life cycle assessment of food packaging and waste

61
Life Cycle Assessment of Food Packaging and Waste Phase 2: Case Study Results Report No. CSS16-01 January 15, 2016 Martin Heller, Luis Cecco, Wenjuan Liu, Gregory Keoleian

Upload: others

Post on 18-Oct-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Life Cycle Assessment of Food Packaging and Waste

Life Cycle Assessment of Food Packaging and WastePhase 2: Case Study Results

Report No. CSS16-01January 15, 2016

Martin Heller, Luis Cecco, Wenjuan Liu, Gregory Keoleian

Page 2: Life Cycle Assessment of Food Packaging and Waste

1LifeCycleAssessmentofFoodPackagingandWaste

LifeCycleAssessmentofFoodPackagingandWastePhase2:CaseStudyResults

MartinHeller,LuisCecco,WenjuanLiu,GregoryKeoleian

CenterforSustainableSystems,UniversityofMichigan

ReportNo.CSS16-01

MadepossiblewithsupportfromTheDowChemicalCompany

Contents

1. Summary............................................................................................................................................................22. Introduction.....................................................................................................................................................33. AdditionstoLiteratureReview............................................................................................................34. LCAModelOverview...................................................................................................................................6

4.1.GoalandScope......................................................................................................................................64.2.Systemboundaries.............................................................................................................................74.3.ImpactCategories...............................................................................................................................84.4.Lifecycleinventoryanddatasources.....................................................................................84.5.Impactassessmentmethods......................................................................................................11

5. Case1:Beef....................................................................................................................................................125.1.SystemDescriptions.......................................................................................................................125.2.DataSources........................................................................................................................................145.3.Results....................................................................................................................................................185.4.Discussionandconclusions........................................................................................................23

6. Case2:RomaineLettuce........................................................................................................................246.1.SystemDescriptions.......................................................................................................................246.2.DataSources........................................................................................................................................256.3.Results....................................................................................................................................................276.4.Discussionandconclusions........................................................................................................31

7. Case3:GroundTurkey...........................................................................................................................327.1.SystemDescriptions.......................................................................................................................327.2.DataSources........................................................................................................................................327.3.Results....................................................................................................................................................347.4.Discussionandconclusions........................................................................................................38

8. ProjectConclusions..................................................................................................................................399. References.....................................................................................................................................................40AppendixA.DatatablesforFigures.........................................................................................................44AppendixB:SensitivitytoConsumerwasterates...........................................................................49

Page 3: Life Cycle Assessment of Food Packaging and Waste

2LifeCycleAssessmentofFoodPackagingandWaste

1. SummaryFoodpackaginghaslongservedaroleinprotectingandpreservingbothperishableand

shelf-stablefoods,butsustainabilityeffortsaimedatreducingtheenvironmentalimpactof

packagingtypicallydonotaddressthiscriticalroledirectly.Thereisgrowingconcern,from

bothanenvironmentalandsocialperspective,withwastedfood,andthiswastedfoodoften

representsasignificantcontributiontotheoverallenvironmentalfootprintoffood

products.Thisprojectuseslifecycleassessmentofcompletefoodproductchainstoexplore

theenvironmentaltrade-offsbetweenfoodpackagingandfoodwaste.Throughcase

studies,weidentifyexampleswhereincreasedorimprovedpackagingconfigurations

resultinlowerretail-levelfoodwasteandreducedfull-systemenvironmentalimpacts.

BuildingonathoroughreviewoftheliteraturepresentedinourPhase1report,and

augmentedinthisPhase2report,wedevelopedalifecyclemodelcapableofevaluatingthe

cradle-to-graveimpactsofparticularfoods.Thescopeofthelifecyclemodelincludes

agriculturalproduction,processing,packaging,transporttoretail,retailenergyuse,

transporttohome,andhomerefrigeration.Italsoaccountsforfoodandpackagingwaste

anddisposalatretailandconsumerlevels.Themodelwasusedtoinvestigatethreecases:

beef,romainelettuce,andgroundturkey.Multiplepackagingconfigurationsarecompared

ineachcase.Retail-levelwasteratesweregatheredfromaretailpartner.Globalwarming

potential(greenhousegasemissions)andcumulativeenergyusearethefocal

environmentalimpactcategories,althoughbluewateruseisalsoevaluatedinonecase.

Resultsvaryacrossthecasesexamined.Wepresentthreescenarios(beefcase1a,1c

&turkeycase3)wheretheuseofoptimizedpackagingcorrelateswithlowerretail-level

foodwasterates.Twoofthethreeoffersituationswhere,whenapackagingchangeleadsto

reducedfoodwaste,thereductioninGHGEduetolowerwasteissufficienttooffsetthe

increaseinemissionsduetochangesinpackaging,butthistypeof“break-even”pointis

NOTreachedwithrespecttocumulativeenergydemand.Otherpresentedscenarios,

namelybeef1bandlettuce(case2),demonstratethatmoreadvancedpackagingoptionsdo

notalwaysleadtolowerwasterates,althoughitcouldbearguedthatthesecasescompare

productswithdifferentqualitiestotheconsumer.

Page 4: Life Cycle Assessment of Food Packaging and Waste

3LifeCycleAssessmentofFoodPackagingandWaste

2. IntroductionWhilethemodernfoodindustryhasconcerneditselfwithmaintainingfoodsafetyand

quality,themoralimperativeoffeedingarapidlygrowingpopulation,combinedwitha

maturingrecognitionofthebio-physicalplanetarylimitswithinwhichthisfoodmustbe

supplied,hasbroughtacutefocustotheproblemoffoodwaste.Inresponse,onSeptember

16,2015,USDAandEPAannouncedthefirstevernationalfoodwastereductiongoal,

callingfora50%reductionby2030(USDA2015).Foodpackaginghaslongservedarolein

protectingandpreservingbothperishableandshelf-stablefoods,butsustainabilityefforts

aimedatreducingtheenvironmentalimpactofpackagingoftenoverlookthiscriticalrole.

Lifecycleassessment(LCA)offoodproductstypicallyindicatethatthecontributionto

importantenvironmentalindicatorsfromthemanufacturinganddisposingofpackaging

materialsisoftenovershadowedbytheimpactsofproducingthefooditself.Inaddition,

wastedfood–thatwhichisproducedbutnoteaten–canrepresentasignificantfractionof

theoverallsystemenvironmentalburden.Thispresentsanimportantresearchquestion:

caninvestmentsinresourcesandassociatedemissionsduetoincreasedorimproved

packagingtechnologiesbejustifiedfromanenvironmentalstandpointiftheycontributeto

reductionsinfoodwaste?Wheredothetrade-offsinthisrelationshipoccur,andwhatare

thedeterminingparameters?Cansuchtrade-offsbedemonstratedwithexistingfood-

packagingsystems,andwhatdotheyteachusaboutthefutureroleofpackaginginfurther

deterringfoodwaste?

Thesearethequestionsunderlyingthisresearchprojecttitled“LifeCycleAssessmentof

FoodPackagingandWaste.”IntheprecedingPhase1report,wesetthestageforthe

projectwithaliteraturereviewandanoutliningofmethodologicalapproaches.Inthis

Phase2report,wedetailthemethods,dataandresultsofthreecasestudies(beef,romaine

lettuce,andgroundturkey)anddrawconclusionsonthelessonslearnedinthisproject.

3. AdditionstoLiteratureReviewOurPhase1reportprovidedanacademicfoundationfortheprojectbyhighlighting

LCAeffortstoquantifytheenvironmentalimpactsoffoodproduction,detailingthecasefor

concernwithfoodwaste,examiningLCAstudiesofpackagingmaterialsaswellasemerging

sustainabilityeffortsinfoodpackaging,andsummarizingtheknowledgetodateofthe

environmentaltrade-offbetweenfoodwasteandfoodpackaging.Theremainderofthis

sectionintroducesrelevantliteraturethathaseitherbeenpublishedordiscoveredbyour

researchteamsincepublishingourPhase1report(April8,2015).

Foodwaste Arecentmeta-analysisofwastecharacterizationstudiesoffersanewestimateof

foodwastedisposal(i.e.,throughMSWchannels)intheU.S.(Thybergetal.2015).They

foundthattheproportionoffoodwasteinMSWhasincreasedwithstatisticalsignificance

from1995to2013,andissignificantlyhigherintheWestregionthanintheEastorCentral

region.ThemeanproportionoffoodwasteinMSWwas14.7%,withaper-capitarateof

0.615lbs/capita/day(102kg/capita/year),comparedtotheUSEPAreportedvaluesof

17.6%and0.548lbs/capita/day(90.7kg/capita/year),respectively.

Page 5: Life Cycle Assessment of Food Packaging and Waste

4LifeCycleAssessmentofFoodPackagingandWaste

AstudycalculatingthetotalandavoidablefoodwasteofEuropeanUnion

consumersfoundthatfoodwasteaverages123kg/capita/year,or16%ofallfoodreaching

consumers;97kg/capita/year(12%offoodreachingconsumers)isavoidablefoodwaste

(Vanhametal.2015).Thestudyalsoestimatedthewaterandnitrogenresources

associatedwithavoidablefoodwaste.

Astudybasedoninterviewswithfoodproduction,wholesalingandretailing

managersintheUKandSpainexplorestherootcausesoffoodwasteatthesupplier-

retailerinterface(Menaetal.2011).Thepaperpresentsinteresting“causalmaps”that

tracecause-effectlogictorootcauses,andclassifiesthesecausesintothreegroups:mega-trendssuchasincreasingdemandforfreshproducts,productsoutofseason,andamoveawayfromproductswithpreservatives;naturalconstraintssuchasshortshelflifeoffreshproducts,seasonalityofsupplyanddemand,weatherfluctuations,andlongerlead-times

forimportedproducts;andmanagementrootcausesofwhichmanyexamplesareidentified.

AworkingpaperfromtheInstituteforInternationalPoliticalEconomyBerlin

(Adam2015)examines(inanEUcontext)theinfluenceofretailersonfooddatelabelsand

qualitystandards,bothofwhichcandrivefoodwasteacrossthefoodsupplychain.The

argumentinthepaperisthatwhileconsumersarethesinglelargestdriveroffoodwaste,

foodretailerscarrypowerandinfluenceoveranumberoffactorsthatcanhavelargeeffect

onfoodwaste.

Packagingtechnologies Arecentreviewdetailstheinfluenceofmodifiedatmospherepackagingand

active/smartpackagingonmicrobialgrowthandqualitycharacteristicsofredmeatand

poultry(ArvanitoyannisandStratakos2012).Responsivefoodpackagingisthesubjectof

anotherreview(BrockgreitensandAbbas2016).“Responsivepackaging”isdefinedinthe

reviewas“anypackagethatelicitsacurativeorinformativeresponseasaresultofa

specifictriggerorchangeoccurringinthefoodproduct,foodpackageheadspace,orthe

outsideenvironment.”Thistriggeringisanimportantdifferentiationfromactivepackaging

(suchassystemsthatreleaseantimicrobialsorantifungalcompoundsintofoodduring

storage)asactivepackagingwilloperatewhetherornotachangeispresentinthefood.

Thereviewdiscussesrecentadvancesinbio-responsiveandstimuli-responsivematerials

andanticipatessteadygrowthofresponsivepackaginginthefoodindustry,impacting

spoilage,foodwaste,foodrecalls,andfoodborneillnessoutbreaks.

Consumerfoodwasteandconsumerbehavior Consumer-levelfoodwasterepresentsadominantportionofthewasteacrossthe

foodsystem,butisalsopoorlyunderstoodduetothechallengesoftracking,monitoringor

otherwiserecordingconsumerbehaviors.Thisremainsanareaofgreatscholarlyinterest.

MuchofwhatweknowtodayaboutconsumerfoodwastestemsfromtheworkofWilliam

RathjeandtheGarbageProjectoftheUniversityofArizona(see,e.g.,(Harrisonetal.

1975)).Ananthropologist,Rathjeturnedthescienceofhistradetostudyingthegarbageof

modernsocietyandlearnedthatpreviousinterview-basedestimatesoffoodwastewere

unreliable.TheGarbageProjectteamestablishedabaselineunderstandingofthe

percentageofdifferentfooditemsthatweredisposedofthroughMSW.

Page 6: Life Cycle Assessment of Food Packaging and Waste

5LifeCycleAssessmentofFoodPackagingandWaste

Currentworkoftenfocusesonunderstandingthedriversofconsumerfoodwastein

ordertobettertargetreductionstrategies.ArecentlypublishedstudyfromtheCenterfora

LivableFutureatJohnsHopkinsUniversity(Neffetal.2015)representsthefirstnationally

representativeUS-basedstudyofconsumers’awareness,attitudesandbehaviorstoward

wastedfood.Thestudyfoundthatthree-quartersofrespondentsperceivethattheydiscard

lessfoodthantheaverageAmerican,andthattheleadingmotivationsforreducingfood

wasteweresavingmoneyandsettinganexampleforchildren,withenvironmental

concernsrankedlast.Aliteraturereviewofconsumer-relatedfoodwastestudies

(Aschemann-Witzeletal.2015a;Aschemann-Witzeletal.2015b)concludesthat

psychographicfactorsplayamuchgreaterroleinexplainingfoodwastethandosocio-

demographicfactors.Thesepsychographicfactorsinclude:consumers’motivationtoavoid

foodwaste;factorsrelatedtoawareness,knowledgeandcapabilitiesthatdeterminehow

andtowhatextentconsumerscanmanagefoodprovisioningandhandling;andhow

consumershandletrade-offsandprioritiesinthepresenceofconflictinggoals.Studies

publishedthisyearfurtherexploretheseconsumerfoodwastebehaviorsandtheir

determinantsinDenmark(Stancuetal.2016)andacrossEU-27countries(Secondietal.

2015).

Anotherfocalpointrelatingtofoodwasteandconsumer(aswellasretail)

behaviorsistheapplicationandperceptionsofdatelabelingoffood,summarizedinavery

informativerecentreview(Newsomeetal.2014).Itiswellknownthroughsurveysand

othermeans(e.g.,(Kosaetal.2007))thatthereissubstantialmisunderstandingby

industryandconsumersregardingthemeaningsandproperapplicationsofdatelabeling

terms;thisleadstosignificantunnecessaryfoodlossandwaste,misapplicationoflimited

resources,unnecessaryfinancialburden,andpotentialfoodsafetyrisk.Newsome,etal.

issuea“calltoaction”tomovetowarduniformityindatelabeling,afocusofregulatory

effortsonlabelingconcernsthatcarryhealthandsafetyrisksratherthanthoseoffood

quality,increasedconsumereducation(supportedbyuniformityindatelabeling),and

furtherresearchandinvestmentinindicatortechnologiesthatcouldhelpinform

stakeholderswhenfoodproductsnolongermeetqualityorsafety-relatedcriteria.

Foodpackaging/foodwastetrade-off InanewbookontheEnvironmentalFootprintsofPackaging,achapterdedicatedtolifecycleassessmentoffood-packagingsystems(Vignali2016)conductsaliteraturereview

ofthespaceandacknowledgestheevolutionwithinthetopictowardconsiderationofthe

amountoffoodwastegenerated.Withoutofferinggreaterdetail,thereviewacknowledges

thattheavoidedimpactsofreducedfoodwastecanbeconsiderablygreaterthanthe

implementationofnewpackagingtechnologies(suchas,e.g.,MAPoractivepackaging).

Recentarticlesfurtherdemonstratethisevolution.Zhangetal.(Zhangetal.2015)

demonstratethefoodwaste/packagingtrade-offthroughacasestudyoffreshbeefin

activeMAPpackagingcontainingthymol/carvacrolessentialoilsasanantimicrobial.The

paperacknowledgesthatitis“preliminaryLCAmodeling”astheactiveMAPinquestionis

stillindevelopment.Further,itisn’tcompletelyclearinreadingthemethodsdescription

wherethe“foodlosssavings”datafortheactivepackagingoriginates:theyappeartobe

hypotheticalscenariosratherthanempiricalwasterates.Still,theauthorsdemonstrate

thatthesmallreductionsinfoodwastecompensatefortheadditionalimpactsofthe“active

Page 7: Life Cycle Assessment of Food Packaging and Waste

6LifeCycleAssessmentofFoodPackagingandWaste

packaging”technology,resultinginreducednetimpacts,includingglobalwarming,fossil

energydemand,acidificationpotentialandeutrophicationpotential.

Anotherveryrecentpaperhighlightstheindirecteffectsoffoodlossonthe

environmentalperformanceofafood/packagingsystembysimulatingacaseofcheesein

variouspackagingsystems(Conteetal.2015).Here,theauthorsproposethreedifferent

empiricalequations–firstorderkinetic,asigmoidandastraightline–torelateshelflifeto

foodlossprobability,fittingkineticconstantswithonlyone(questionable)datapoint(plus

theobviouspointthatfoodlossprobabilitygoestounitywhenshelflife=0).Usingthese

proposedrelations,productiondataforsheep’smilkcheese,andshelflifedatainfour

packagingfilmsandavarietyofheadspaceconditions,anLCAwasconducted.Only

normalized,weightedeco-indicatorscoresusingCML2001impactassessmentmethod

werereported.Theauthorsconcludethatwithoutconsideringtheindirecteffectsoffood

losses,LCAshowsthatthethinner,recyclablepackagingmaterialsaremoresustainable.

