life cycle analysis of a t-shirt

50
1 LIFE CYCLE ANALYSIS OF A T-SHIRT FRANCESC COLOM ALCOVER July 2011

Upload: truongquynh

Post on 14-Feb-2017

220 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: LIFE CYCLE ANALYSIS OF A T-SHIRT

1

LIFE CYCLE ANALYSIS OF A

T-SHIRT

FRANCESC COLOM ALCOVER

July 2011

Page 2: LIFE CYCLE ANALYSIS OF A T-SHIRT

2

Summary

1. Goal and scope definition 4

1.1 Goal definition 4

1.2 Scope definition 5

1.3 Function, functional unit, alternatives 5

2. Inventory analysis 6

2.1 Economy-environment system boundary 6

2.2 Flow diagram 7

2.3 Loss of material 8

2.4 Data collection 8

2.5 Data quality 9

3. Impact assessment 10

3.1 Life Cycle Analysis of Article 1 (with viscose fibres) 10

3.2 Life Cycle Analysis of Article 2 (with cotton fibres) 23

3.3 Analysis of the production process : Article 1 36

3.4 Analysis of the production process: Article 2 39

3.5 Analysis with other fibres 42

4. Final conclusions 50

APPENDIX A: PVC PRODUCTION 51

APPENDIX B: RHOVYL PROCESS 68

APPENDIX C: SPINNING PROCESS 80

APPENDIX D: KNITTING PROCESS 84

APPENDIX E: REFINEMENT PROCESS 87

APPENDIX F: CONFECTION PROCESS 91

Page 3: LIFE CYCLE ANALYSIS OF A T-SHIRT

3

APPENDIX G: TRANSPORT 94

APPENDIX H: WASHING 100

APPENDIX I: COTTON FIBRES 104

APPENDIX J: VISCOSE FIBRES 108

APPENDIX K: ELECTRICITY OF TUNISIA 112

Page 4: LIFE CYCLE ANALYSIS OF A T-SHIRT

4

1. Goal and scope definition

1.1 Goal definition

The objective of the study is to identify the eco-profiles of the manufacture of T-Shirts of PVC

fibres. With this aim, it is going to be carried a cradle-to-grave analysis.

RHOVYL SAS is a company that produces PVC yarn from PVC powder. Part of this yarn is used

for making warm T-Shirts, mixing these PVC fibres with other textile products as silk or acrylic.

As a part of the whole chain production of T-Shirt of PVC fibres, RHOVYL SAS wants to know

and optimize its weight on the environmental impacts of the product, so the results of this LCA

will be used for:

� Quantify the weight of RHOVYL production with the full life cycle.

� Optimize the RHOVYL process, and the others processes.

� Compare the fibre RHOVYL fibre with other natural and artificial fibres.

Specially, RHOVYL SAS desires to know its contribution to:

� CO2 and Greenhouse Gases emissions

� Water consumption

� Eutrophication

This LCA does not aim at a public comparative assertion.

The study is conducted by the ‘Ecole Nationale Supérieure d’Ingénieurs Sud Alsace’ of the

‘Université d’Haute Alsace’. The commissioner is RHOVYL SAS, a large producer of PVC fibres.

There will be studied the life cycle of two different products:

ARTICLE 1: T-Shirt mixture of 85% RHOVYL 15% acrylic

ARTICLE 2: T-Shirt mixture of 85% RHOVYL 15% silk

Each article has its own way of fabrication in different places, which are explained in Appendix

G: Transport.

Finally, RHOVYL SAS wants to compare the PVC fibres he produces with other natural and

artificial fibres as: cotton, acrylic, viscose, wool, polyester and silk. In this study there will only

be comparison with cotton and viscose fibres, due to the lack of databases of other fibres.

Page 5: LIFE CYCLE ANALYSIS OF A T-SHIRT

5

1.2 Scope definition

• Temporal coverage: The age of the data will be within the last 10 years, since 2000 to

2010.

• Geographical coverage: The data used is adapted to the location each process takes

place (France, Italy, Tunisia).

• Technology coverage: The technology is representative of the last ten years, since

2000.

1.3 Function, functional unit

The function of the product is the physical output and has to be clear and easy to compare

objectively with other products. It defines which the utilization of the product is.

We have decided to formulate it as:

“Wearing a T-Shirt of 200 g one day and washing1 it.”

The reason we decided this function, is due to the uncertainty of the life of the T-Shirt (2 years,

3 years ...?). So using the term one day, we can easily calculate the equivalence for 1 year, 3

years or the time we desire. The life of the T-Shirt is estimated in 3 years (75 weeks, 75

washings), used only half part of the year (it is a warm T-shirt).

