-146). Oxford: Butterworth-Heinemann.

FIDH. (2002). Where do the 'floating dustbins' end up? Labour Rights in Shipbreaking Yards in South Asia The cases of Chittagong (Bangladesh) and Alang (India). (Vol. 2). Paris, France: International Federation for Human Rights.

Frey, R. S. (2013). Breaking Ships in the World-System: An Analysis of Two Ship Breaking Capitals, Alang India and Chittagong, Bangladesh. CSSJ Working Papers, 13(1).

Goedkoop, M., Heijungs, R., Huijbregts, M., de Schryver, A., Struijs, J., & van Zelm, R. (2009). ReCiPe 2008. A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. (Vol. 2013). The Hague, The Netherlands: VROM.

Goedkoop, M., Heijungs, R., Huijbregts, M., Schryver, A. D., Struijs, J., & Zelm, R. v. (2013). ReCiPe Retrieved 21/11/2013, 2013, from http://www.lcia-recipe.net/

Goedkoop, M., R. Spriensma. (1999). The Eco-indicator 99. A damage oriented method for Life Cycle Impac Assessment. Methodology Report.: Publikatiereeks produktenbeleid.

Guinée, J. B. G., M.; Heijungs, R.; Huppes, G.; Kleijn, R.; Koning, A. de; Oers, L. van; Wegener Sleeswijk, A.; Suh, S.; Udo de Haes, H.A.; Bruijn, H. de; Duin, R. van; Huijbregts, M.A.J. (2002). Handbook on life cycle assessment. Operational guide to the ISO standards. I: LCA in perspective. IIa: Guide. IIb: Operational annex. III: Scientific background.

Harrington, R. L. (1992). Marine Engineering. Jersey City, NJ: Society of Naval Architects and Marine Engineers.

HELCOM. (1990). HELCOM recommendation 11/10 Guidelines for capacity calculation of sewage system on board passenger ships: HELCOM, Helsinki Convention.

Hempel. (2011). The Coating Reference Handbook. Hess, M., Snuverink, A., Schoof, A., & A.M de Leeuw, A. M. (2004). Activity D: Standard designs for (A)

oily wastes reception, treatment, storage and dewatering facilities and (B) garbage collection,

Page 83: Life Cycle Assessment of Pollutants from Ships

76

treatment and disposal facilities. In REMPEC (Ed.), Port reception facilities for collecting ship-generated garbage, bilge water and oily wastes. Hague, the Netherlands: Tebodin B.V.

Hiraoka, K., Kameyama, M., Senda, T., Kiriya, N., Naruse, K., Sakurai, A., . . . Kihara, T. (2001). Application of Life Cycle Assessment to Shipping. Comprehensive Research on Waste Disposal and Recycling of Wastes 2001, 68.61-68.17.

Hossain, K. A., Iqbal, K. S., & Zakaria, N. G. (2010). Ship recycling prospects in Bangladesh. Paper presented at the Proceeding of International Conference on Marine Technology (MATEC2010).

Hossain, M., & Islam, M. M. (2006). Ship Breaking Activities and its Impact on the Coastal Zone of Chittagong, Bangladesh: Towards Sustainable Management: Advocacy & Publication Unit, Young Power in Social Action (YPSA).

Hydrex. (2012). Ship hull coating systems simplified (white paper) Hydrex white papers series (Vol. 4.): Hydrex N.V.

IMO. (2001). International Convention on the Control of Harmful Anti-fouling Systems on Ships. International Paint. (2004). Hull roughness calculator: International Paint Ltd. ISO. (2006a). Environmental management-life cycle assessment-principles and framework International

Organization for Standardization (Vol. 14040:2006). ISO. (2006b). Environmental management—life cycle assessment—requirements and guidelines (Vol.

14044:2006). Jackens, J. (2012). Presentation of Shipyard Welding Data. Paper presented at the National Shipbuilding

Research Program Environmental Panel Meeting, St. Augustine, FL. Jivén, K., Sjöbris, A., Nilsson, M., Ellis, J., Trägårdh, P., & Nordström, M. (2004). LCA-ship, design tool for

energy efficient ships–a life cycle analysis program for ships. Final report, 08-27. Johnsen, T. (2000). Environmental comparison of alternative transport chains for passengers. A case

study.: Det Norske Veritas. Johnsen, T., & Fet, A. M. (1999). Screening life cycle assessment of M/V color festival: Report. Kameyama, M., Hiraoka, K., Sakurai, A., Naruse, T., & Tauchi, H. (2005). Development of LCA Software for

Ships and LCI Analysis based on Acutual Shipbuilding and Operation. Paper presented at the Proc. 6 th Int. Conf. on Ecobalance.