However,whenfoodlossisaccounted,thepackagingabletoguaranteealongershelflife

becomesmoresustainable.

Amorethoroughandcompletedemonstrationofthefoodpackaging/wastebalance

hasbeenrecentlyreportedbytheAustrianenvironmentalconsultingfirm,Denkstatt

(DenkstattGmbH2014).Anonlineslidepresentationsummarizessixcasestudies

developedinpartnershipwithretailers,packagingproducers,polymerproducers,industry

organizationsandresearchinstitutes.Thecasesshowreducedretail-levelfoodwastedue

tochangesinpackagingfor:sirloinsteak,“Bergbaron”cheese,plaitedyeastbun,garden

cress,andcucumber.Inallcasesexceptthecucumber,thestudiesshowreducedoverall

greenhousegasemissions.Anadditionalexamplefocusesonconsumer-levelfoodwaste

withchickenmeat,butreliesonanassumedfoodwastereduction.

4. LCAModelOverviewAtthecoreofthisresearchprojectwasdevelopmentofalifecycleassessmentmodel

capableofevaluatingthefulllifecycleofafoodproduct,withparticularfocusonfood

wasteandfoodpackagingelements.Thissectiondetailsthedevelopmentofthatmodel,

providingmodelingapproachesanddatasourcesforthemainlifecyclestages.

4.1. GoalandScope4.1.1. ThegoalsoftheLCAstudyweretoexplorethetrade-offinenvironmental

impactbetweenfoodwasteandfoodpackaging,andtodemonstratetheroleofpackaging

incontrollingfoodwaste.Theresultswillbeusedtobuildawarenessbothwithinthefood

packagingindustryaswellaswiththegeneralpublic.Thefindingsofthestudywillbe

communicatedexternallyviapeer-reviewedliteratureandprofessionalconferences.

Benefitsareanticipatedtobeusedformarketingpurposestopromotelight-weight

packagingasapreventeroffoodwasteandasustainablesolution.

4.1.2. Scope4.1.2.1. Productsystemandfunction

Theproductstobestudiedinthisprojectwillbethecombinedfoodandpackagingunit

responsiblefordeliveringsafeandfreshfoodforconsumption.Whilenumerousproducts

willbestudied,the“function”ofallisprovidingsafe,nutritioussustenancetotheend

consumer.Thus,thesystemunderinvestigationincludesnotonlythelifecycleofthefood

Page 8: Life Cycle Assessment of Food Packaging and Waste

7LifeCycleAssessmentofFoodPackagingandWaste

butalsotheparticularpackagingconfigurationutilized,withspecialattentiontoitsrolein

effectingfoodwaste.

4.1.2.2. Functionalunit

ThefunctionalunitformsthecomparativebasisofLCAstudiesandthedenominatorof

presentedresults,andthereforecaninfluenceconclusionsdrawnfromstudyresults.Given

thefocusonfoodwasteinthisproject,thefunctionalunitshouldreflectfoodactually

consumed,thereforeaccountingforwasteatallstages.Throughoutthisstudyafunctionalunitof1kgoffoodconsumedismaintained.Notethat,similartomostfoodLCAs,thismass-basedfunctionalunitdoesnotcapturea“performance”measurementofthefoodsystem.

QuantifyingthefunctionorperformanceoffoodsisaperennialchallengeinfoodLCAs(see

(Helleretal.2013));assumingtherearenotsignificantnutritionaldifferencesarising

betweenpackagingconfigurations,amass-basedfunctionalunitpresentslittleproblemin

makingcomparisonsbetweenscenariosofthesamefood.Givennutritionaldifferences

betweenfoods,however,cautionmustbeexercisedincomparingLCAresultsofdifferent

foods.

4.2. SystemboundariesAgenericsystemdiagrambelowoutlinesthestagesandprocessestobeconsideredinthis

study.

Figure1.Systemdiagramindicatingthelifecyclestagestobeincludedinthisstudy.Thickbluearrowsrepresentstageswheretransportisincluded

Allstagesofthefoodlifecyclewillbeconsidered.Assessmentofagriculturalproduction

andfoodprocessingwillcomefromexistingLCAstudiesofthefoodinquestion;i.e.,wewill

notbecollectingprimarydataforthesestages.Giventheintendedfocusoftheproject,food

losses/wasteattheagriculturalproductionstagewillnotbeexplicitlyconsidered.The

studywillinsteadfocusonfoodloss/wasteduringretailandconsumptionstages.As

showninFigure1,theenvironmentalimpactsfromfinaldisposaloffoodwastewillbe

Agricultural production

Food processing Retail consumer

Packaging production

Food waste

Packaging waste

recycling

incineration

landfill

composting

Page 9: Life Cycle Assessment of Food Packaging and Waste

8LifeCycleAssessmentofFoodPackagingandWaste

considered.Similarly,theimpactsofrecyclingand/ordisposingofpackagingwastewill

alsobeincluded.Transportationwillbeaccountedforbetweenmajorstages,although

generalizedassumptionshavebeenmadetoreasonablyrepresentU.S.Nationalaverage

transportationdistances.

4.3. ImpactCategories

Thestudyfocusesonglobalclimatechange(greenhousegasemissions)andcumulative

energydemand.Inclusionofotherimpactcategoriesislimitedbytheavailabilityoffood

productionandprocessingdata,andthefactthattheEPAWARMmodel,usedforend-of-

lifedisposal,onlyincludesenergyandGHGE.Forthepurposesoffurtherdemonstrating

thepotentialtrade-offbetweenfoodwasteandfoodpackagingimpacts,wehaveincluded

wateruseasanadditionalimpactcategoryfortheromainelettucecasestudy.

4.4. LifecycleinventoryanddatasourcesInthissection,wedescribegenericmodelingandinventoryapproaches,aswellasdata

sourcesthatarecommonamongcasestudies.Parametersanddatasourcesuniqueto

individualcasesaredetailedintheirrespectivesections.“Default”allocationwaschosen

throughoutfordatasetsdrawnfromEcoinvent3.

Packagingproduction:Inventorydatafortheproductionofpackagingmaterialsas

wellasthetransformationofmaterialsintopackagingformsweretakenfromthe

Ecoinvent3database.SpecificprocessesandthedatasetoriginareshowninTable1.Note

thattransportofpackagingmaterialsisnotincludedinourassessment.

Table1.Datasourcesforpackagingmaterialproductionandtransformation

process Datasetorigin

Generalpurposepolystyrene USLCI

Highdensitypolyethyleneresin USLCI

Lowdensitypolyethyleneresin USLCI

Linearlowdensitypolyethyleneresin USLCI

Polypropyleneresin USLCI

Polyvinylchlorideresin USLCI

Ethylvinylacetatefoil(proxyfor

Ethylenevinylalcohol)

Ecoinvent3

Ethylenevinylacetatecopolymer Ecoinvent3

Polyvinylidenechloride,granulate Ecoinvent3

RecycledpostconsumerPETflake USLCI

Corrugatedboardbox Ecoinvent3

Kraftpaper,bleached(usedforall

otherpaperbeyondcorrugated)

Ecoinvent3

Roughgreenlumber,softwood,at

sawmill(usedforpalletwood)

USLCI

Blowmoulding Ecoinvent3

Calendaring,rigidsheets Ecoinvent3

Extrusion,plasticfilm Ecoinvent3

Injectionmoulding Ecoinvent3

Polymerfoaming Ecoinvent3

Thermoforming,withcalendering Ecoinvent3

Page 10: Life Cycle Assessment of Food Packaging and Waste

9LifeCycleAssessmentofFoodPackagingandWaste

GasesusedinModifiedAtmospherePackaging(MAP)weremodeledusingdatasetsfor

liquidoxygenandcarbondioxide,applyingappropriatedensitiesandexpansionratios.

WhileliquefiedgasesarelikelynottheoriginforMAPpackaging,theimpactsbasedonthis

modelingapproacharenegligible,andnon-liquifiedgassourcesareanticipatedtohave

evensmallerimpacts.

Transport:processortoretail:Transportationfromprocessingtoretaildistribution

wasmodeledusingagenericfreighttruckingprocessfromEcoinvent3whichisbasedona

tonne-kmunit.Sincemanyfreshproductsrequirerefrigeratedtrucking(andEcoinvent

doesnotofferaprocessforrefrigeratedshipping),thetruckingprocesswasmodifiedto

accountfor“reefer”operationbythefollowing:

Themajorityofmediumtolargevehiclesuseself-containedrefrigerationunitsthat

utilizeaself-containeddieselengine.Varioussourcesestimatethefuelconsumptionof

thesecompressorenginestobe1-5Lperhour(Tassouetal.2012)(Roibásetal.2014);we

choseavalueof2Lperhourdieselconsumption.Assuminganaverageoperatingtruck

speedof56.3milesperhour(Statista2015)and6hoursofidlingperday(Gainesetal.

2006),or6hoursevery1013miles,weestimateadieselconsumptionof0.0295Lperkm.

Inaddition,arefrigerantleakageof0.0052gR134a/km(Roibásetal.2014)wasalso

assumed.

Transportdistancefromunspecifiedprocessorstoretailoutletsacrossthecountry

isextremelydifficulttodetermineaccurately.Wherenoadditionalinformationwas

available,transportdistancewasbasedon“averagemilespershipment”inTable24:

“ShipmentCharacteristicsofTemperatureControlledShipmentsbyThree-Digit

CommodityfortheUnitedStates:2012”inthe2012CommodityFlowSurvey(U.S.

DepartmentofTransportation2015).

RetailEnergyUse:Energyuse(andassociatedemissions)atretailaredividedinto

twopieces:refrigeration,andallotherenergyuses,includingspaceheatingandcooling,

ventilation,waterheating,lighting,cooking,andofficeequipmentandcomputers.Non-

refrigerationenergyuse(consideredoverheadinthisanalysis)istakenfromthe2003U.S.

EIACommercialBuildingsEnergyConsumptionSurvey(U.S.EnergyInformation

Administration2006)(notethatwhilereleaseofthe2012Surveyhasbegun,thenecessary

tablesarenotyetavailable).TableE1Afromthe2003Surveyprovidesmajorfuel

consumptionforallbuildingsbyenduse(heating,cooling,lighting,etc)fordifferent

sectors:weutilizedatafromthe“foodsales”sector.Thisenergyuseisthenallocatedto

productcategoriesonaneconomicbasis:totalannualnationalsalesatretailforthefoodin

question(e.g.,beef)isdividedbytotalsupermarketsales($475,317millionin2013

accordingtoProgressiveGrocer’sAnnualConsumerExpendituresStudy(Progressive

Grocer2014)).Thisratioismultipliedintotheenergyusenumbersandthendividedby

totalannualkgoffoodcommoditysoldatretailtoarriveatanenergyuseperkg.Itwas

assumedthatspaceheating,waterheatingandcookingutilizenaturalgas,whereasall

otherendusesutilizeelectricity(U.S.nationalgridaverage).

Whilerefrigerationenergyisavailablethroughtheabovesource,itisdesirableto

considerrefrigerationasanoperating“cost”andallocateitonamorephysical(ratherthan

economic)basistoindividualfoodproducts.Weestimateenergyuseforspecific

Page 11: Life Cycle Assessment of Food Packaging and Waste

10LifeCycleAssessmentofFoodPackagingandWaste

commercialrefrigerationequipmentviatheU.S.DepartmentofEnergyequipment

standards(U.S.DepartmentofEnergy2014).Thisdocumentprovidesmaximumdaily

energyconsumption(kWh/day)forvariousequipmentcategories,e.g.:for“verticalopen

equipment”with“remotecondensing”operatingat“mediumtemperature(38°F)”,thestandardenergylevelisgivenby

0.66×!"# + 3.05whereTDA=totaldisplayareaofthecase,inft2.

Appropriateequipmenttypesandsizesarechosenforeachfoodtype,thentheenergyuse

perdayisallocatedtoanindividualproductwiththeratioofconsumerfacingareaperkg

fortheproductinquestiontoTDA.Thisvalueisthenaveragedannuallyandnationallyby

multiplyingby365andbytotalnumberofretailstores(37716in2014,accordingto(FMI

2014))anddividedbythekgoffoodcommoditysoldannuallyatretail.

Refrigerantleakagesalsocontributetoglobalwarming.EPAestimatesannualU.S.

supermarketrefrigerationleakagetobe875lbs/year,andassumesR-404Atobethe

typicalcommercialrefrigerantused(U.S.EPA2011).Toestimatetherefrigerantleakage

perkWhrefrigerationenergyused,thisvalueisdividedbythetotalannualrefrigeration

energyforfoodsales(U.S.EnergyInformationAdministration2006).ThisleakageperkWh

isthenmultipliedbytherefrigerationenergyconsumptionascalculatedabovetoallocatea

portionoftheleakagetoagivenproduct.

Transport:retailtohome:The2009NationalHouseholdTransportationSurvey

(Santosetal.2011)reportsthattheaveragevehicletriplengthforshoppingis6.4miles.

Weusethisdistanceasaproxyforaveragegrocerytrips,andutilizingaprocessfor

“transportinpassengercarwithinternalcombustionengine”fromEcoinvent3,allocate

thistransportationburdentotheindividualproductinquestiononaneconomicbasis

(totalannualsalesofproductinquestion/totalannualsupermarketsales).

Homerefrigeration:the2009ResidentialEnergyConsumptionSurvey(U.S.Energy

InformationAdministration2013)reportsthattheannualenergyconsumptionper

householdbyrefrigeratorsis1259.9kWh,andtheaveragerefrigeratorvolumeis22ft3.

Theannualenergyuseisdividedby365toprovideadailyenergyuse,andallocatedtothe

foodproductinquestionbasedonavolumefraction(volumeperkgoffood-packagein

question/22ft3).Adefaultof4daysinhomerefrigerationisassumed.

Foodwasterates:Therateoffoodwastageatretailandconsumerstagesiscentral

tothetrade-offexploredinthisstudy.Theyarealsoextremelydifficulttoquantify.

Consumer-levelfoodwasteattheindividualproductlevelis,forallpracticalpurposes,

unavailable.Gatheringsuchdatawouldrequireextensive(andexpensive)surveying,andis

outsideofthescopeofthisproject.Inthisstudy,werelyontheconsumer-levelwasterates

fromUSDA’sLossAdjustedFoodAvailability(LAFA)dataset(USDAERS2013)asa

placeholderforproduct-specificwasterates.TheLAFAwasteratesarepresentedatthe

foodcommoditylevel,andrepresentthebestestimateforfoodlossattheconsumerlevel,

consideredbroadlyasanationalaverage.Differencesbetweencomparativepackaging

systemswillnotbeevaluatedattheconsumerlevel.

Comparativedifferencesinretail-levelfoodwasteratesweregatheredfromthe

salesrecordsofaretailpartner(toremainanonymous),aswellasothersources.These

Page 12: Life Cycle Assessment of Food Packaging and Waste

11LifeCycleAssessmentofFoodPackagingandWaste

representcorporate-widesales(circa200storefronts)and“throwaways”forspecificUPC

IDscompiledovertwoyears.

End-of-lifedisposaloffoodandpackaging:Modelingofend-of-lifedisposaloffood

andpackagingfollowsEPA’sWasteReductionModel(WARM)(USEPA2015).TheWARM

modelusesalifecycleapproachtoestimateenergyuse(orcredit)andgreenhousegas

emissionsassociatedwithrecycling,combustion,compostingandlandfillingofdifferent

materials.Thismodelwasusedasthebasisforfoodwastedisposalaswellasvarious

packagingmaterials.OneexceptiontotheWARMmodelwasmade:itincludesinrecycling

ofpaperproducts(corrugatedcardboardandotherpapers)alargecarbonsequestration

componentassociatedwithlivingforestthatgoesuncutduetotherecycling.While

perhapsappropriatefortheWARMmodel’sintendedpurpose(demonstratingtheimpact

ofwastereduction)thisrepresentsaninappropriatecreditinourmodelingscenarioand

hasbeenomitted.

USEPAMunicipalSolidWastedata(USEPA2014)wereusedtoestablishthedefault

fractionsdistributedtorecycling(orcomposting),landfill,andcombustionpathways.

ThesefractionsarebasedonUSnationalaverages.Thefractionsusedinthemodelare

showninTable2.

Table2.Modeledfractionsofdisposalpathwaysforvariousmaterials

Material Recycleda Landfilledc Combustedc

food 4.8%b 78.1% 17.1%

PET 24.2% 62.2% 13.6%

HDPE 16% 68.9% 15.1%

PVC 0 82% 18%

LDPE 11.5% 72.6% 15.9%

PP 2.1% 80.3% 17.6%

PS 3.8% 78.9% 17.3%

PLA 0b 82% 18%

Steel 72.2% 22.8% 5.0%

Aluminumcan 54.6% 37.2% 8.2%

Aluminumfoil 0 82% 18%

Glass 34.1% 54.0% 11.9%

Corrugatedcardboard 90.9% 7.4% 1.6%

Otherpaper 24.7% 61.7% 13.6%

wood 25.1% 61.4% 13.5%

afromUSEPAMSWdatatables,2012(USEPA2014)brepresentspercentagecompostedcderivedbysubtractingrecyclingfractionanddistributingremainingbynationalaverageMSWdisposal

ratio:82%landfill,18%incineration.

4.5. ImpactassessmentmethodsGlobalwarmingpotentialwascalculatedusingtheIPCC2013GWP100amethod(IPCC

2013).Cumulativeenergydemandwascalculatedusingthemethodpublishedby

Ecoinventversion2.0(FrischknechtandJungbluth2003).

Bluewateruseisevaluatedinthelettucecaseusingthemidpoint“waterdepletion”

indicatoroftheReCiPeimpactassessmentmethod(http://www.lcia-recipe.net/).This

Page 13: Life Cycle Assessment of Food Packaging and Waste

12LifeCycleAssessmentofFoodPackagingandWaste

indicatorisessentiallyasummationofthevolumeofsurfaceorgroundwater(bluewater)

usedinvariousprocesses.Whileitisoftendesirabletoapplyawaterstresstypeimpact

indicator,thisrequiresregion-specificcharacterizationfactorsinordertobemeaningful,

andgiventhemostlygenericnatureofthemodelingscenarios(i.e.,nationally

representativeretailandconsumerstages),suchspecificcharacterizationsarenot

practical.

NoteonAppendices:DatapresentedinfiguresthroughouttheremainderofthisreportaretabulatedinAppendixA.AppendixBprovidesasensitivityassessmentofeachcase

againstconsumerlevelwasterates.

5. Case1:BeefBeefrepresentsasensiblecaseforthisstudy:beefproductioncarriesahighenvironmental

impact,andbecauseofitshighvalueandperishability,thereisstronginterestinapplying

alternativepackagingtechnologiestoextendshelflife.Oneparticularchallengein

packagingmeatisovercomingconsumerperceptionofquality:packagingmeatunder

vacuum(intheabsenceofoxygen)greatlyextendsshelflife,butgivesthemeata

(reversible)purplishhue,oftenperceivedasundesirablebytheAmericanconsumer.

Ironically,alargemajorityofbeefisdistributedinsuchvacuumpackaging,andexposedto

airpriortoretaildisplaytoallowthebrightred“bloom”ofcolorexpectedbytheconsumer.

Despitethisopportunity,wehavefounditquitedifficulttoidentifydirectly

comparableproductsofferedindifferentpackagingconfigurationsforwhichwecanaccess

empiricaldataonretail-levelfoodwaste.

Thebeefcaseisdividedintothreesub-casesinthedescriptionbelow:

• case1aisbuiltaroundshrink(waste)targetratesprovidedbyBusch’sFreshFood

Market(AnnArbor,MIarea).

• Case1bisbuiltaroundactualsalesandthrowawaydatafromourretailpartner.

• Case1cisanexamplepresentedbytheAustrianenvironmentalconsultingfirm,

Denkstatt.(DenkstattGmbH2014),adaptedheretoourmodelingstructure.

5.1. SystemDescriptionsCase1a.

ThemeatandseafoodcategorymanagerforBusch’sFreshFoodMarketindicatedthatthe

targetshrinkrate–whattheyaimtoachieve,orstaybelow–isdifferentforregularlypackaged(traywithoverwrap)andmodifiedatmospherepackaging(MAP):7%and5%,

respectively.Here,webuildacaseusingthesewasteratescomparingtypicaltraywith

overwrapbeefpackagingwithahigh-oxygenMAPalternative.

Case1b.

Ourretailpartnercarriesafullarrayofbeefcutsandproductsintheirstores.However,

withtheexceptionofgroundbeef,therearenotgoodcomparisonsofthesamecutbeingofferedindifferentpackagingsystems.Thus,interpretationoftheresultsinthiscaseneed

toaccountforpotentialdifferencesinvalueofferedtotheconsumer.Further,wewereable

toeasilyretrievewasteratesforproductsthatcarryaUPCID.Thisdoesnotincludemeatscomingoutofthefullservicecounter.Therefore,comparisonscouldnotbemadebetween

productsfromthefullservicecounterandthosepackagedinthedisplaycase.Asa

Page 14: Life Cycle Assessment of Food Packaging and Waste

13LifeCycleAssessmentofFoodPackagingandWaste

Table3.ProductsconsideredinCase1b:beefproductscarriedbyretailpartner

Scenario

ID

Meatcut package Quantityof

salesover2

years(lbs)

Wasterate

(averaged

over2years)

Price/lb

(averaged

over2years)

b1

80/20

fine

ground

beef

chub 243000 1.07% $3.39

b2

80/20

CAB

ground

chuck

Tray/

overwrap.

Processed

atstore

6,050,000 1.00% $3.70

b3

80/20

case-

ready

ground

beef

Tray/

overwrap.

Caseready

1,093,000 1.95% $4.42

b4

Beef

shank

Sealed

tray;

assuming

hiO2MAP

224,000 4.96% $5.24

b5

CAB

chuck

shoulder

ranch

steak

Tray/

overwrap

132,000 11.85% $5.76

b6

CABtop

sirloin

filet

Tray/

overwrap

1,352,000 1.32% $7.05

B7

CAB

bone-in

ribeye

steak

Tray/

overwrap

220,000 11.19% $10.94

Page 15: Life Cycle Assessment of Food Packaging and Waste

14LifeCycleAssessmentofFoodPackagingandWaste

compromise,wehavegatheredanarrayofproductstoconsiderhere,summarizedinTable

3.Mostdonotconformtotheanticipatedtrendofhighertechnologypackagingresultingin

reducedfoodwaste,furtheremphasizingthecomplexinterplaybetweenshelflife,product

popularity,productturnoverrate,andmarketingeffortsthatcontributestowasterates.

Case1c.

Inastudyaimedatdemonstratinghowpackagingcontributestofoodwasteprevention,

Denkstatt(DenkstattGmbH2014)presentsacaseofsirloinsteakpackagedinanEPStop

sealtray(incombinationwithavacuumbagusedtoagethemeatpriortoretaildisplay)

witha34%retailwasterate.Thisiscomparedwiththesamesteakina“Darfresh”skin

packaging(cutcanbeagedinfinalretailpackaging)withonly18%retailwaste.According

toDenkstatt,theskinpackagingextendsshelflifefrom6daysto16days,andnoseparate

agingpackagingisneeded.Personalcommunicationwiththeresearchersofthestudy

confirmedthatthesewasteratesincludedonlyretail-levelwaste,thattheywereactually

measuredratesbasedonproductspecificdatafromoneormoremonths,andthattheyare

indeedhighcomparedtotheaveragefreshmeatsector,butreflectahighprice,high

quality,lowthroughputproduct.

5.2. DataSourcesBeefproduction(usedthroughout)

BeefproductionhasbeenstudiedextensivelywithLCA,andemissionfactorsrangewidely,

from8-50kgCO2eq/kg(HellerandKeoleian2014).However,theNationalCattlemen’s

BeefAssociationrecentlysponsoredanLCAofUSbeefproduction,conductedbyBASF,that

servesasareasonablereferencepointfortheUSbeefindustry(Battaglieseetal.2013).

Whilethestudyisatruecradle-to-graveLCA,takingthebeefproductthroughto

consumption,weextractenergyuseandGHGEfactorsupthroughbeefharvest(i.e.,priorto

packaginganddistribution)foruseinthisstudy.Theseresults,convertedfromthe

“consumed”functionalunitofthereporttoa“boneless,post-harvest”functionalunit,are

showninTable4.

Table4.Emissionfactorsandenergyuseforbeefproduction,astakenfrom(Battaglieseetal.2013).

GHGE(kgCO2eq/

kgediblebeefat

slaughterhouse)

Energyuse(MJ/kg

ediblebeefat

slaughterhouse)

feed 5.59 44*

Cattle 26.1 13.5

harvest 0.34 8.48

total 32 66*notethattheenergyusevalueintheBASFstudyincludesthegrossbioenergyrepresentedbycropsand

pasture,whichisnotappropriatetoincludeinthecomparisonsmadehere,wherethefocusisonfossil

energy.Whileitisdifficulttoextract,itappearsthatthenon-biobasedportionoffeedproductionis~57

MJ/kgconsumedbeef,which,afteraccountingforlossfactorsalongtheproductchain,translatesinto~44MJ

/kgharvestedbeef.

Additionalmodelingparametersandtheirsourcesforthe3sub-casesareshowninTable5,

Table6andTable7.

Page 16: Life Cycle Assessment of Food Packaging and Waste

15LifeCycleAssessmentofFoodPackagingandWaste

Table5.ModelingparametersusedinCase1a

1lb.beefinPStrayw/overwrap 1lb.beefinhiO2MAPtray

value source value source

Weightofprimary

packaging(kg/kg

food)

0.0268 #2PStray=5.7g,

21gwrap,0.08g

paperlabel

0.054 SealedAircontacts

Primarypackaging

composition

21.3%PS

78.4%LDPE

0.3%paper

foaming&

thermoforming

incl.forPS;film

extrusionforLDPE

#2PStray=5.7g,

21gwrap,0.08g

paperlabel

96%PP

4%EVOH

thermoforming

incl.forPP,film

extrusionforEVOH

SealedAir

Distribution

packaging(3°)(kg/kgfood)

0.093 (Battaglieseetal.

2013)

0.093 (Battaglieseetal.

2013)

Distribution

packaging

composition

98.68%corrugated

cardboard

1.32%wood

(pallet)

(Battaglieseetal.

2013)

98.68%corrugated

cardboard

1.32%wood

(pallet)

(Battaglieseetal.

2013)

Consumer-level

foodwaste

20% USDALAFA 20% USDALAFA

Retail-levelfood

waste

7% Busch’starget

wasterate

5% Busch’starget

wasterate

Productvolume

(ft3/kg)

0.055 #2tray

dimensions~

5.5”x8”0.75”

0.0803 Traydimensions:8

15/16"x613/16"

x17/8"

Consumer-facing

area(ft2/kg)

0.964 5.5”x8” 0.964 815/16"x6

13/16"

Averageretailprice

perkg

$9.64 (210AnalyticsLLC

2014)

$9.64 (210AnalyticsLLC

2014)

Annualkgsoldat

retail

2.22e9 Total2013beef

retailsales(210

AnalyticsLLC

2014)

2.22e9 Total2013beef

retailsales(210

AnalyticsLLC

2014)

Transportdistance

toretail(km)

290 (U.S.Departmentof

Transportation

2015),Table24,

SCTGcode051

290 (U.S.Departmentof

Transportation

2015),Table24,

SCTGcode051

MAPratio - 80%O2,20%CO2

Assumedretail

refrigeratorunit

Horizontalopen,

remotecondenser,

mediumtemp

(38F),36ft2total

displayarea

Horizontalopen,

remotecondenser,

mediumtemp

(38F),36ft2total

displayarea

Page 17: Life Cycle Assessment of Food Packaging and Waste

16LifeCycleAssessmentofFoodPackagingandWaste

ManyofthescenariosconsideredinCase1bfollowthesameparametersinTable5:

scenariosb2,b3,b5,b6&b7allfollowtheparametersfor“1lb.beefinPStraywith

overwrap,”whereasb4followsthe“1lb.beefinhiO2tray”parameters.

Table6.ModelingparametersforCase1b1scenario(beefinchub)

1lb.beefinchub(scenariob1)

value source

Weightofprimary

packaging(kg/kg

food)

0.011 1lbchubpackaging

weighs~5g

Primarypackaging

composition

80%LDPE

10%EVA

10%PVdC

(filmextrusion

included)*

Distribution

packaging(3°)(kg/kgfood)

0.093 (Battaglieseetal.

2013)

Distribution

packaging

composition

98.68%corrugated

cardboard

1.32%wood

(pallet)

(Battaglieseetal.

2013)

Consumer-level

foodwaste

20% USDALAFA

Retail-levelfood

waste

1.07% Retailpartnerdata

Productvolume

(ft3/kg)

0.0375 Cylinderwith2.5”

diameter,6”length

Consumer-facing

area(ft2/kg)

0.229 Cylinderwith2.5”

diameter,6”length

Averageretailprice

perkg

$9.64 (210AnalyticsLLC

2014)

Annualkgsoldat

retail

2.22e9 Total2013beef

retailsales(210

AnalyticsLLC

2014)

Transportdistance

toretail(km)

290 (U.S.Departmentof

Transportation

2015),Table24,

SCTGcode051

Assumedretail

refrigeratorunit

Horizontalopen,

remotecondenser,

mediumtemp

(38F),36ft2total

displayarea

*becauseofthemixedcomponentsofthisfilm,theLDPErecyclingratehasbeensettozeroforthisscenario.

Page 18: Life Cycle Assessment of Food Packaging and Waste

17LifeCycleAssessmentofFoodPackagingandWaste

Table7.ModelingParametersforCase1c:Denkstattsirloinsteakexample

358gsirloinsteakinEPStraywsealed

topfilm

300gsirloinsteakin“Darfresh”skin

packaging

value source value source

Weightofprimary

packaging(kg/kg

food)

0.0419 20gvacuumbag

per6kgmeatfor

aging,11gEPStray,

4gtopfilm

(DenkstattGmbH

2014)

0.0633 19gskinpackaging

Primarypackaging

composition

2.22%PVdC

10.82%LDPE

2.59%EVA

67.91%EPS

8.23%EVOH

8.23%PA(modeled

asNylon6-6)

Personal

communication

withDenkstatt

62%PS

26%EVA

12%LDPE

Simplified

summaryoftwo

complexmultilayer

components.

Personal

communication

withDenkstatt

Distribution

packaging(3°)(kg/kgfood)

0.093 Assumedsameas

previousbeef

examples

(Battaglieseetal.

2013)

0.093 Assumedsameas

previousbeef

examples

(Battaglieseetal.

2013)

Distribution

packaging

composition

98.68%corrugated

cardboard

1.32%wood

(pallet)

(Battaglieseetal.

2013)

98.68%corrugated

cardboard

1.32%wood

(pallet)

(Battaglieseetal.

2013)

Consumer-level

foodwaste

20% USDALAFA 20% USDALAFA

Retail-levelfood

waste

34% (DenkstattGmbH

2014)

18% (DenkstattGmbH

2014)

Productvolume

(ft3/kg)

0.0368 Assumedbasedon

meatdensity

0.0368 Assumedbasedon

meatdensity

Consumer-facing

area(ft2/kg)

0.441 Assumedbasedon

abovevolumeand

1”thickness

0.441 Assumedbasedon

abovevolumeand

1”thickness

Averageretailprice

perkg

$9.64 (210AnalyticsLLC

2014)

$9.64 (210AnalyticsLLC

2014)

Annualkgsoldat

retail

2.22e9 Total2013beef

retailsales(210

AnalyticsLLC

2014)

2.22e9 Total2013beef

retailsales(210

AnalyticsLLC

2014)

Transportdistance

toretail(km)

290 (U.S.Departmentof

Transportation

2015),Table24,

SCTGcode051

290 (U.S.Departmentof

Transportation

2015),Table24,

SCTGcode051

Assumedretail

refrigeratorunit

Horizontalopen,

remotecondenser,

mediumtemp

(38F),36ft2total

displayarea

Horizontalopen,

remotecondenser,

mediumtemp

(38F),36ft2total

displayarea

Page 19: Life Cycle Assessment of Food Packaging and Waste

18LifeCycleAssessmentofFoodPackagingandWaste

5.3. ResultsCase1a:typicaltrayvs.MAP

Figure2showsthegreenhousegasemissionsassociatedwiththetwoscenariosincase1a,

acomparisonoftypicalPStraywithoverwrapretailpackagingandahighO2MAP.Here,

beefproductionandprocessingdominate,representing96%ofthetotallifecycle

emissions.Amovefromthetray/overwrappackagingtohighO2MAPpackaging

representsadoublinginpackagingmassandanearly40%increaseintheGHGEassociated

withpackagingproductionanddisposal.Yet,thesmalldecreaseinfoodwaste(7%to5%

retailwaste)issufficienttooffsetthisincrease,resultinginanetsystemdecrease.The

break-evenpoint(assumingallotherwastesthesame)isa6.4%retailwasteforthehiO2

MAP.

Figure2.DistributionofgreenhousegasemissionsacrossthelifecycleforCase1a:comparingtraywithoverwrapandhighoxygenMAPpackaging.Notethebreakinthey-axisinordertoshowdetailsofthesmallcontributionsfrommostlifecyclestages.TotalvaluesarePStray:44.56kgCO2eq/kgbeefconsumed;highO2MAP:43.78kgCO2eq/kgbeefconsumed.