Kameyama, M., Hiraoka,K.,Tauchi,H. (2007). Study on Life Cycle Impact Assessment for Ships. National Maritime Research Institute, Tokyo, Japan.

Kjølberg, S. (2013). High Performance Hull Coatings: Market view. Paper presented at the Maritime Week Americas, Miami, USA.

Klokk, S. N. (1994). The Norwegian Green Ship Program – Low emission Diesel engines. Paper presented at the Advanced study Workshop, Air Pollution from Marine Engines, Athens, Greece.

Kristensen, H. O. (2000). Energy consumption and exhaust emissions for various types of marine transport compared with trucks and private cars. Paper presented at the ENSUS 2000 Conference in Newcastle.

Kura, B. (2005). Residual Risk from Abrasive Blasting Emissions: Particle Size and Metal Speciation. New Orleans, USA: University of New Orelans.

Lloyd's Register. (1995). Marine Exhaust Emissions Research Programme Lloyd's Register Engineering Services. United Kingdom, London: Lloyd's Register of Shipping (LR).

Lloyd’s List. (2002). The shipping movements database Seasearcher. Lloyd's Maritime Information Services (LIMIS), 2002, from http://www.seasearcher.com/

Malherbe, L., & Mandin, C. (2007). VOC emissions during outdoor ship painting and health-risk assessment. Atmospheric Environment, 41(30), 6322-6330.

Martens, O. (1993). Solutions to hydrocarbon gas emission from tankers, Marine System Design and operations. Paper presented at the ICMES 93, Marine System Design and Operation, Hamburg, Germany.

Page 84: Life Cycle Assessment of Pollutants from Ships

77

Melissen, P., & Molemaker, R. J. (2005). The Ship Recycling Fund. Financing environmentally sound scrapping and recycling of sea-going ships. Rotterdam: ECORYS

Mener, W. C., Rosen, P. L., Austin, D. M., & Holt, W. S. (1999). Shipyard welding emission factors development National Shipbuilding Research Program.

MEPC. (2013). Mechanisms for VOC formation and estimates of global emissions. Misra, H. (2005). Status of Ship-Breaking Industry in India. The IUP Journal of Managerial Economics, 7(3-

4), 109-116. NIOSH. (1999). Evaluation of Substitute Materials for Silica Sand in Abrasive Blasting. Pittsburgh, USA:

National Institute for Occupational Safety and Health (NIOSH). NMD. (1994). Mottak av avfall fra skip (Reception facilities for garbage from ships). In N. M. Directorate

(Ed.): Norwegian Ministry of Environment (Miljøverndepartementet). NMRI. (2006). LCA site for ship. Retrieved 11/10, 2013, from http://www.nmri.go.jp/env/lca/ NPI. (1999). Emission Estimation Technique Manual for Shipbuilding Repair and Maintenance. Australia. NSFI. (1977). Kartlegging av oljeholdig avfall fra skip med anløp i norske havner (Mapping oily waste

from ships calling at Norwegian port): Norsk Skipsforskningsinstitutt (Norwegian ship research institute).

Oceana. (2008). Report on Contamination by cruise ships. Protecting the World's Oceans. Brussels, Belgium: Oceana.

OSHA. (2001). Ship Breaking Fact Sheet: US Department of Labor:Occupational Safety and Health Administration (OSHA).

PRé Consultants. (n.d.) Retrieved October 12, 2013, from http://www.pre-sustainability.com/ Roh, M.-I., & Lee, K.-Y. (2007). Generation of production material information for a building block and

simulation of block erection for process planning and scheduling in shipbuilding. International Journal of Production Research, 45(20), 4653-4683.

Rudd, H. J., & Hill, N. A. (2001). Measures to Reduce Emissions of VOCs during Loading and Unloading of Ships in the EU.

Salonen, S., Heikkinen, A., & Ilus, T. (2012). Estimating Vessel Emissions and Efficiency – A Data Driven Approach. Liege, Belgium. Paper presented at the COMPIT 2012 - IT Trends in Design and Operation for the Maritime Industry retrieved from

Sarraf, M., Stuer-Lauridsen, F., Dyoulgerov, M., Bloch, R., Wingfiel, S., & Watkinson, R. (2010). The Ship Breaking and Recycling Industry in Bangladesh and Pakistan: World Bank.