Ontheotherhand,thereductioninfoodwasteisnotsufficienttoreachthebreak-even

pointwithrespecttolifecycleenergydemand,asshowninFigure3.Whilethelifecycleis

alsodominatedbybeefproduction,theenergydemandfortheMAPpackaging(production

0

0.5

1

1.5

2

2.5

PStrayw/overwrap

hiO2MAP

40

40.5

41

41.5

42

42.5

43

43.5

44

44.5

45

GHGE

(kgCO

2eq/kgconsum

ed)

Page 20: Life Cycle Assessment of Food Packaging and Waste

19LifeCycleAssessmentofFoodPackagingandWaste

&disposal)istwicethatofthetray/overwrap.Theretailfoodwasteratewouldneedto

decreaseto2.6%inordertoreachthebreak-evenpointwhenshiftingfromtray/overwrap

toMAPpackaging.

Figure3.DistributionofcumulativeenergydemandperkgofconsumedbeefforCase1a:comparingtraywithoverwrapandhighoxygenMAPpackaging.Notethebreakintheyaxisinordertoshowdetailoflifecyclestageswithsmallcontributions.TotalvaluesarePStray:108.1MJ/kgbeefconsumed;highO2MAP:110.1MJ/kgbeefconsumed.

Exploringconsumerlevelfoodwastereduction

TheWRAPstudy,“ReducingFoodWastebyExtendingProductLife,”(Leeetal.2015)

presentsanapproachforestimatingthepossiblereductioninfoodwastethatcouldresult

fromofferingtheconsumergreatershelflife(i.e.,moredaysbeforethe“useby”date).This

methodborrowsheavilyonanearliersurvey-basedstudy(BrookLyndhurst2011)that

offersaprobability“distribution”ofwhenproductsaredisposedrelativetoon-package

datelabels.TheWRAPmethodpresumesthatextendingthetimeondatelabelspushes

actualdisposaltimesfurtherintotheprobabilitycurve(assumedtobeanormal

distribution),therebyreducingtheamountoffoodwasted.

Weutilizethismethodtoofferaglimpseofthepotentialforpackagingtoreduce

foodwasteattheconsumerlevel.

-5

0

5

10

1585

90

95

100

105

110

115

Energydem

and(M

J/kgconsum

ed)

PStray&overwrap

HIO2MAP

Page 21: Life Cycle Assessment of Food Packaging and Waste

20LifeCycleAssessmentofFoodPackagingandWaste

Studiesonbeefpackagingoptionsshowtypicalshelflivesfordifferentpackaging

configurations.Awhitepaperonbeefshelflife(Delmore2009)showstheexpectedshelf

lifeforwholemusclebeeftobe:

• air-permeableoverwrap:5-7days

• highoxygenMAP:12-16days

increase=7-9days

Usinga7dayincreaseinshelflifetobeconservative,andassumingthathalfofthis

extendedshelflifeispassedontotheconsumer,weutilizethemethodpresentedbyWRAP

toestimateareductioninwastefromanadditional3.5daysof“shelflife”availabletothe

consumer.

Basedonthedisposaldistributionfor“cookedmeat”(whichadmittedlyisnotaperfectfit,

buttheclosestavailablefromtheWRAPstudies),theadditional3.5daysofavailablelife

mayresultina32%reductioninconsumerfoodwaste.Fromabaselineof20%consumer

waste,thisreductionresultsinaconsumerwastelevelof13.6%.

Thus,thehighO2MAPscenario,withaconsumerlevelwaste=13.6%andretailwaste=5%,

resultsinatotalGHGEof40.4kgCO2eq/kgandenergyuseof102MJ/kgconsumed.This

scenario,withreductionsinretailandconsumerfoodwastewiththeMAP(relativetothetraybaseline),passesthebreak-evenpointforbothGHGEandenergyuse,whencompared

tothePStrayscenario(seeFigures2and3).

Case1b:Retailpartnerscenarios

ThecollectionofbeefscenariosdescribedinTable3demonstratethechallengesof

attributingdifferencesinevenretail-levelfoodwastetopackagingconfigurations:clearly,

manyattributesplayintothedegreeofwasteforaparticularproduct,includingconsumer

preference,productturnaround,andin-storemarketingaspects.Resultsfortheground

beefscenariosareshowninTable8.Themodelingofscenariosb2&b3differonlyinretail

wasterate,whereasb1ismodeledwithadifferentprimarypackaging,productvolume,

andproductarea.

Table8.Summaryofresultsforgroundbeefscenarios.

ScenarioID

descriptionRetail

wasterate

TotalGHGE(kgCO2eq/kg

consumed)Totalenergydemand(MJ/kgconsumed)

b11lb80/20ground

beef,chub 1.07% 41.8 99.2

b2

1lb80/20in-storegroundchuck,tray/overwrap 1.00% 41.9 101.8

b3

1lbcase-ready80/20groundbeef,

tray/overwrap 1.95% 42.3 102.7

ResultsfortheremainingCase1bscenarios,summarizedinTable9,further

demonstratetheopportunitytoreducefoodwasteattheretaillevelthroughalternative

packagingdesignedtoextendshelflife.Inadditiontopresentingthetotalsystemenergy

Page 22: Life Cycle Assessment of Food Packaging and Waste

21LifeCycleAssessmentofFoodPackagingandWaste

demandandGHGEsforeachscenario,Table9alsoindicatestheadditionalprimary

packagingburdenthatwouldstillallowthesystemGHGEto“breakeven”iftheretailwaste

ratecouldbereducedbyonepercentagepoint.Forexample,withscenariob5(chuck

shoulderranchsteak),ifachangeinprimarypackaging(fromthecurrenttray/overwrap

toanalternative)offereda1percentagepointreductionintheretailwasterate,GHGE

associatedwithproductionanddisposalofthatpackagingcouldincreaseover4times

(abovetheemissionsofthetray/overwrappackage)andstillresultinasystemnetbenefit.

Table9.Summaryofresultsforremainingbeefscenariosgatheredfromretailpartner.

ScenarioID

description Retailwasterate

Totalenergydemand(MJ/kgconsumed)

TotalGHGE(kgCO2eq/kgconsumed)

PrimarypackagingGHGE(kgCO2eq/kgconsumed)

%increaseinprimarypackagingGHGEallowablewith1%decreaseinretailwasterate

B4 Beefshank;hiO2MAP

4.96% 110.1 43.8 0.284 276%

B5 Chuckshoulderranchsteak;tray

11.85% 113.9 47.1 0.168 410%

B6 Topsirloinfilet;tray

1.32% 102.1 42.0 0.150 367%

B7 Bone-inribeye;tray

11.19% 113.0 46.8 0.166 461%

Case1c:Denkstattexample

ThebeefcasepresentedintheDenkstattstudy(DenkstattGmbH2014)isaspecific

exampleofahigh-value,low-throughputbeefcut(sirloinsteak)marketedthrougha

Europeanretailer.Intheirexample,amodificationinpackaging,fromasealedtraytoa

skinpack,resultsinanotablereductioninfoodwaste.Wehaveborrowedthebasic

packagingandwastedataandassembledacaseusingourLCAmodel(retainingthe

modelingapproachfortransport,retail,at-home,anddisposalstagesdescribedinSection

4.4).GHGEresultsareshowninFigure4.Inthiscase,thereductioninretailfoodwaste

(from34%to18%)dominatesthedifferencesbetweenthetwoscenarios,whileverylittle

differenceinimpactofpackagingmaterialproductionisevident.Figure5offersresultsfor

cumulativeenergyuse.Whilethereisaslightincreaseinenergyusewiththeskinpack,the

foodwastereductionmorethanmakesupforthis,resultingina17%decreaseintotal

systemenergyuse.Infact,aretailwasterateof32%fortheskinpackwouldbreakevenon

energydemandwiththesealedtraypackagingwithretailwasteof34%.

Page 23: Life Cycle Assessment of Food Packaging and Waste

22LifeCycleAssessmentofFoodPackagingandWaste

Figure4.Distributionofgreenhousegasemissionsacrosslifecyclestages,comparingsealedtraywithskinpackaging.Redportionsofbarsarecontributionsduetoretailwaste.Notebreakiny-axistoshowdetailsoflessercontributingstages.Valuesforlifecycletotals:EPStray:63.3kgCO2eq/kgconsumed;skinpack:50.9kgCO2eq/kgconsumed.

40

45

50

55

60

65

012345

GHGE

(kgCO

2eq/kgcon

sumed

beef)

Vacuumagingbag+EPStraysealedfilm

“Darfresh”skinpackaging

Contributionsfromretailwaste

Contributionsfromconsumedportion

Page 24: Life Cycle Assessment of Food Packaging and Waste

23LifeCycleAssessmentofFoodPackagingandWaste

Figure5.Distributionacrosslifecyclestagesofcumulativeenergydemand,comparingsirloinsteakpackagedinsealedEPStraywithDarfreshskinpack.Lifecycletotals:EPStray:155MJ/kgconsumedbeef;skinpack:129MJ/kgconsumedbeef.

5.4. DiscussionandconclusionsThearrayofbeefcasespresentedhereoffersaglimpseintotheenvironmentaltrade-off

betweenfoodpackagingandfoodwastewherethefoodproductcarriesalargeproduction

burden.Beefranksatornearthetopofcommonlyconsumedfoodsinnearlyall

environmentalindicatorcategories.Thus,effortstoreducefoodwastethroughadvanced

packagingtypicallywillpayoffintermsofreducedsystemenvironmentalburden.Asthe

somewhatconjecturalscenarioincase1ademonstrate,thisisn’talwaysthecase,and

differentindicatorsmaydemonstrateincongruoustrends.

Thegenericscenarioincase1aprovidesaninterestingstartingpointfor

consideringtheinterplaybetweenfoodwasteandfoodpackagingasitdemonstratesthat,

evenforbeef,therecanbeinstanceswhereawastereductionisnotsignificantenoughto

balancegreaterimpactsofpackagingalternatives(inthiscase,intermsofcumulative

energydemand).TheEuropeancase,(case1c)ontheotherhand,representsascenario

withexceptionallyhighretailwasterates.Here,anearly50%reductioninretaillevel

wasteratesthroughtheadoptionofanalternativepackaging(skinpack)resultsin

significantnetsystembenefits,bothintermsofGHGEandenergyuse.Case1b,the

scenariosdrawnfromourretailpartner,offerslittleintermsofstrongcomparative

conclusions.Itdoes,however,offerremindersthatnumerousfactors(beyondpackaging

configurationandshelflife)playintoretail-levelwasterates,andthatthereappearstobe

significantopportunitytoreduceretailwasteratesthroughpackagingalternatives.

Onegeneralobservationarisingoutofeffortstoestablishbeefcasesisthatit

appears,intheU.S.marketplaceatleast,thatpackagingchoicesprioritizeanumberof

othercriteria(appearance,consumerpreference,familiarity,cost,etc.)abovefoodwaste

-20

0

20

40

60

80

100

120

140

160

180cumula&

veene

rgyde

man

d(M

J/kgconsum

edbeef)

EPStraywsealedfilm

Darfreshskinpack

Page 25: Life Cycle Assessment of Food Packaging and Waste

24LifeCycleAssessmentofFoodPackagingandWaste

reduction.Whereasanecdotalevidencesuggeststhatpackagingformatsaimedatreducing

foodwasteareavailable,ifnotcommon,inWesternEurope,suchoptionsarestillrarein

theU.S.marketplace.Thisspeakstotheopportunityforpackagingtocontribute

significantlytofoodwastereduction.However,italsosuggeststhatthepredominant

barriertothishappeningisconsumereducationandperception,aswellasperceptions

throughoutthefoodchain(producers,marketers,retailers,etc.).

6. Case2:RomaineLettuce6.1. SystemDescriptions

Romainelettuceisoneofanumberoffreshproduceproductsthathasseenasignificant

marketshifttominimallyprocessed,ready-to-eatforms,oftenofferedside-by-sideon

groceryshelveswithraw,unprocessedlettuceheads.Whileconsumerchoicebetween

thesereasonablysimilarproductsmaybebasedonnumerousfactorsincluding

convenience,itisinterestingtoconsiderhowadditionalpackaginginfluencesretail

performance(wasterates)aswellasoverallsystemenvironmentalperformance.

Thephotosaboveshowthescenariosconsideredinthiscase.Ontheleftisawhole

romainehead,which,inthecaseoftheproductcarriedbyourretailpartner,issupplied

withaminimallyprotectivesleeve(primarilyforproductidentification/UPCID).Onthe

rightisacommonbrandofcutandready-to-eatromainefullyenclosedinasealedbag.Itis

importanttonotethatthecutandready-to-eatlettuceoffersanadditionalservicetothe

consumer(convenience)thatmaybeconsideredaninexactcomparisonwithrawhead

lettuce.Ourinitialhypothesisforthiscasewasthatthebaggedlettucewouldhavegreater

shelflifeandthereforereducedwasteatretail,butthatthiswastesavingsmightnotbe

sufficienttooffsettheenvironmental“cost”ofthebag,giventhelowenvironmentalimpact

oflettuceproduction.Tofurtherexplorethenuancesofthefoodwaste/packagingtrade-

Page 26: Life Cycle Assessment of Food Packaging and Waste

25LifeCycleAssessmentofFoodPackagingandWaste

off,weaspiredtoincludeinthiscaseanestimateofwaterusethroughouttheproductlife

cycle.

6.2. DataSourcesLettuceproductionandprocessing:NoknownLCAstudyoflettuceproductionintheUS

exists.Weuseastudythatconsidersproductioninanumberofgeographicregionsand

productionmethods,averagingemissionfactorsandenergyuseforproductioninopen

fieldsintheUKandSpain(iCanalsetal.2008),shownbelow.

UKopen

field

Spainopen

field

Average

(valueusedinmodel)

GHGE(kgCO2eq/kg) 0.17 0.106 0.138

Energyuse(MJ/kg) 8.33 12 10.2

Since71%oftheUSlettuceproductionoccursinCalifornia,andthemajorityofCalifornia

lettuceproductionoccursinSalinasValley,wehavechosentomodelwaterdemandand

transportdistancesforlettucegrowninSalinasValley.Irrigationdemandswereestimated

viaamodelspecificforlettucecropgrowthandwateruse(Gallardoetal.1996),utilizing

evapotranspirationdatafromCaliforniaIrrigationManagementInformationSystem

(CIMIS)forSalinas,averagedover10years(2004-2014).Irrigationneedsfor3growing

seasonswereweightedbyseasonlengthtoarriveatanannualaverage.Thisresultedinan

estimatedirrigationneedof88.2L/kglettuceproduced,whichcompareswellwithavalue

of93.4L/kgromainelettuceproducedinSalinasreportedinaChiquitasponsoredwater

footprintstudy(LimnoTech2012).

(iCanalsetal.2008)reportanaverageprocessingelectricitydemand–primarily

associatedwithinitialcooling–of0.0562kWh/kglettuce.Weincludethisasanestimateof

processingenergyneeds.TheChiquitastudy(LimnoTech2012)indicatesaprocessing

waterdemandof4.45L/kgforbaggedsalad.Weassumethisvalueaccountsforadded

washesneededforready-to-eatsaladanduseitonlyinconnectionwiththebaggedsalad.

Whileitislikelythatthereissomewashwaterusedattheharvest/processingstagewith

headlettuce,itisnotincludedinourestimates.Further,duetolackofdata,thereisno

additionalenergydemandincludedforcutting,sorting,andotherwisehandlingthebagged

lettuce.

Additionalmodelingcomments

ThemodelingparametersusedforthetworomainelettucescenariosareshowninTable

10.Thebaggedlettucerequiressignificantlygreaterprimaryandtertiarypackagingper

unitoflettucemassdelivered.Notealsothattheheadlettucecontainsafractionofitstotal

weight(estimatedat9.8%basedonourownmeasurements)thatisnotconsumed

(stem/core,outerleaves)andisthereforecountedas‘inediblewaste’.Fortheheadlettuce,

thiswasteisappliedattheconsumerlevel,andthereforecarriesthedistributionand

storageburdensoftheconsumedlettuce.Ontheotherhand,thebaggedlettuceis

processedshortlyafterharvest,removingtheinedibleportionatthatstage.Duetoalackof

Page 27: Life Cycle Assessment of Food Packaging and Waste

26LifeCycleAssessmentofFoodPackagingandWaste

Table10.ModelingParametersforRomaineLettuceCase

9oz.rawheadromaine 9oz.bagged,ready-to-eatromaine

value source value source

Weightofprimary

packaging(kg/kg

food)

0.007 1HDPEproducebag

includedforevery9oz.

head(sleeveinphoto

abovenotincluded).Bag

weighed.

0.0274 Bagweighed.

Primarypackaging

composition

100%HDPE(film

extrusionincluded)Assumedtypical

producebag

65.7%LDPE

34.3%PP(film

extrusion

included)

Film15μmPP,30-μm

LDPE.Weightratio

determinedbythis

thicknessanddensityof

eachmaterial.

Distribution

packaging(3°)(kg/kgfood)

0.055 Basedonweighed

produceboxes.*

0.197 6bagspackedin

40x30x17cmbox,

weighing0.302kg

Distribution

packaging

composition

100%corrugated

cardboard*assumed 100%corrugated

cardboard

Retail-levelfood

waste

0.22% Retailpartnerdata.

Averagedover3yearsin

thiscase,basedon

224,980unitssold.

2.51% Retailpartnerdata.

Averagedover3yearsin

thiscase,basedon

5,324,533unitssold.

Consumer-level

foodwaste

24% USDALAFA 24% USDALAFA

Inediblewaste 9.8%,appliedat

pointofconsumption

Averageof3measured

samples

9.8%,appliedat

pointof

processing

Assumedsameas

measuredsamples

At-homewash

water

7L/kgconsumed

lettuce

Averageof3

measurements

- Ready-to-eat.Assumed

nowashingathome

Productvolume

(ft3/kg)

0.257 Assumedbasedon

volumeofrightcone

withheight=12”,

diameter=6”

0.363 Basedonbagdimensions

andcontainedproduct

weight

Consumer-facing

area(ft2/kg)

0.98 Assumedbasedon

cross-sectionalareaof

abovecone

2.17 Basedonbagdimensions

andcontainedproduct

weight

Averageretailprice

perkg

$3.73 2014averagefor

romainelettuce,

(BureauofLabor

Statistics2015)

$3.73 2014averagefor

romainelettuce,(Bureau

ofLaborStatistics2015)

Annualkgsoldat

retail

4.40e8 (ThePackerProduce

Universe2014)

4.40e8 (ThePackerProduce

Universe2014)

Transportdistance

toretail(km)

3343 Populationweighted

averagedistancefrom

Salinas,CAtothe

populationcenterof

eachcontinentalstate,

ascalculatedbyGIS

3343 Populationweighted

averagedistancefrom

Salinas,CAtothe

populationcenterofeach

continentalstate,as

calculatedbyGIS

Assumedretail

refrigeratorunit

Semi-verticalopen,

remotecondenser,

mediumtemp(38F),

60ft2totaldisplay

area

Semi-vertical

open,remote

condenser,

mediumtemp

(38F),60ft2total

displayarea

*Produceboxesaretypicallywaxedorcoatedwithplasticfilmtoavoidmoistureabsorption.LCIdatawas

notavailableforwaxedboxesorwax,butcorrugatedrecyclingwastozero(from90.9%)toreflectthe

factthatwaxedboxestypicallyarenotrecyclable.

Page 28: Life Cycle Assessment of Food Packaging and Waste

27LifeCycleAssessmentofFoodPackagingandWaste

reliabledataoninediblewasteinprocessingbagged,ready-to-eatlettuce,wehave

assumedthesameinediblerateasinour‘athome’measurements.

WehaveassumedthatlettuceproductionoccursintheSalinasValleyofCalifornia

andisdistributednationwide.Toestimatetransportationdistancestoretailoutlets,we

havecalculated(viaGIS)atransportdistancefromSalinas,CAtothepopulationcenterof

eachofthe48continentalstates(reportedinTable10).Apopulation-weightedaverageof

thesedistanceswasthencalculated.

Bluewateruse,definedhereassurfaceorgroundwater(i.e.,excludingrainwater)

evaporatedorincorporatedintoaproduct,isevaluatedinthelettucecaseusingthe

midpoint“waterdepletion”indicatoroftheReCiPeimpactassessmentmethod

(http://www.lcia-recipe.net/).Thisindicatorisessentiallyasummationofthevolumeof

surfaceorgroundwater(bluewater)usedinvariousprocesses.Whileitisoftendesirable

toapplyawaterstresstypeimpactindicator,thisrequiresregion-specificcharacterization

factorstobemeaningful,andgiventhemostlygenericnatureofthemodelingscenarios

(i.e.,nationallyrepresentativeretailandconsumerstages),suchspecificcharacterizations

arenotpractical.

6.3. ResultsAscanbeseeninTable10,theretaillevelwasteratesasexperiencedbyourretailpartner

didnotagreewithourinitialhypothesis:thatis,thewasterateforthebaggedlettuceisan

orderofmagnitudegreaterthanthatfortherawromainehead.Thisisdespitethefactthat

morethan20timesthenumberofunitsweresold(wasteratetypicallydecreaseswith

increasingsalesvolume).Again,itmustbeemphasizedthatcomparisonsofcut,ready-to-

eatlettucewithraw,unprocessedheadsdonotrepresentadirect,“apples-to-apples”

comparisonastherearedifferencesinthe“convenience”functionofferedtotheconsumer.

Interpretationsoftheseresultsneedtoaccountforthisdifference.

Figure6showsthedistributionofGHGEacrosslifecyclesforthetworomainelettuce

scenarios.Despiteafactor10differenceinretaillevelwasterates,thereisnosignificant

differenceinfoodproductionandprocessingGHGE,duetothelowemissionsperkgof

producinglettuce,aswellastherelativelysmallretailwastelevels.Theprimarydifference

betweenthetwoscenariosisdrivenbyimpactsofproducingpackaging.Alsonoticeablein

thefigurearetheadditionalimpactsduetotransportingandrefrigeratingthe9.8%of

inediblewasteinthecaseofthewholelettucehead.Packagingdisposalishigherforthe

lettuceheadbecauseitwasassumedthatthewaxedcardboardusedfordistributioncould

notberecycled.

Page 29: Life Cycle Assessment of Food Packaging and Waste

28LifeCycleAssessmentofFoodPackagingandWaste

Figure6.DistributionofGHGEperkgofconsumedproductacrosslifecyclestages.Thefigurecomparestheromainelettuceheadscenario(darkenedbars)withbagged,ready-to-eatromainelettuce(lighterbars).Alsoshownarethecontributionsduetoconsumedproduct,ediblelosses,andinediblelosses.

Figure7demonstratesthatcumulativeenergydemandfollowsasimilartrendtoGHGE

whencomparingthetworomainescenarios.Impactsfromfoodandpackagingproduction

aregreaterforthebaggedlettucecase;asignificantcreditforrecyclingofcorrugated

cardboardinthebaggedlettucecasebringsthetotalsystemdifferenceabitcloser(recall

thatnocardboardrecyclingwaspermittedintheheadlettucescenario).

0

0.5

1

1.5

2

2.5

produc

-onand

proces

sing

primary

packag

ingpro

duc-on

second

aryand

ter-ar

ypacka

gingpro

duc-on

transpo

rttore

tail

retail

transpo

rttoh

ome use

foodw

astedis

posal

packag

ingwas

terecy

cle/disp

osal

Total

GHGE

(kgCO

2eq/kgcon

sumed

ediblelossesinediblelossesconsumed

Contribu-onsfrom:

9oz.bagged,ready-to-eat

romaineleEuce

9oz.romaineleEucehead

Page 30: Life Cycle Assessment of Food Packaging and Waste

29LifeCycleAssessmentofFoodPackagingandWaste

Figure7.Distributionoflifecycleenergydemandfortheromainelettucescenarios.

Ontheotherhand,bluewateruse,summarizedinFigure8,showsadifferenttrend.

Basedonthedatausedinthismodel,thereissignificantlymorewashwaterusedathome

inwashingthelettuceheadthanisusedinprocessingthebaggedlettuce.Suchaclaimmust

beconfirmedwithadditionaldatacollection,butthepreliminaryconclusionisthatbagged,

ready-to-eatlettucemayofferwatersavingsduetomoreefficientwashinginthe

processingstagethanmaybetypicalinhomes.Thus,thepackagingsystemthatallows

distributionofready-to-eatsaladindirectlycontributestothiswatersavings,albeitnot

throughareductioninfoodwaste,inthiscase.

-5.00

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00 C

umul

ativ

e En

ergy

Dem

and

(MJ

/ kg

cons

umed

)

9 oz romaine head

9 oz bagged romaine

Page 31: Life Cycle Assessment of Food Packaging and Waste

30LifeCycleAssessmentofFoodPackagingandWaste

Table11.Resultsofromainelettucecasestudy,bylifecyclestageandcontributionsfromconsumedfoodandwastedfood.

9oz.romainehead 9oz.baggedromaine

GHGE

kgCO2eq/

kgconsumed

CED

MJ/kgconsumed

GHGE

kgCO2eq/

kg

consumed

CED

MJ/kgconsumed

lettuceproduction

Consumedfood 0.183 10.9 0.183 10.9

Wastedfood 0.0847 5.05 0.0844 5.32

Primarypackagingproduction

Consumedfood 0.0168 0.586 0.0732 2.44

Wastedfood 0.00774 0.271 0.0256 0.85

Secondarypackagingproduction

Consumedfood 0.0624 1.32 0.224 4.74

Wastedfood 0.0288 0.611 0.0782 1.66

Transporttoretail

Consumedfood 0.474 7.78 0.474 7.78

Wastedfood 0.219 3.59 0.166 2.72

retail

Consumedfood 0.243 3.32 0.317 3.75

Wastedfood 0.112 1.53 0.111 1.31

Transporttohome

Consumedfood 0.0122 0.187 0.0122 0.187

Wastedfood 0.00558 0.086 0.00384 0.0592

Homerefrigeration(use)

Consumedfood 0.138 2.28 0.184 2.98

Wastedfood 0.0632 1.04 0.0582 0.94

Foodwastedisposal 0.325 -0.034 0.349 -0.036

Packagingdisposal

Consumedfood 0.0570 -0.154 0.00322 -3.34

Wastedfood 0.0263 -0.071 0.00162 -1.17

TOTAL

Consumedfood 1.19 26.2 1.48 29.5

Wastedfood 0.873 12.1 0.879 11.7

SUM 2.06 38.3 2.36 41.1

Page 32: Life Cycle Assessment of Food Packaging and Waste

31LifeCycleAssessmentofFoodPackagingandWaste

Figure8.Distributionofbluewateruseacrossthelifecyclefortheromainelettucescenarios.Here,bluewateruseisevaluatedbasedontheReCiPeimpactassessmentmethod’smidpointindicator.Foodandpackagingdisposalstagesarenotshownbecausethemodeldoesnotcontainwateruseestimatesforthesestages.

6.4. DiscussionandconclusionsBasedonthewasteratesgatheredfromourretailpartner,theinitialhypothesisthat

baggedlettucewouldhavelessretail-levelfoodwastedidnotprovetrue.Thereareafew

potentialexplanationsforthis.First,baggedlettucemaysimplyhavepoorershelflife

performance.Itiswellknownthatcuttinglettuceleavescompromisestheirshelfstability:

carefulattentiontopackagingconditionsmustoccurinordertoassuresufficientshelflife

fordistribution,saleandconsumption.Wewereunabletofindreliableshelflifeestimates

forbaggedlettuce.However,itmaybethatthepackagingtechnologyemployeddoesnotoffergreatershelflifethantheraw,unprocessedlettucehead.Thus,addingadditional

“convenience”fortheconsumermaycomeattheexpenseofreducedshelflife.Theother

potentialexplanationhastodowithdeterminingwhenaproductisunsalable.Bagged

lettucecarriesa“use-by”datethatretailersusetomanagetheirinventory.Itmaybethat

thisdateisconservativeandbaggedlettuceisbeingdisposedbeforeitistrulyunsalable.

Ontheotherhand,wholelettuceheadsdonotcarryasell-byoruse-bydate,anditisupto

thediscretionoftheretailerwhentheyarenolongersalable.

Giventheverylowretailfoodwasterateobservedfortherawheadlettuce,a

breakevenpointcannotbeachievedwithalowerretailfoodwasterateforthebagged

lettuce(i.e.,evenwithretailwaste=0%,totalGHGE/kgisgreaterwithbaggedlettuce).

However,loweringconsumerlevelfoodwastefromtheassumed24%to16%(withother

wasteskeptconstant)resultsinthebaggedlettucecasehavinglowerGHGEthantheraw

head.Theseconclusionsalsoholdtrueforcumulativeenergydemand.Whilesuch

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

production processing primary packaging production

secondary and tertiary packaging production

transport to retail

retail transport to home

use Total

blue

wat

er u

se (m

3 /kg

cons

umed

)

head

bagged

Page 33: Life Cycle Assessment of Food Packaging and Waste

32LifeCycleAssessmentofFoodPackagingandWaste

differenceinconsumer-levelfoodwasteseemsanecdotallypossible,wehavenoempirical

evidencetosuggestit.

7. Case3:GroundTurkey7.1. SystemDescriptions

TheJennie-Obrandofturkeyproductsoffersleangroundturkeyintwopackaging

configurations,shownside-by-sideinthephotobelow.

Theproductontherightisa3pound“chub”ortubeofleangroundturkey(90%lean,10%

fat).Theproductontheleftis3poundsofleangroundturkey(93%lean,7%fat)inaPP

traywithasealedliddingmaterial.Forthepurposesofthiscomparison,weareassuming

thattheslightdifferenceinfatcontentisnotsignificantandthattheseareequivalent

productsinalternativepackagingformats.Ourretailpartnercarriesbothproducts.

Ourinitialhypothesisuponencounteringthisexamplewasthatthesealedtray

productwasamodifiedatmospherepackage(MAP)designedtoextendtheshelf-lifeofthe

product.AphoneconversationwithanR&DemployeeatJennie-Oconfirmedthatthetray

packagingcontainsamodifiedatmosphere,andindicatedthatitwasahighoxygen

formulation.Surprisingly,thisconversationalsorevealedthattheMAPproducthasa

shorterexpectedshelf-lifethanthechubpackagingandthattheadditionalpackagingwas

motivatedbymarketingfactors(customerappeal,etc.)Still,wasteratedatafromourretail

partnerdemonstrateslowerwastewiththeMAPpackaging(1%vs.3.1%);wepresentthis

caseasanadditionalexampleofthecomplexitiesofpackaging’sroleinaffectingfoodwaste

–inthiscase,apparentlybyinfluencingtheappealofaproduct.

7.2. DataSourcesTurkeyproductionandprocessing:LimitedLCAstudiesofturkeyproductionexist.

WehavechosentouseaUK-basedstudythatreportsfourslightlydifferentproduction

systems(Leinonenetal.2014).Weusetheaverageoftheseproductionsystems,with

globalwarmingpotentialof4.29kgCO2eq/kgliveweight(SD=0.22)andprimaryenergy

useof20.16MJ/kgliveweight(SD=1.19)(note:theSDshereindicatestandarddeviations

acrossthe4productionscenarios).Adressyieldof79.13%wasusedtoconvertfromkg

Page 34: Life Cycle Assessment of Food Packaging and Waste

33LifeCycleAssessmentofFoodPackagingandWaste

liveweighttokgcarcass(USDA1992).Anadditionalprimaryenergyconsumptionof3.85

MJ/kgdresscarcasswasaddedforprocessing(poultry,cutup,deboned&chilled,from

Table12.Modelingparametersforgroundturkeycase.

3lb.chubpackaging 3lb.MAPtraypackaging

value source value source

Weightofprimary

packaging(kg/kg

food)

0.00852 Packagingmaterial

weighedfor1lb.

chub(5g).Assume

packagingweight

scales

proportionallyto

surfaceareaof

cylinder

0.0359 SealedAircontacts,

personal

communication.

Trayweight=46.9

kg;proportionof

traytolidding

materialis24:1

Primarypackaging

composition

80%LDPE

10%EVA

10%PVdC

(filmextrusion

included)*

Assumptionbased

oninformation

frompatentsand

othersources

96%PP

(thermoforming

included)

4%EVOH(film

extrusionincluded)

SealedAircontacts

indicatedbeefhigh

O2MAPuseEVOH

liddingmaterial;

assumedsamehere

Distribution

packaging(3°)(kg/kgfood)

0.093 Assumedsameas

beefcase

0.093 Assumedsameas

beefcase

Distribution

packaging

composition

98.68%corrugated

cardboard

1.32%wood

(pallet)

Assumedsameas

beefcase

98.68%corrugated

cardboard

1.32%wood

(pallet)

Assumedsameas

beefcase

Consumer-level

foodwaste

35% USDALAFA 35% USDALAFA

Retail-levelfood

waste

3.1% Retailpartnerdata 1% Retailpartnerdata

Productvolume

(ft3/kg)

0.0376 Dimensionsof

package,assuming

cylinder

0.0801 Package

dimensions

Consumer-facing

area(ft2/kg)

0.191 Dimensionsof

package,assuming

cylinder

0.383 Package

dimensions

Averageretailprice

perkg

$6.39 AverageforJennie-

Ogroundturkey

over2yearsfor

retailpartner

$6.39 AverageforJennie-

Ogroundturkey

over2yearsfor

retailpartner

Annualkgsoldat

retail

1.27e8 (Jennie-O2013) 1.27e8 (Jennie-O2013)

Transportdistance

toretail(km)

290 (U.S.Departmentof

Transportation

2015),Table24,

SCTGcode051

290 (U.S.Departmentof

Transportation

2015),Table24,

SCTGcode051

MAPratio - 80%O2,20%CO2 assumed

Assumedretail

refrigeratorunit

Horizontalopen,

remotecondenser,

mediumtemp

(38°F),36ft2total

displayarea

Horizontalopen,

remotecondenser,

mediumtemp

(38°F),36ft2total

displayarea

*becauseofthemixedcomponentsofthisfilm,theLDPErecyclingratehasbeensettozeroforthisscenario.