Schnitler, P. (1995). Environmental Indexing of ships – operational discharges: DNV. Serageldin, M. (2005). Proposed emission factors for: stainless steels, mild steels, alloys steels. Paper

presented at the Shipbuilding and Ship repair - Residual Risk. Smith, D., Wonharn, M. J., McCann, L. D., Reid, D. M., & Carlton, J. T. (1996). Biological invasions by Non-

indigenous Species in United States Water: Quantifying the Role of Ballast water and Sediments Part I and II Shipping Study II.

Smith, T. (2013). Method for establishing fuel savings. Paper presented at the Hull and Propeller Workshop, London. UK. http://www.bellona.org/filearchive/fil_8_Tristan_Smith_lUCL.pdf

SRIA. (2006), 2013, from http://www.sriaindia.com/home.html Srinivasa Reddy, M., Basha, S., Sravan Kumar, V. G., Joshi, H. V., & Ghosh, P. K. (2003). Quantification

and classification of ship scraping waste at Alang–Sosiya, India. Marine Pollution Bulletin, 46(12), 1609-1614. doi: http://dx.doi.org/10.1016/S0025-326X(03)00329-1

SSD. (2010). Sustainable Ship Design Retrieved June 26, 2013, from http://sustainableshipdesign.com/ Statistics Norway. (2000). Manning of Norwegian registered vessels (Arbeidstakere på norskregistrerte

skip, etter skipets fart, personenes nasjonalitet og kjønn. 1993-1999). Oslo.

Page 85: Life Cycle Assessment of Pollutants from Ships

78

Steiner, H., Bach, F. W., Windelberg, D., & Georgi, B. (1988). Aerosol generation during cutting of various materials with plasma, laser and consumable electrode. Journal of Aerosol Science, 19(7), 1381-1384. doi: http://dx.doi.org/10.1016/0021-8502(88)90179-6

The Oil Industry International Exploration & Production Forum, E. P. (1994). Method for estimating atmospheric emissions from E&P operations.

Tilwankar, A., Mahindrakar, A., & Asolekar, S. (2008). Steel recycling resulting from ship dismantling in India: implications for green house gas emissions. Paper presented at the Proceedings of second International Conference on “Dismantling of Obsolete Vessels”, during.

Tincelin, T., Mermier, L., Pierson, Y., Pelerin, E., & Jouanne, G. (2007). A life cycle approach to shipbuilding and ship operation. Stirling Design International and Ship studio.

Townsin, R. L. (2000). Workshop - Calculating the Cost of Marine Surface Roughness on Ship Performance. Paper presented at the WEGEMT School on Marine Coatings at the University of Plymouth, Plymouth, UK.

Townsin, R. L., Byrne, D., Svensen, T.E. and Milne,A. (1986). Fuel Economy due to Improvements in Ships Hull Surface Condition 1976-1986. International Shipbuilding Progress, 33(383).

Trozzi, C. (2010). Update of Emission Estimate Methodology for Maritime Navigation: Techne Consulting. Trozzi, C., & Vaccaro, R. (1998). Methodologies for estimating air pollutant emissions from ships Techn.

report MEET RF98. UN. (2012). Paper presented at the United Nations Conference of Sustainable Development, Rio de

Janeiro. http://www.uncsd2012.org/index.php?menu=62 UNFCCC. (2010). National Reports on implementation of the Conference of the Parties (COP), from

http://unfccc.int/national_reports/items/1408.php Unknown. from http://www4.hcmut.edu.vn/~dantn/WT/ US-EPA. (1995). Electric Arc Welding. AP - 42: Compilation of Air Pollutant Emission Factors, Volume I:

Stationary Point and Area Sources 5th Edition(Section 12.19). US-EPA. (1997a). Abrasive Blasting. AP - 42: Compilation of Air Pollutant Emission Factors, Volume I:

Stationary Point and Area Sources 5th Edition(Section 13.2.6). US-EPA. (1997b). EPA Office of Compliance Sector Notebook Project: Profile of the shipbuilding and

repair industry (Vol. 26): Office of Compliance, Office of Enforcement and Compliance Assurance, US Environmental Protection Agency.