Page 35: Life Cycle Assessment of Food Packaging and Waste

34LifeCycleAssessmentofFoodPackagingandWaste

(Ramirezetal.2006)).Specificenergydemandforgrinding,blending,etc.ofgroundturkey

wasnotavailable;sincebothproductsareequivalentinthisregard,theexclusionofa

grindingprocessshouldnoteffectthecomparativeresults.

Therelevantparametersforthetwopackagingformatsconsideredinthiscaseare

giveninTable12.Itshouldbenotedthatthetraypackagingisarelativelynewproduct

offering,andthewastepercentageisbasedonsignificantlysmallerbaselinesales(nearly

factor25greatersaleswithchubthantray),largelybecausethetrayproductwasnot

offeredoverthefull2yearsforwhichthedataareaveraged.Itisnotclearhowthisis

influencingthewasteratesusedhere.

7.3. Results

Figure9showsthelifecycleGHGEforthetwopackagingconfigurations(numericalvalues

showninTable13).TheGHGEassociatedwithpackaging(primary,tertiaryanddisposal)

increases41%fromthechubtothetraypackaging.However,becausetheemissions

associatedwithproducingtheturkeyaresomuchgreater,eventhesmallreductionin

retailfoodwaste(3.1%to1%)issufficienttoresultinanetreductionintheoverallsystem

GHGE.Notethatrefrigerationattheretaillevelisafunctionofconsumer-facingareaofthe

Figure9.Distributionofgreenhousegasemissionsperkgofconsumedproduct,comparingthechubpackagingwithMAPtraypackagingofgroundturkey.Notethebreakinscaleinordertoshowdetailofthelesscontributinglifecyclestages.

0

0.2

0.4

0.6

0.8

1

3lbchub

3lbMAPtray

8

8.2

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

10

3lbchub 3lbMAPtray

GH

GE

(kg

CO

2 eq/

kg

cons

umed

turk

ey)

Page 36: Life Cycle Assessment of Food Packaging and Waste

35LifeCycleAssessmentofFoodPackagingandWaste

product,andhomerefrigeration(usephase)isafunctionofproductvolume,which

explainstheincreaseinthesetwostageswhengoingtotheMAPtray.

Therelativedifferencebetweenthetwopackagingsystemscanbebetterseenifthe

contributionsduetothefoodthatisactuallyconsumedaswellastheconsumerlevelfood

waste(whichisassumedequalinthiscase)areremoved.Figure10showstheGHGEof

onlytheretail-levelfoodwasteandthefullimpactsofthepackagingsystem.Inotherwords,Figure10comparesthecomponentsofthesystemthataredifferentinthetwopackagingconfigurations,leavingoutthosecomponentsthatareequivalent.

Figure10.SystemGHGEshowingonlythecontributionduetowastedfoodandtotalpackaging(doesnotincludecontributionsfromthe1kgofconsumedturkeythatisthefunctionalunit).

Interestingly,whilereductionsinretailfoodwastearesufficienttooffsetthe

increasedGHGEduetoadditionalpackaging,thisisnotthecasewithcumulativeenergy

demand,ascanbeseeninFigure11(numericalvaluesshowninTable13).Inthiscase,the

energyintensityofpackagingproductionrelativetofoodproductionresultsinanet

increaseinenergyuseforthesystemwhenshiftingfromchubtoMAPtraypackaging.

0

0.1

0.2

0.3

0.4

0.5

0.6

GHGE

(kgCO

2eq/kg) 3lbchub

3lbMAPtray

Page 37: Life Cycle Assessment of Food Packaging and Waste

36LifeCycleAssessmentofFoodPackagingandWaste

Figure11.Distributionofcumulativeenergydemandperkgofconsumedproduct,comparingthetwopackagingconfigurations.

Table14givestheresultsofasensitivityassessmentconductedontheMAPtray

case.Inordertodemonstratetheinfluenceofvariousmodelingparametersonthetotal

systemimpacts,wevariedeachparameterindependentlyby±20%.Theresultsshowthat,

forthemajorityofmodelingparameters,a20%changeinvaluehaslessthana1%effect

ontheoverallsystemimpact,suggestingthatestimatesusedinthemodeldonotcarrya

stronginfluence.

-5

5

15

25

35

45

55

65 cu

mul

ativ

e en

ergy

dem

and

(M

J / k

g co

nsum

ed tu

rkey

)

3 lb chub

3 lb MAP tray

Page 38: Life Cycle Assessment of Food Packaging and Waste

37LifeCycleAssessmentofFoodPackagingandWaste

Table13.Resultsofgroundturkeycasestudy,bylifecyclestageandcontributionsfromconsumedfoodandwastedfood.

3lbchub 3lbMAPtray

GHGE

kgCO2eq/

kgconsumed

CED

MJ/kgconsumed

GHGE

kgCO2eq/

kgconsumed

CED

MJ/kgconsumed

Turkeyproduction&processing

Consumedfood 5.42 29.4 5.42 29.4

Wastedfood 3.19 17.2 3.00 16.3

Packagingproduction

Consumedfood 0.125 2.11 0.184 4.49

Wastedfood 0.0734 1.24 0.102 2.49

Transporttoretail

Consumedfood 0.0411 0.656 0.0411 0.656

Wastedfood 0.0242 0.385 0.0228 0.363

retail

Consumedfood 0.333 4.92 0.353 5.04

Wastedfood 0.196 2.89 0.195 2.79

Transporttohome

Consumedfood 0.00601 0.0884 0.00601 0.0884

Wastedfood 0.00324 0.0475 0.00324 0.0475

Homerefrigeration(use)

Consumedfood 0.0191 0.291 0.0407 0.620

Wastedfood 0.0103 0.157 0.0219 0.334

Foodwastedisposal 0.413 -0.043 0.390 -0.0407

Packagingdisposal

Consumedfood 0.00466 -1.50 0.00293 -1.48

Wastedfood 0.00274 -0.883 0.00162 -0.822

TOTAL

Consumedfood 5.95 35.9 6.05 38.8

Wastedfood 3.91 21.0 3.74 21.4

SUM 9.86 56.9 9.79 60.2

Page 39: Life Cycle Assessment of Food Packaging and Waste

38LifeCycleAssessmentofFoodPackagingandWaste

Table14.Sensitivityassessmentofvariousmodelingparametersonthetotalsystemenvironmentalimpacts.Thebasecaseforthisassessmentis:MAPtraygroundturkey,retailwaste=1.0%,consumerwaste=35%.

parameter %changeintotalsystemimpactsdueto+/-

20%changeinparameter

GHGE CED

+20% -20% +20% -20%

Weightofprimarypackaging 0.26% -0.26% 1.62% -1.62%

Weightoftertiarypackaging 0.35% -0.34% -0.046% 0.045%

Productvolumeperkg 0.13% -0.13% 0.32% -0.32%

Customerfacingareaperkg 0.13% -0.13% 0.12% -0.12%

Retailpriceperkg 1.0% -1.0% 2.53% -2.53%

Annualkgsoldatretail -0.086% 0.14% -0.049% 0.095%

Nationaltotalgrocerysales -0.84% 1.3% -2.1% 3.2%

Transportdistancetoretail 0.13% -0.13% 0.34% -0.34%

Totaldisplayareaofretail

refrigerationunit

-0.020% 0.029% -0.018% 0.026%

Annualhomerefrigerationenergyuse 0.13% -0.13% 0.32% -0.32%

Averagehomerefrigeratorvolume -0.11% 0.16% -0.26% 0.40%

Daysinhomerefrigerator 0.13% -0.13% 0.32% -0.32%

Corrugatedcardboardrecyclingrate -0.15%* 0.29% -0.35%* 0.70%

Foodcompostingrate -0.035% 0.035% 0.007% -0.007%

PPrecyclingrate -0.003% 0.003% -0.014% 0.014%

Woodrecyclingrate -0.003% 0.003% 0.000% 0.000%

Consumer-levelfoodwasterate 12.9% -10.4% 12.1% -9.7%

Retail-levelfoodwasterate 0.22% -0.22% 0.20% -0.20%

Turkeyproduction 17.2% -17.2% 13.2% -13.2%

Turkeyprocessing - - 2.0% -2.0%*Giventhehighbaselinerecyclingrate(90.9%),afull20%increasewouldplacetherateatover100%.Valuecappedat100%

7.4. DiscussionandconclusionsThisgroundturkeycaserepresentsonewherevirtuallyidenticalproductissuppliedin

differingpackagingformats.WhileitappearsthatthedriverforintroducingtheMAPtray

packagingmaynotbeincreasedshelflife,nonetheless,basedontheretailwasteratedata

available,theMAPtraydoesdemonstratealowerretail-levelwaste.Thisreducedwasteis

sufficienttooffsettheadditionalGHGEattributabletomoresophisticatedpackaging,

resultinginanetsystemreductioninGHGEperkgofconsumedproductwhenshifting

fromthechubpackagingtotheMAPtraypackaging.Ontheotherhand,thisbreak-even

pointisnotreachedinourassessmentoftheenergyuseattributabletothefood-packaging

systems,meaningthattheenergyuseperkgofconsumedproductisgreaterfortheMAP

traythanthechubpackaging.

Itshouldbenotedthatwhiletheconsumer-levelwasterateusedinthisexample

mayseemalmostabsurdlyhigh,aslongasthesameconsumerwasterateisusedinboth

scenarios,itdoesnotaffectthefinalresultasbothscenariosscaleequallywithincreased

consumer-levelwasterate.Ofcourse,iftherewerereasontoassigndifferentconsumer

wastetothetwopackagingconfigurations,thiscouldhavesignificantinfluenceonthe

Page 40: Life Cycle Assessment of Food Packaging and Waste

39LifeCycleAssessmentofFoodPackagingandWaste

results.Atthispoint,wehavenoevidencetosuggestdifferingwastebehaviorsatthe

consumerlevelwiththedifferentpackages.

Thesensitivityassessmentconductedaspartofthiscasegivesindicationtothe

influenceofmodelingparametersusedthroughoutthisstudy.Withexceptionofthe

parametersthatonewouldanticipatetohavelargeinfluenceontheoverallresults(waste

ratesandfoodproductionimpacts),allotherparametershavelimitedinfluence,withthe

vastmajorityshowinglessthana1%effectonoverallsystemimpactsduetoa20%change

intheirvalue.

8. ProjectConclusionsThegoalsofthisprojectweretoexplorethetrade-offbetweenenvironmentalimpactof

foodwasteandfoodpackaging,andtodemonstratetheroleofpackagingincontrolling

foodwaste.Wehavepresentedthreescenarios(beefcase1a,1c&turkeycase3)where

“increased”oroptimizedpackagingcorrelateswithlowerretail-levelfoodwasterates.

Otherpresentedscenarios,namelybeef1bandlettuce(case2),demonstratethatmore

advancedpackagingoptionsdonotalwaysleadtoloweredwasterates.

Further,thecasespresenteddemonstratethedelicatebalancebetweenfoodwasteand

foodpackagingwhenconsideringapackagingdesignchange.Scenarios1a&3offer

situationswhere,whenapackagingchangeleadstoreducedfoodwaste,thebreak-even

pointisreachedwithrespecttoGHGE(meaning,thereductioninGHGEduetolowerwaste

issufficienttooffsettheincreaseinemissionsduetochangesinpackaging),butthatthe

break-evenpointisNOTreachedwithrespecttocumulativeenergydemand.

Thecasesconsideredherevarywidelyintheirgenericbehavior.Inthebeefand

turkeycases,foodproduction,processinganddisposalrepresent90-97%oftheoverall

systemGHGE,withpackagingproductionanddisposalconstitutingonly1-2%ofthetotal.

Ontheotherhand,intheromainelettucecase,packagingproductionanddisposal

constitutes20%oftheGHGEtotal,whereasthelettuceproduction,processinganddisposal

represents25%.AssuggestedintheliteraturereviewpresentedinourPhase1report,this

ratio–theenvironmentalimpactofthefoodrelativetothatofthepackaging–isakey

indicatorofwhetherreducedfoodwastefromadditionalpackagingwillbeanetsystem

benefit.

Ageneralizedobservationmadeaspartofthisstudyisthatpackagingdesignwithin

theUSmarketiscurrentlynotoptimizedtominimizefoodwaste.Clearly,wehavenot

investigatedenoughcasestomakethisadefinitiveconclusion.Yet,basedonour

observations,itappearsthatfoodwastereduction,andoverallsystemenvironmental

impact,areoftennotthetoppriorityindeterminingpackagingconfigurations.Thisis

perhapsnotsurprising,aspackagingoffersnumerousotherfunctionssuchasproduct

appearanceandappeal,retailerandconsumerconvenience,etc.However,aseffortsto

reducefoodwasteintensify,theimportanceoffoodwastereductioninpackagingdesign

mayincrease.Theturkeycaseisanexcellentexampleofachangeinpackaging

configurationthathasnotnecessarilybeendrivenbyadesiretoreducefoodwaste.

PersonalcommunicationwithR&Dattheproductsuppliersuggestedthattheinvestment

inmodifiedatmospherepackagingwasnotmadetoincreaseshelflife,butinsteadfor

marketingpurposes.Interestingly,basedontheretailwastedatacollectedhere,thisnew

MAPproductactuallydemonstratedalowerretailwasteratethanitsequivalentinsimple

Page 41: Life Cycle Assessment of Food Packaging and Waste

40LifeCycleAssessmentofFoodPackagingandWaste

“chub”packaging.Additionaldatacollectionisrequiredtoconfirmthatthistrendholdsup

inothermarketsandovertime.Thebeefscenariosgatheredfromourretailpartneralso

suggestlargeretailwasteratesthatcouldpotentiallybeminimizedwithoptimized

packagingconfigurations.

Agreatdealofeffortinthisstudywentintogatheringfoodwasteratedatafor

specificproducts,suchthatcomparisonscouldbemadebetweendifferingpackaging

configurations.Muchofthiseffortinvolvedbuildingrelationshipswithgroceryretailers

and“selling”theprojectsuchthatretailersfounditworththeirefforttoparticipate.Far

moredoorswereclosedthanwereopened.Participationbyadditionalretailerswould

certainlybenefitboththeselectionofpossiblescenariosaswellasthestatisticsofretail

wasterates.

Thelackofconsumer-levelwasteratesforspecificproductsisanotableshortfallfor

thisproject.WhiletheUSDAsourcedconsumerwasteratesusedhereofferan“place-

holding”approximation,theycoverbroadcommoditycategoriesandincludewastes(such

as,forexample,platescraps)thatwouldideallynotbeincludedinacomparisonofthis

nature,astheyareunlikelyinfluencedbypackagingdesign.AppendixBcontainsaseriesof

sensitivityanalysesoftheinfluenceofconsumer-levelwasteratesonoverallresults.The

indirectmethodofferedincase1aoffersacoarseapproximationofthepotentialfor

packagingtoeffectconsumer-levelfoodwaste.Establishingthisrelationshipmoredirectly

isextremelydifficultandwouldrequireextensivesurveyingor,perhapsmoredesirably,

consumer“experiments”inwhichdifferingpackagingoptionsofthesamefoodproductare

giventoequalfractionsofapopulation.Evenwithsuchstudies,disentanglingthecauseof

wastedfoodandassigningwastereductiontopackagingisextremelydifficult.

Asensitivitystudyperformedaspartoftheturkeycase(Case3)suggeststhatthe

majorityofthelargenumberofmodelingparametersutilizedinthisstudyhaveminimal

influenceontheoverallresult:formost,a20%changeinparametervaluehaslessthana

1%effectonnetresults.Thisistosaythatwhileassumptionsandestimateswereoften

necessarytoapproximatemissingdata,theseapproximationshaveasmalleffectonthe

finalresults.

9. References

210AnalyticsLLC.2014.ThePowerofMeat.AmericanMeatInstituteandFoodMarketingInstitute.Adam,A.2015Driversoffoodwasteandpolicyresponsestotheissue:Theroleofretailersinfoodsupplychains.

InstituteforInternationalPoliticalEconomyBerlin.59/2015.http://hdl.handle.net/10419/122150.

Arvanitoyannis,I.andA.Stratakos.2012.ApplicationofModifiedAtmospherePackagingandActive/Smart

TechnologiestoRedMeatandPoultry:AReview.FoodandBioprocessTechnology5(5):1423-1446.Aschemann-Witzel,J.,I.deHooge,P.Amani,T.Bech-Larsen,andM.Oostindjer.2015a.Consumer-Related

FoodWaste:CausesandPotentialforAction.Sustainability7(6):6457.Aschemann-Witzel,J.,I.deHooge,P.Amani,T.Bech-Larsen,andG.Jenny.2015b.Consumersandfoodwaste–

areviewofresearchapproachesandfindingsonpointofpurchaseandin-householdconsumer

behaviour.PaperpresentedatEAAE-AAEAJointSeminar'ConsumerBehaviorinaChangingWorld:

Food,Culture,Society',Naples,Italy,http://ageconsearch.umn.edu/bitstream/202716/2/147.pdf.