US-EPA. (2006). Section 7.1: Organic liquid storage tanks AP - 42 (Vol. I). US-EPA. (2008a). Cruise Ship Discharge Assessment Report. US-EPA. (2008b). Section 5.2: Transportation and Marketing of Petroleum Liquids AP- 42 (Vol. I). Wallentin, B. (2012). The illusion of fuel savings - an urgent need for improved transparency in marine

hull coatings. Norway: JOTUN Coatings. Weisman, C., & Kearns, W. (2001). Welding handbook (9th ed. Vol. 2): American Welding Society. Wenzel, H., Hauschild, M. Z., & Alting, L. (2000). Environmental Assessment of Products: Volume 1:

Methodology, tools and case studies in product development (Vol. 1): Springer. Wijnolst, N., & Wergeland, T. (1997). Shipping: Delft University Press. Willems, M., Schouten, M., & Heidbuurt, P. (2003). Uitloging van anodemateriaal van zeeschepen: BECO

Groep BV. Willsher, J. (2008). The Effect of Biocide Free Foul Release Systems on Vessel Performance. London, UK:

International Paint Ltd. Wolterink, J. W. K., Hess, M., Schoof, A., & Wijnen, J. W. (2004). Activity B: Optimum solutions for

collection, treatment and disposal of relevant ship generated solid and liquid wastes, bilge waters and oily wastes in the Mediterranean. In REMPEC (Ed.), Port reception facilities for collecting ship-generated garbage, bilge waters and oily wastes. Hague, the Netherlands: Tebodin B.V.

Page 86: Life Cycle Assessment of Pollutants from Ships

79

Page 87: Life Cycle Assessment of Pollutants from Ships

Appendix A – Alternative data sources

A-1

Appendix A – Alternative data sources During the data gathering for the inventory analysis LCA step, data sources were located that provided

various values for the same parameters. In this appendix, data that were not used in the final version of

the developed LCA tool are presented for completeness and in order to facilitate future research.

Welding National Shipbuilding Research Program (NSRP) in USA is the only ongoing attempt to update the

welding emission factors with respect to shipbuilding conditions. Procedures to measure and analyse

the fumes were standardized and appropriate welding parameters were proposed by a number of

shipyards in US. Despite several tests performed, involved parties have not yet agreed on a commonly

acceptable set of welding emission factors.

A survey of over 200 shipyards in US was conducted to identify the most common types of welding wire

and welding processes utilized(Mener, Rosen, Austin, & Holt, 1999). Based upon the results, tests were

performed for two welding methods (SMAW and SAW) and eight types of wire. Table A.1 presents the

results of this study.

Table A.1 Updated emission factors for various SMAW and SAW welding wire types (Mener et al., 1999).

Welding Process Rod/Wire Type

Emission factor [kg/ton]

TSP PM10 PM2.5 Cd Cr Pb Mn Ni Cr(VI)

SMAW E308-16, E308L-16 45.16 27.52 23.92 0.00 0.60 0.02 0.34 0.05 0.15

SMAW E309-16 37.23 33.47 32.88 0.00 0.74 0.01 0.36 0.06 0.09

SMAW E309-17, E309L-17 25.14 19.85 19.02 0.00 0.68 0.01 0.44 0.05 0.08

SMAW E316-16, E316L-16 101.80 30.03 29.11 0.00 0.83 0.01 0.42 0.08 0.19

SMAW E308-17, E308L-17 26.73 27.09 26.14 0.00 0.56 0.01 0.50 0.05 0.11

SMAW E308-17, E308H-17 31.09 27.72 27.09 0.00 1.18 0.00 0.85 0.22 0.18

SAW ER316, ER316L 7.95 7.76 7.53 0.00 0.01 0.00 0.07 0.00 0.00

SAW ER309, ER309L 17.62 16.65 15.43 0.00 0.01 0.01 0.09 0.01 0.00

A final proposition for emission factors of several electrode types for different welding methods (SMAW,

GMAW, FCAW, SAW, GTAW and base metals (stainless, mild and alloy steels) was made in 2005

(Serageldin, 2005). The emission factors proposed are a composition of test series, surveys within

shipyards and existing emission factors from similar electrodes. However, this set has not yet been

incorporated in the US EPA emission inventory.

Cutting In (Johnsen & Fet, 1999), the total cross section cut for the construction of a passenger vessel of 9000

tons lightweight was assumed 300 m2 (length multiplied with thickness). This is a vague estimation

based on extrapolation from a previous case of a smaller ship. (M. Kameyama, Hiraoka,K.,Tauchi,H.,

2007)provides real data from the construction of 76300 DWT panamax tanker; 105 km of steel

Page 88: Life Cycle Assessment of Pollutants from Ships

Appendix A – Alternative data sources

A-2

corresponding to a cross section of 1.7×103 m2 were cut in NC plasma machines with an average rate

4min/m and total energy consumed 234,667 kWh; 26km were flame cut using 11 tons of gas.

Particulate matter size distribution was measured in experiments of cutting a 6.25 mm thick steel plate

with different methods (plasma, oxygen torch) and different speeds (Dua et al., 2000). However, the

experiments were not systematic and the plate thickness is not representative for shipbuilding activities.

A set of diagrams of cutting speed and energy consumed are provided in as function of plate thickness,

material and cutting method. Diagrams correspond to certain conditions and equipment and need

caution when used. Aerosol emission per meter cut as function of plate thickness, cutting method and

steel quality can be found in (Steiner et al., 1988).

Painting The amount of VOC during outdoor works (shipbuilding and repair) from a particular shipyard in France,

was calculated based on the surface areas of a specific ship and the technical sheets of the coating

systems (Malherbe & Mandin, 2007). However, in this study, VOCs were assumed to have the health

effect of toluene and no specific chemical composition was provided. A dispersion model was then

applied to evaluate the risks by inhalation for people living in the vicinity.

VOCs from oil tankers More thorough models for calculating VOC emissions can be found in literature (Babcock, 2004; CCPA,

2008; Rudd & Hill, 2001; The Oil Industry International Exploration & Production Forum, 1994; US-EPA,

2006). These models are more appropriate for case specific VOC calculations as they take into account

various parameters such as cargo composition, tank geometry, thermophysical properties and weather

data.

Page 89: Life Cycle Assessment of Pollutants from Ships

Appendix B – Inventory of the case study (115000DWT tanker)

B-1

Appendix B – Inventory of the case study (115000DWT tanker)

Item_ID

Life cycle Phase

Process Release type Compartment Substance Unit Quantity

1 Construction Welding Direct release Air Cr kg 1.13E-01

2 Construction Welding Direct release Air Cr (VI) kg 0.00E+00

3 Construction Welding Direct release Air Mn kg 3.34E+01

4 Construction Welding Direct release Air Ni kg 3.59E-01

5 Construction Welding Direct release Air Pb kg 0.00E+00

6 Construction Welding Direct release Air PM kg 6.16E+01

7 Construction Welding Direct release Air CO2 kg 1.67E+03

8 Construction Welding Electricity Air CO2 kg 1.78E+03

9 Construction Welding Electricity Air CH4 kg 6.34E-03

10 Construction Welding Electricity Air N2O kg 2.75E-02

11 Construction Welding Electricity Air NOX kg 1.29E+00

12 Construction Welding Electricity Air CO kg 3.61E-01

13 Construction Welding Electricity Air NMVOC kg 1.71E-02

14 Construction Welding Electricity Air SO2 kg 9.21E-01

15 Construction Cutting Direct release Air PM kg 4.80E+04

16 Construction Cutting Electricity Air CO2 kg 1.77E+05

17 Construction Cutting Electricity Air CH4 kg 6.33E-01

18 Construction Cutting Electricity Air N2O kg 2.75E+00

19 Construction Cutting Electricity Air NOX kg 1.28E+02

20 Construction Cutting Electricity Air CO kg 3.60E+01

21 Construction Cutting Electricity Air NMVOC kg 1.70E+00

22 Construction Cutting Electricity Air SO2 kg 9.19E+01

23 Construction Painting Direct release Air NMVOC kg 3.21E+04

24 Construction Overhead Electricity Air CO2 kg 2.33E+05

25 Construction Overhead Electricity Air CH4 kg 8.31E-01

26 Construction Overhead Electricity Air N2O kg 3.61E+00

27 Construction Overhead Electricity Air NOX kg 1.69E+02

28 Construction Overhead Electricity Air CO kg 4.73E+01

29 Construction Overhead Electricity Air NMVOC kg 2.24E+00

30 Construction Overhead Electricity Air SO2 kg 1.21E+02

31 Repair Blasting Direct release Air PM kg 4.63E+02

32 Repair Blasting Direct release Air PM kg 3.10E+01

Page 90: Life Cycle Assessment of Pollutants from Ships

Appendix B – Inventory of the case study (115000DWT tanker)