Battagliese,T.,J.Andrade,I.Schulze,B.Uhlman,andC.Barcan.2013.MoreSustainableBeefOptimizationProject:Phase1FinalRport.BASF.

Page 42: Life Cycle Assessment of Food Packaging and Waste

41LifeCycleAssessmentofFoodPackagingandWaste

Brockgreitens,J.andA.Abbas.2016.ResponsiveFoodPackaging:RecentProgressandTechnological

Prospects.ComprehensiveReviewsinFoodScienceandFoodSafety15(1):3-15.BrookLyndhurst.2011.Consumerinsight:datelabelsandstorageguidance.WRAP.

http://www.wrap.org.uk/sites/files/wrap/Technicalreportdates.pdf.

BureauofLaborStatistics.2015.ConsumerPriceIndex-AveragePriceData,Lettuce,romaine,perlb.

http://data.bls.gov/timeseries/APU0000FL2101?data_tool=XGtable.UnitedStatesDepartmentof

Labor.AccessedOctober292015.

Conte,A.,G.M.Cappelletti,G.M.Nicoletti,C.Russo,andM.A.DelNobile.2015.Environmentalimplicationsof

foodlossprobabilityinpackagingdesign.FoodResearchInternational78:11-17.Delmore,R.J.2009.BeefShelf-life.http://www.beefresearch.org/CMDocs/BeefResearch/BeefShelf-life.pdf.DenkstattGmbH.2014.HowPackagingContributestoFoodWastePrevention.

http://denkstatt.at/files/How_Packaging_Contributes_to_Food_Waste_Prevention_V1.2.pdf.

denkstattGmbH.AccessedOctober282015.

FMI.2014.SupermarketFacts.http://www.fmi.org/research-resources/supermarket-facts.AccessedAugust

4,2015.

Frischknecht,R.andN.Jungbluth.2003.ImplementationofLifeCycleImpactAssessmentMethods.Finalreportecoinvent2000.Duebendorf,CH:SwissCentreforLCI.http://www.ecoinvent.ch.

Gaines,L.,A.Vyas,andJ.L.Anderson.2006.EstimationofFuelUsebyIdlkngCommercialTrucks.In85thAnnualMeetingoftheTransportationResearchBoard.Washington,D.C.

Gallardo,M.,R.Snyder,K.Schulbach,andL.Jackson.1996.Cropgrowthandwaterusemodelforlettuce.

Journalofirrigationanddrainageengineering122(6):354-359.Harrison,G.G.,W.L.Rathje,andW.W.Hughes.1975.FoodWasteBehaviorinAnUrbanPopulation.Journalof

NutritionEducation7(1):13-16.Heller,M.C.andG.A.Keoleian.2014.GreenhouseGasEmissionEstimatesofU.S.DietaryChoicesandFood

Loss.JournalofIndustrialEcology19(3):391-401.Heller,M.C.,G.A.Keoleian,andW.C.Willett.2013.TowardaLifeCycle-Based,Diet-levelFrameworkforFood

EnvironmentalImpactandNutritionalQualityAssessment:ACriticalReview.EnvironmentalScience&Technology47(22):12632-12647.

iCanals,L.M.,I.Muñoz,A.Hospido,K.Plassmann,S.McLaren,G.Edwards-Jones,andB.Hounsome.2008.LifeCycleAssessment(LCA)ofDomesticvs.ImportedVegetables.CaseStudiesonBroccoli,SaladCropsandGreenBeans.CESworkingpaper01/08CentreforEnvironmentalStrategy,UniversityofSurrey,Guildford(Surrey)GU27XH,UnitedKingdom.

IPCC.2013.ClimateChange2013.ThePhysicalScienceBasis.WorkingGroupIcontributiontotheFifthAssessmentReportoftheIPCC.http://www.ipcc.ch/.

Jennie-O.2013.SupplierNewspamphlet.http://uniproweb2.intelli.com/uploads/SupplierNews-Jennie-O-

GroundTurkeySellSheet.pdf.AccessedNovember42015.

Kosa,K.M.,S.C.Cates,S.Karns,S.L.Godwin,andD.Chambers.2007.ConsumerKnowledgeandUseofOpen

Dates:ResultsofaWeb-BasedSurvey.JournalofFoodProtection70(5):1213-1219.Lee,P.,S.Osborn,andP.Whitehead.2015.Reducingfoodwastebyextendingproductlife.WRAP.

http://www.wrap.org.uk/sites/files/wrap/ProductLifeReportFinal_0.pdf.

Leinonen,I.,A.G.Williams,andI.Kyriazakis.2014.ComparingUKturkeyproductionsystemsusinganalytical

errorpropagationinuncertaintyanalysis.Paperpresentedat9thInternationalConferenceonLife

CycleAssessmentintheAgri-FoodSector,SanFrancisco,

http://lcafood2014.org/proceedings/LCA_Food_2014_Proceedings.pdf.

LimnoTech.2012.WaterFootprintAssessment:BananaandLettuceProductsProducedbyChiquita.preparedfor:WWFandChiquitaBrandsInternational.

http://www.chiquita.com/Chiquita/documents/CSR/0924_Chiquita_WF_Final_09_12_12.pdf.

Mena,C.,B.Adenso-Diaz,andO.Yurt.2011.Thecausesoffoodwasteinthesupplier–retailerinterface:

EvidencesfromtheUKandSpain.Resources,ConservationandRecycling55(6):648-658.Neff,R.A.,M.L.Spiker,andP.L.Truant.2015.WastedFood:U.S.Consumers'ReportedAwareness,Attitudes,

andBehaviors.PLoSONE10(6).Newsome,R.,C.G.Balestrini,M.D.Baum,J.Corby,W.Fisher,K.Goodburn,...F.Yiannas.2014.Applications

andPerceptionsofDateLabelingofFood.ComprehensiveReviewsinFoodScienceandFoodSafety13(4):745-769.

ProgressiveGrocer.2014.68thAnnualConsumerExpendituresSurvey.ProgressiveGrocer(July):40-50.

Page 43: Life Cycle Assessment of Food Packaging and Waste

42LifeCycleAssessmentofFoodPackagingandWaste

Ramirez,C.,M.Patel,andK.Blok.2006.Howmuchenergytoprocessonepoundofmeat?Acomparisonof

energyuseandspecificenergyconsumptioninthemeatindustryoffourEuropeancountries.Energy31(12):2047-2063.

Roibás,L.,A.Elbehri,andA.Hospido.2014.CarbonfootprintalongtheEcuadorianbananasupplychain:

Methodologicalimprovementsandcalculationtool.Paperpresentedat9thInternationalConference

LCAofFood,8-10October,SanFrancisco,CA,

http://lcafood2014.org/proceedings/LCA_Food_2014_Proceedings.pdf.

Santos,A.,N.McGuckin,H.Y.Nakamoto,D.Gray,andS.Liss.2011.SummaryofTravelTrends:2009NationalHouseholdTravelSurvey.Washington,DC:U.S.DepartmentofTransportation.FHWA-PL-11-022.http://nhts.ornl.gov/2009/pub/stt.pdf.

Secondi,L.,L.Principato,andT.Laureti.2015.HouseholdfoodwastebehaviourinEU-27countries:A

multilevelanalysis.FoodPolicy56:25-40.Stancu,V.,P.Haugaard,andL.Lähteenmäki.2016.Determinantsofconsumerfoodwastebehaviour:Two

routestofoodwaste.Appetite96:7-17.Statista.2015.AverageoperatingtruckspeedonselectedU.S.interstatehighwaysin2009.

http://www.statista.com/statistics/195100/average-operating-truck-speed-on-selected-us-

interstate-highways/.AccessedAugust122015.

Tassou,S.A.,G.De-Lille,andJ.Lewis.2012.FoodTransportRefrigeration.BrunelUniversity,UK:CentreforEnergyandBuiltEnvironmentResearch,SchoolofengineeringandDesign.

http://www.grimsby.ac.uk/documents/defra/trns-refrigeenergy.pdf.

ThePackerProduceUniverse.2014.Lettuce.http://produceuniverse.com/blogs/11241/52/lettuce.

AccessedOctober292015.

Thyberg,K.L.,D.J.Tonjes,andJ.Gurevitch.2015.QuantificationofFoodWasteDisposalintheUnitedStates:

AMeta-Analysis.EnvironmentalScience&Technology49(24):13946-13953.U.S.DepartmentofEnergy.2014.TechnicalSupportDocument:EnergyEfficiencyProgramForConsumer

ProductsAndCommercialAndIndustrialEquipment.CommercialRefrigerationEquipment.WashingtonDC:

U.S.DepartmentofTransportation.2015.2012CommodityFlowSurvey.EC12TCF-US.http://www.census.gov/econ/cfs/2012/ec12tcf-us.pdf.

U.S.EnergyInformationAdministration.2006.2003CommercialBuildingsEnergyConsumptionSurvey.http://www.eia.gov/consumption/commercial/data/2003/pdf/e01a.pdf.

U.S.EnergyInformationAdministration.2013.2009ResidentalEnergyConsumptionSurvey.Washington,DC:U.S.DepartmentofEnergy.

http://www.eia.gov/consumption/residential/data/2009/c&e/ce3.1.xlsx.

U.S.EPA.2011.ProfileofanAverageU.S.Supermarket’sGreenhouseGasImpactsfromRefrigerationLeaksComparedtoElectricityConsumption.http://www.epa.gov/sites/production/files/documents/gc_averagestoreprofile_final_june_2011_rev

ised_1.pdf.

USEPA.2014.MunicipalSolidWasteGeneration,Recycling,andDisposalintheUnitedStates:FactsandFiguresfor2012.Washington,DC:UnitedStatesEnvironmentalProtectionAgencySolidWasteandEmergencyResponse.EPA-530-F-14-001.

http://www.epa.gov/solidwaste/nonhaz/municipal/pubs/2012_msw_fs.pdf.

USEPA.2015.DocumentationforGreenhouseGasEmissionandEnergyFactorsUsedintheWasteReductionModel(WARM).http://www3.epa.gov/warm/SWMGHGreport.html.

USDA.1992.Weights,Measures,andConversionFactorsforAgriculturalCommoditiesandTheirProducts.AgriculturalHandbookNo.697.

USDA.2015.USDAandEPAJoinwithPrivateSector,CharitableOrganizationstoSetNation'sFirstFood

WasteReductionGoals

http://www.usda.gov/wps/portal/usda/usdamediafb?contentid=2015/09/0257.xml&printable=tru

e&contentidonly=true.

USDAERS.2013.Loss-adjustedfoodavailabilitydocumentation.http://www.ers.usda.gov/data-

products/food-availability-(per-capita)-data-system/loss-adjusted-food-availability-

documentation.aspx-.UssZpmRDveY.USDAEconomicResearchService.AccessedJanuary2014.

Vanham,D.,F.Bouraoui,A.Leip,B.Grizzetti,andG.Bidoglio.2015.Lostwaterandnitrogenresourcesdueto

EUconsumerfoodwaste.EnvironmentalResearchLetters10(8):084008.

Page 44: Life Cycle Assessment of Food Packaging and Waste

43LifeCycleAssessmentofFoodPackagingandWaste

Vignali,G.2016.Life-CycleAssessmentofFood-PackagingSystems.InEnvironmentalFootprintsofPackaging,editedbyS.S.Muthu.Singapore:SpringerScience+BusinessMedia.

Zhang,H.,M.Hortal,A.Dobon,J.M.Bermudez,andM.Lara-Lledo.2015.TheEffectofActivePackagingon

MinimizingFoodLosses:LifeCycleAssessment(LCA)ofEssentialOilComponent-enabledPackaging

forFreshBeef.PackagingTechnologyandScience28(9):761-774.

Page 45: Life Cycle Assessment of Food Packaging and Waste

44LifeCycleAssessmentofFoodPackagingandWaste

AppendixA.DatatablesforFigures

DataforFigure2.DistributionofgreenhousegasemissionsacrossthelifecycleforCase1a:

comparingtraywithoverwrapandhighoxygenMAPpackaging.Notethebreakinthey-

axisinordertoshowdetailsofthesmallcontributionsfrommostlifecyclestages.Total

valuesarePStray:44.56kgCO2eq/kgbeefconsumed;highO2MAP:43.78kgCO2eq/kg

beefconsumed..

Trayw/overwrap HiO2MAP

productionandprocessing 43.1 42.2

primarypackagingproduction 0.159 0.284

MAPgases 7.33E-05

secondaryandtertiarypackagingproduction 0.14 0.137

transporttoretail 0.0552 0.0541

retail 0.689 0.635

transporttohome 0.2 0.2

use 0.0349 0.051

foodwastedisposal 0.242 0.222

packagingwasterecycle/disposal 0.012 0.0107

Total 44.6 43.8

DataforFigure3.Distributionofcumulativeenergydemandperkgofconsumedbeeffor

Case1a:comparingtraywithoverwrapandhighoxygenMAPpackaging.Notethebreakin

theyaxisinordertoshowdetailoflifecyclestageswithsmallcontributions.Totalvalues

arePStray:108.1MJ/kgbeefconsumed;highO2MAP:110.1MJ/kgbeefconsumed.

trayw/overwrap hiO2MAP

productionandprocessing 88.9 87.0primarypackagingproduction 5.02 9.41MAPgases

0.000777

secondaryandtertiarypackagingproduction 1.86 1.82transporttoretail 0.881 0.863retail 10.5 9.70transporttohome 2.94 2.94use 0.532 0.776foodwastedisposal -0.0253 -0.0232packagingwasterecycle/disposal -2.52 -2.40Total 108 110

DataforFigure4.Distributionofgreenhousegasemissionsacrosslifecyclestages,

comparingsealedtraywithskinpackaging.Redportionsofbarsarecontributionsdueto

retailwaste.Notebreakiny-axistoshowdetailsoflessercontributingstages.Valuesfor

Page 46: Life Cycle Assessment of Food Packaging and Waste

45LifeCycleAssessmentofFoodPackagingandWaste

lifecycletotals:EPStray:63.3kgCO2eq/kgconsumed;skinpack:50.9kgCO2eq/kg

consumed.

EPStraywithsealedfilm "Darfresh"skinpackaging

consumedportion

contributionofretailwaste total

consumedportion

contributionofretailwaste total

productionandprocessing 40.1 20.6 60.7 40.1 8.80 48.9primarypackagingproduction 0.295 0.152 0.447 0.357 0.0784 0.436secondaryandtertiarypackagingproduction 0.130 0.0671 0.197 0.130 0.0286 0.159transporttoretail 0.0514 0.0265 0.0778 0.0514 0.0113 0.0627retail 0.600 0.309 0.909 0.600 0.132 0.731transporttohome 0.200 0 0.200 0.200 0 0.200use 0.0233 0 0.0233 0.0233 0 0.0233foodwastedisposal 0.176 0.453 0.629 0.176 0.193 0.369packagingwasterecycle/disposal 0.0181 0.00913 0.0273 0.0224 0.00492 0.0273Total 41.6 21.7 63.2 41.6 9.25 50.9

DataforFigure5.Distributionacrosslifecyclestagesofcumulativeenergydemand,

comparingsirloinsteakpackagedinsealedEPStraywithDarfreshskinpack.Lifecycle

totals:EPStray:155MJ/kgconsumedbeef;skinpack:129MJ/kgconsumedbeef.

EPStrayw/sealedfilm "Darfresh"skinpackaging

productionandprocessing 125 101primarypackagingproduction 12.3 13.6tertiarypackagingproduction 2.62 2.11transporttoretail 1.24 0.999retail 13.9 11.2transporttohome 2.94 2.94use 0.356 0.356foodwastedisposal -0.0657 -0.0385packagingwasterecycle/disposal -3.63 -3.25Total 155 129

DataforFigure6.DistributionofGHGEperkgofconsumedproductacrosslifecyclestages.

Thefigurecomparestheromainelettuceheadscenario(darkenedbars)withbagged,

ready-to-eatromainelettuce(lighterbars).Alsoshownarethecontributionsdueto

consumedproduct,ediblelosses,andinediblelosses.

9oz.lettucehead 9oz.bagged,ready-to-eatlettuce

consumedportion

inediblelosses

ediblelosses total

consumedportion

inediblelosses

ediblelosses total

productionandprocessing 0.183 0.0199 0.0648 0.268 0.183 0.0150 0.0694 0.268primarypackagingproduction 0.0168 0.00182 0.00592 0.0245 0.0732 1E-09 0.0256 0.0987secondaryandtertiarypackagingproduction 0.0624 0.00678 0.0221 0.0912 0.224 0 0.0782 0.301708

Page 47: Life Cycle Assessment of Food Packaging and Waste

46LifeCycleAssessmentofFoodPackagingandWaste

transporttoretail 0.474 0.0515 0.167 0.693 0.474 0 0.166 0.639retail 0.243 0.0264 0.0859 0.355 0.317 0 0.111 0.427transporttohome 0.0122 0.00132 0.00426 0.0177 0.0122 0 0.00384 0.0160use 0.138 0.0150 0.0483 0.201 0.184 0 0.0582 0.242foodwastedisposal 0 0.0764 0.249 0.325 0 0.0764 0.273 0.349packagingwasterecycle/disposal 0.0570 0.00620 0.0201 0.0834 0.00921 0 0.00322 0.0124Total 1.19 0.205 0.667 2.06 1.48 0.0914 0.787 2.36

DataforFigure7.Distributionoflifecycleenergydemandfortheromainelettuce

scenarios.