B-2

Item_ID

Life cycle Phase

Process Release type Compartment Substance Unit Quantity

33 Repair Blasting Direct release Air CO2 kg 8.99E+04

34 Repair Blasting Direct release Air CH4 kg 8.46E+00

35 Repair Blasting Direct release Air N2O kg 2.26E+00

36 Repair Blasting Direct release Air NOX kg 1.69E+03

37 Repair Blasting Direct release Air CO kg 2.09E+02

38 Repair Blasting Direct release Air NMVOC kg 6.77E+01

39 Repair Blasting Direct release Air SO2 kg 2.82E+02

40 Repair Painting Direct release Air NMVOC kg 9.57E+04

41 Sailing Air Emission Direct release Air PM kg 2.18E+06

42 Sailing Air Emission Direct release Air CO2 kg 1.12E+09

43 Sailing Air Emission Direct release Air CH4 kg 1.07E+05

44 Sailing Air Emission Direct release Air N2O kg 2.86E+04

45 Sailing Air Emission Direct release Air NOX kg 2.68E+07

46 Sailing Air Emission Direct release Air CO kg 2.64E+06

47 Sailing Air Emission Direct release Air NMVOC kg 8.57E+05

48 Sailing Air Emission Direct release Air SO2 kg 1.76E+07

49 Sailing Waste Direct release - Sludge litres 4.62E+06

50 Sailing Waste Direct release - Bilge litres 1.11E+07

51 Sailing Waste Direct release - Liquid Oily litres 7.38E+05

52 Sailing Waste Direct release - Solid Oily kg 1.38E+05

53 Sailing Waste Direct release - Black Water litres 8.17E+06

54 Sailing Waste Direct release - Grey Water litres 5.75E+07

55 Sailing Waste Direct release - Garbage kg 4.15E+05

56 Sailing VOC_tankers Direct release Air CH4 kg 8.42E+06

57 Sailing VOC_tankers Direct release Air NMVOC kg 1.28E+08

58 Sailing VOC_tankers VOC_species Air Ethane kg 1.20E+07

59 Sailing VOC_tankers VOC_species Air N-butane kg 0.00E+00

60 Sailing VOC_tankers VOC_species Air N-heptane kg 0.00E+00

61 Sailing VOC_tankers VOC_species Air N-hexane kg 0.00E+00

62 Sailing VOC_tankers VOC_species Air N-octane kg 0.00E+00

63 Sailing VOC_tankers VOC_species Air N-pentane kg 0.00E+00

64 Sailing VOC_tankers VOC_species Air Propane kg 0.00E+00

65 Sailing Slop Direct release Water Cargo Oil kg 7.48E+05

66 Sailing Ballast Direct release Water Ballast water kg 8.46E+09

67 Scrapping Cutting Direct release Air CO2 kg 3.01E+06

68 Scrapping Dumping Direct release - Garbage kg 1.43E+02

69 Scrapping Dumping Direct release Air Asbestos kg 3.01E+04

Page 91: Life Cycle Assessment of Pollutants from Ships

Appendix B – Inventory of the case study (115000DWT tanker)

B-3

Item_ID

Life cycle Phase

Process Release type Compartment Substance Unit Quantity

70 Scrapping Dumping Direct release Water PCBs kg 1.03E-02

71 Scrapping Dumping Direct release Air ODS kg 1.08E+05

72 Scrapping Dumping Direct release Water Hydraulic oil kg 7.03E+02

73 Scrapping Dumping Direct release Water Fuel Oil kg 2.00E+04

74 Scrapping Dumping Direct release Water Incinerator Ash kg 1.43E+02

75 Scrapping Dumping Direct release Soil Cd kg 2.96E+01

76 Scrapping Dumping Direct release Soil Pb kg 3.47E+01

77 Scrapping Dumping Direct release Soil Hg kg 6.80E-01

78 Sailing Anodes Direct release Water Zn kg 4.13E+04

79 Sailing Anodes Direct release Water Al kg 0.00E+00

80 Sailing Paint leaching Direct release Water Cu2O kg 9.37E+03

81 Sailing Paint leaching Direct release Water Irgarol 1051 kg 1.41E+03

82 Sailing Paint leaching Direct release Water Zineb kg 0.00E+00

83 Sailing Paint leaching Direct release Water Diclofluanid kg 0.00E+00

84 Sailing Paint leaching Direct release Water Zinc pyrithion kg 0.00E+00

85 Sailing Paint leaching Direct release Water Seasine 211N kg 0.00E+00

86 Sailing Paint leaching Direct release Water Tolyfluanide kg 0.00E+00

Page 92: Life Cycle Assessment of Pollutants from Ships