9oz.lettucehead

9oz.bagged,ready-to-eatlettuce

productionandprocessing 16.0 16.3primarypackagingproduction 0.857 3.29secondaryandtertiarypackagingproduction 1.93 6.39transporttoretail 11.4 10.5retail 4.85 5.06transporttohome 0.274 0.247use 3.32 3.92foodwastedisposal -0.0340 -0.0365packagingwasterecycle/disposal -0.225 -4.51Total 38.3 41.1

DataforFigure8.Distributionofbluewateruseacrossthelifecyclefortheromainelettuce

scenarios.Here,bluewateruseisevaluatedbasedontheReCiPeimpactassessment

method’smidpointindicator.Foodandpackagingdisposalstagesarenotshownbecause

themodeldoesnotcontainwateruseestimatesforthesestages.

9oz.lettucehead

9oz.bagged,ready-to-eatlettuce

production 0.129 0.132processing 0 0.006primarypackagingproduction 0.0002 0.0008secondaryandtertiarypackagingproduction 0.0007 0.0022transporttoretail 0.0021 0.0020retail 4.2E-05 4.2E-05transporttohome 7.6E-05 6.9E-05use 0.0594 6.9E-07foodwastedisposal 0 0packagingwasterecycle/disposal 0 0total 0.192 0.143

Page 48: Life Cycle Assessment of Food Packaging and Waste

47LifeCycleAssessmentofFoodPackagingandWaste

DataforFigure9.Distributionofgreenhousegasemissionsperkgofconsumedproduct,

comparingthechubpackagingwithMAPtraypackagingofgroundturkey.Notethebreak

inscaleinordertoshowdetailofthelesscontributinglifecyclestages.

3lb.chub 3lb.MAPtray

productionandprocessing 8.61 8.42primarypackagingproduction 0.0329 0.124MAPgases 0 0.0000576secondaryandtertiarypackagingproduction 0.166 0.162transporttoretail 0.0653 0.0639retail 0.528 0.548transporttohome 0.00925 0.00925use 0.0294 0.0626foodwastedisposal 0.413 0.390packagingwasterecycle/disposal 0.00739 0.00455Total 9.86 9.79

DataforFigure10.SystemGHGEshowingonlythecontributionduetowastedfoodand

totalpackaging(doesnotincludecontributionsfromthe1kgofconsumedturkeythatis

thefunctionalunit).

3lb.chub 3lb.MAPtray

productionandprocessing 0.267 0.0842primarypackagingproduction 0.0329 0.123MAPgases 0 0.000057secondaryandtertiarypackagingproduction 0.166 0.160transporttoretail 0.00202 0.00064retail 0.0164 0.00548transporttohome 0 0use 0 0foodwastedisposal 0.0346 0.0109packagingwasterecycle/disposal 0.00739 0.00455Total 0.526 0.390

DataforFigure11.Distributionofcumulativeenergydemandperkgofconsumedproduct,

comparingthetwopackagingconfigurations.

3lb.chub 3lb.MAPtray

productionandprocessing 46.6 45.6primarypackagingproduction 1.15 4.83MAPgases 0 0.00061secondaryandtertiarypackagingproduction 2.20 2.15transporttoretail 1.04 1.02retail 7.82 7.82transporttohome 0.136 0.136

Page 49: Life Cycle Assessment of Food Packaging and Waste

48LifeCycleAssessmentofFoodPackagingandWaste

use 0.447 0.953foodwastedisposal -0.0432 -0.0407packagingwasterecycle/disposal -2.39 -2.31Total 57.0 60.2

Page 50: Life Cycle Assessment of Food Packaging and Waste

49LifeCycleAssessmentofFoodPackagingandWaste

AppendixB:SensitivitytoConsumerwasteratesAppendixBpresentsaseriesoffigures(andaccompanieddatatables)thatdemonstrate

theeffectofachangeinconsumerwasterateontheresultspresentedinthereport.Please

notethatspecificvaluespresentedheremaydifferslightlyfromvaluesthatappear

elsewhere:thisisduetothefactthattheEcoinventdatabasehasbeenupdatedsinceinitial

calculationswereperformed,andsomeprocesseshavebeenmodifiedslightly.Inallcases,

thedifferencesareinsignificant.

Case1a:BeefinPStraywithoverwrapvs.highO2MAPtray.

FigureB1.InfluenceofconsumerfoodwasterateontotalsystemGHGEforbeefcase1a.Figurealsoshowssensitivitytoretailwasterateatthebaselineconsumerwasterate,andvalueswithnoediblewaste.SeeTableB1fortheseretailwasteratevalues.

TableB1.DataforFigureB1

wasteratestotalsystemGHGE(kgCO2eq/kgconsumed)

consumer retail PStray hiO2MAP0.25 0.07 47.6

0.25 0.05

46.80.2 0.15 48.8 49.00.2 0.1 46.1 46.20.2 0.07 44.6

0.2 0.05

43.8

30

32

34

36

38

40

42

44

46

48

50

0 0.05 0.1 0.15 0.2 0.25 0.3

tota

l sys

tem

GH

GE

(kg

CO

2 eq/

kg c

onsu

med

)

consumer food waste rate

PS tray, retail waste = 0.07

hi O2 MAP, retail waste = 0.05

Baseline consumer waste rate

Page 51: Life Cycle Assessment of Food Packaging and Waste

50LifeCycleAssessmentofFoodPackagingandWaste

0.2 0.035 43.00.2 0.02

42.4

0.2 0.01 41.9 42.00.15 0.07 41.9

0.15 0.05

41.20.1 0.07 39.6

0.1 0.05

38.80.05 0.07 37.4

0.05 0.05

36.80.025 0.07 36.5

0.025 0.05

35.80 0.07 35.5

0 0.05

34.90 0 33.0 33.1

FigureB2.Influenceofconsumerfoodwasterateontotalsystemcumulativeenergydemandforbeefcase1a.Figurealsoshowssensitivitytoretailwasterateatthebaselineconsumerwasterate,andvalueswithnoediblewaste.SeeTableB2fortheseretailwasteratevalues.

TableB2:DataforFigureB2.

wasteratestotalsystemCED(MJ/kgconsumed)

consumer retail PStray hiO2MAP0.25 0.07 114.7

75

80

85

90

95

100

105

110

115

120

125

0 0.05 0.1 0.15 0.2 0.25 0.3

tota

l sys

tem

CED

(MJ

/ kg

cons

umed

)

consumer food waste rate

PS tray, retail waste = 0.07

hi O2 MAP, retail waste = 0.05

Baseline consumer waste rate

Page 52: Life Cycle Assessment of Food Packaging and Waste

51LifeCycleAssessmentofFoodPackagingandWaste

0.25 0.05

117.50.2 0.15 117.3 122.60.2 0.1 111.0 116.00.2 0.07 107.5

0.2 0.05

110.10.2 0.035 103.7

0.2 0.02

106.90.2 0.01 101.2 105.8

0.15 0.07 101.20.15 0.05

103.6

0.1 0.07 95.60.1 0.05

97.9

0.05 0.07 90.50.05 0.05

92.7

0.025 0.07 88.20.025 0.05

90.4

0 0.07 86.00 0.05

88.1

0 0 80.2 83.9

Case1c:Denkstattexample.BeefinEPStrayvs.skinpackaging.

30

35

40

45

50

55

60

65

70

75

80

85

0 0.05 0.1 0.15 0.2 0.25 0.3

tota

l sys

tem

GH

GE

(kg

CO

2 eq/

kg c

onsu

med

)

consumer food waste rate

skin packaging, retail waste rate = 0.18

EPS tray & sealed film, retail waste rate = 0.34

Baseline consumer waste rate

Page 53: Life Cycle Assessment of Food Packaging and Waste

52LifeCycleAssessmentofFoodPackagingandWaste

FigureB3.InfluenceofconsumerfoodwasterateontotalsystemGHGEforbeefcase1c.Figurealsoshowssensitivitytoretailwasterateatthebaselineconsumerwasterate,andvalueswithnoediblewaste.SeeTableB3fortheseretailwasteratevalues.

TableB3:DataforFigureB3.

wasteratestotalsystemGHGE(kgCO2eq/kgconsumed)

consumer retail EPStray skinpack0.25 0.34 67.5

0.25 0.18

54.30.2 0.5 83.6 83.80.2 0.4 69.6 69.70.2 0.34 63.2

0.2 0.2 52.1 52.20.2 0.18

50.9

0.2 0.1 46.2 46.30.2 0.05 43.8 43.9

0.15 0.34 59.50.15 0.18

47.9

0.1 0.34 56.10.1 0.18

45.2

0.05 0.34 53.10.05 0.18

42.7

0.025 0.34 51.80.025 0.18

41.6

0 0.34 50.50 0.18

40.6

0 0 33.1 33.2

Page 54: Life Cycle Assessment of Food Packaging and Waste

53LifeCycleAssessmentofFoodPackagingandWaste

FigureB4.Influenceofconsumerfoodwasterateontotalsystemcumulativeenergydemandforbeefcase1c.Figurealsoshowssensitivitytoretailwasterateatthebaselineconsumerwasterate,andvalueswithnoediblewaste.SeeTableB4fortheseretailwasteratevalues.

TableB4:DataforFigureB4

wasteratestotalsystemCED(MJ/kgconsumed)

consumer retail EPStray skinpack0.25 0.34 165.3

0.25 0.18

137.30.2 0.5 203.4 209.00.2 0.4 170.1 174.70.2 0.34 154.9

0.2 0.2 128.4 131.90.2 0.18

128.7

0.2 0.1 114.5 117.60.2 0.05 108.7 111.6

0.15 0.34 145.80.15 0.18

121.2

0.1 0.34 137.70.1 0.18

114.4

0.05 0.34 130.50.05 0.18

108.4

0.025 0.34 127.1

80

100

120

140

160

180

200

220

0 0.05 0.1 0.15 0.2 0.25 0.3

tota

l sys

tem

CED

(MJ

/ kg

cons

umed

)

consumer food waste rate

skin packaging, retail waste = 0.18

EPS tray, retail waste =0.34

Baseline consumer waste rate

Page 55: Life Cycle Assessment of Food Packaging and Waste

54LifeCycleAssessmentofFoodPackagingandWaste

0.025 0.18

105.60 0.34 124.0

0 0.18

103.00 0 82.7 84.9

Case2:Romaineheadlettucevs.ready-to-eat,bagged.

FigureB5.InfluenceofconsumerfoodwasterateontotalsystemGHGEforlettucecase2.Figurealsoshowssensitivitytoretailwasterateatthebaselineconsumerwasterate,andvalueswithnoediblewaste.SeeTableB5fortheseretailwasteratevalues.

TableB5:DataforFigureB5

wasteratestotalsystemGHGE(kgCO2eq/kgconsumed)

consumer retailHeadlettuce

Baggedlettuce

0.4 0.0251

3.170.4 0.0022 2.80

0.3 0.0251

2.620.3 0.0022 2.30

0.24 0.1 2.34 2.590.24 0.05 2.19 2.430.24 0.03

2.37

0.24 0.0251

2.36

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

tota

l sys

tem

GH

GE

(kg

CO

2 eq

/kg

cons

umed

)

consumer food waste rate

bagged romaine, retail rate = 0.0251 romaine head, retail rate = 0.0022

Baseline consumer waste rate

Page 56: Life Cycle Assessment of Food Packaging and Waste

55LifeCycleAssessmentofFoodPackagingandWaste

0.24 0.01 2.08 2.310.24 0.0022 2.06

0.24 0.002

2.290.24 0.001 2.06

0.2 0.0251

2.200.2 0.0022 1.92

0.15 0.0251

2.030.15 0.0022 1.77

0.1 0.0251

1.880.1 0.0022 1.63

0.05 0.0251

1.740.05 0.0022 1.51

0.01 0.0251

1.640.01 0.0022 1.42

0 0.0251

1.620 0.0022 1.40

0 0 1.39 1.57

FigureB6.Influenceofconsumerfoodwasterateontotalsystemcumulativeenergydemandforlettucecase2.Figurealsoshowssensitivitytoretailwasterateatthebaselineconsumerwasterate,andvalueswithnoediblewaste.SeeTableB6fortheseretailwasteratevalues.

TableB6:DataforFigureB6

25

30

35

40

45

50

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

tota

l sys

tem

CED

(MJ

/ kg

cons

umed

)

consumer food waste rate

bagged romaine, retail waste = 0.0251

romaine head, retail rate = 0.0022

Page 57: Life Cycle Assessment of Food Packaging and Waste

56LifeCycleAssessmentofFoodPackagingandWaste

wasteratestotalsystemCED(MJ/kg

consumed)consumer retail headlettuce baggedlettuce

0.4 0.0251

47.780.4 0.0022 46.37

0.3 0.0251

40.960.3 0.0022 39.75

0.24 0.1 40.24 40.540.24 0.05 38.29 38.620.24 0.03

37.90

0.24 0.0251

37.730.24 0.01 36.88 37.220.24 0.0022 36.62

0.24 0.002

36.950.24 0.001 36.58

0.2 0.0251

35.850.2 0.0022 34.79

0.15 0.0251

33.750.15 0.0022 32.75

0.1 0.0251

31.880.1 0.0022 30.94

0.05 0.0251

30.200.05 0.0022 29.31

0.01 0.0251

28.980.01 0.0022 28.13

0 0.0251

28.700 0.0022 27.85

0 0 27.79 28.05

Case3:Groundturkeychubvs.MAPtray

Page 58: Life Cycle Assessment of Food Packaging and Waste

57LifeCycleAssessmentofFoodPackagingandWaste

FigureB7.InfluenceofconsumerfoodwasterateontotalsystemGHGEforturkey,case3.Figurealsoshowssensitivitytoretailwasterateatthebaselineconsumerwasterate,andvalueswithnoediblewaste.SeeTableB7fortheseretailwasteratevalues.

TableB7:DataforFigureB7

wasteratestotalsystemGHGE(kgCO2eq/kgconsumed)

consumer retail chub MAPtray0.45 0.01

11.73

0.42 0.01

11.090.35 0.15

11.54

0.35 0.1 10.67 10.860.35 0.05 10.08 10.260.35 0.031 9.87

0.35 0.01 9.64 9.820.35 0.001 9.55 9.730.3 0.031 9.11

0.28 0.01

8.800.25 0.031 8.46

0.2 0.031 7.880.2 0.01

7.85

0.15 0.031 7.380.15 0.01

7.34

0.1 0.031 6.93

5

6

7

8

9

10

11

12

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

tota

l sys

tem

GH

GE

(kg

CO

2 eq

/kg

cons

umed

)

consumer food waste rate

chub, retail waste = 0.031

MAP, retail waste = 0.01

Page 59: Life Cycle Assessment of Food Packaging and Waste

58LifeCycleAssessmentofFoodPackagingandWaste

0.1 0.01

6.900.05 0.031 6.53

0.05 0.01

6.500.01 0.031 6.24

0.01 0.01

6.210.005 0.031 6.20

0.005 0.01

6.170 0.031 6.17

0 0.01

6.140 0 5.95 6.07

FigureB8.Influenceofconsumerfoodwasterateontotalsystemcumulativeenergydemandforturkey,case3.Figurealsoshowssensitivitytoretailwasterateatthebaselineconsumerwasterate,andvalueswithnoediblewaste.SeeTableB8fortheseretailwasteratevalues.

TableB8:DataforFigureB8

wasteratestotalsystemCED(MJ/kgconsumed)

consumer retail chub MAPtray0.45 0.01

71.1

0.42 0.01

67.40.35 0.15

69.9

0.35 0.1 61.3 66.10.35 0.05 58.1 62.7

35

40

45

50

55

60

65

70

75

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

tota

l sys

tem

CED

(MJ

/ kg

cons

umed

)

consumer food waste rate

chub, retail waste = 0.031 MAP, retail waste = 0.01

Page 60: Life Cycle Assessment of Food Packaging and Waste

59LifeCycleAssessmentofFoodPackagingandWaste

0.35 0.031 57.00.35 0.01 55.8 60.2

0.35 0.001 55.3 59.60.3 0.031 52.9

0.28 0.01

54.30.25 0.031 49.4

0.2 0.031 46.30.2 0.01

48.9

0.15 0.031 43.60.15 0.01

46.0

0.1 0.031 41.20.1 0.01

43.5

0.05 0.031 39.00.05 0.01

41.2

0.01 0.031 37.40.01 0.01

39.5

0.005 0.031 37.20.005 0.01

39.3

0 0.031 37.10 0.01

39.1

0 0 35.9 38.8

Page 61: Life Cycle Assessment of Food Packaging and Waste

School of Natural Resources & Environment, 440 Church Street, 3012 Dana Building, Ann Arbor, MI 48109-1041 734-764-1412 | css.snre.umich.edu