All processes of fabrication will be defined for the fabrication of one t-shirt.

The functional unit will be kg/day.

1 For the washing process, see Appendix H: Washing.

Page 6: LIFE CYCLE ANALYSIS OF A T-SHIRT

6

2. Inventory analysis

2.1 Economy-environment system boundary

Whenever a system is studied, boundaries are needed to separate the system from the rest of

the world. It is clear that one cannot trace all inputs and outputs to a product systems, and

that one has to define boundaries around the system. It is assumed that excluding certain

parts as they are outside the system boundaries, the results can be distorted.

For describing our system it is used a flow diagram of processes which shows the different unit

processes and its relation (Figure 1).

So, in this LCA it is not included the impact of:

a) Construction of the buildings (industries).

b) Fabrication and transport of the machines used.

c) Land used by the industries.

d) Transportation of workers to the industry.

Page 7: LIFE CYCLE ANALYSIS OF A T-SHIRT

7

2.2 Flow diagram

PVC ARKEMA

RHOVYL

SPINNING

KNITTING / CONFECTION

TRANSPORT

ACETONE CS2

TRANSPORT TRANSPORT

ACRYLIC / SILK

TRANSPORT

TRANSPORT

SALE

TRANSPORT

TRANSPORT

WASHING

LANDFILL

Figure 1. Flow diagram of the t-shirt

x 75

Page 8: LIFE CYCLE ANALYSIS OF A T-SHIRT

8

2.3 Losses of material

The t-shirt weights 200 g when is finished, and it composition is 85% RHOVYL fibres and 15%

acrylic/silk fibres, which means 170 g of RHOVYL fibres and 30 g of acrylic/silk fibres. But

during the process there are losses of material, typical in all textile processes:

Process Losses

Weight of

RHOVYL

before [g]

Weight of

RHOVYL

after [g]

Weight of

acrylic/silk

before [g]

Weight of

acrylic/silk

after [g]

Spinning 5% 198,83 188,89 35,09 33,33

Knitting 0% 188,89 188,89 33,33 33,33

Finishing 0% 188,89 188,89 33,33 33,33

Confection 10% 188,89 170 33,33 30

Table 1. Calculation of the losses during the different processes

So, before the spinning process it has to be produced for each t-shirt:

� 198,83 g of RHOVYL fibres

� 35,09 g of Acrylic/Silk fibres

2.4 Data collection

We define every unit process of the life cycle as an enclosed black box with its inputs and its

outputs. The outline of the box denotes the system boundary and separates the system from

its surroundings (the system environment). The system environment acts as the source of all

inputs to the system and the sink for all outputs from the system. Schematically, any extended

industrial system can be represented as shown in Figure 2.

Figure 2. Black box process with its inputs and outputs

SYSTEM

Fuels/energy

Waste heat

Air emissions

Water emissions Raw materials

Solid Waste

INPUTS OUTPUTS

Page 9: LIFE CYCLE ANALYSIS OF A T-SHIRT

9

2.4.1 PVC production: See Appendix A

2.4.2 RHOVYL process: See Appendix B

2.4.3 Spinning process: See Appendix C

2.4.4 Knitting process: See Appendix D

2.4.5 Refinement process: See Appendix E

2.4.6 Confection process: See Appendix F

2.4.7 Transport: See Appendix G

2.4.8 Washing: See Appendix H

2.4.9 Other fibres data:

� Cotton fibres: see Appendix I

� Viscose fibres: see Appendix J

2.4.10 Electricity of Tunisia: See Appendix K

2.5 Data quality

Having access to good and trustful data has been a big problem during this LCA. During the

discussion of the three sources of data in Appendix A: PVC production, it is explained how

there is lack of information of some environmental impacts on GEMIS data and other data

found on internet, which is totally normal due to the free cost of GEMIS.

During the following Annexes of discussion of data, the GEMIS library will be only taken in to

account for consulting and comparing, and if there is no other data, we will change the inputs

for the ones in SimaPro, which are much more complete (for example, electricity). Creating a

good database of industrial processes should be a necessary work in a near future in order to

solve this problem and be able to do LCA’s of good quality.

Page 10: LIFE CYCLE ANALYSIS OF A T-SHIRT

10

3. Impact Assessment

3.1 Life Cycle Analysis of Article 1 (with viscose fibres2)

Indicator Unit TOTAL

Abiotic depletion kg Sb eq 0,0339

Acidification kg SO2 eq 0,0334

Eutrophication Kg PO4 eq 0,00528

Global Warming (100) kg CO2 eq 6,57

Ozone layer depletion kg CFC-11 eq 3,99E-7

Human toxicity kg 1.4-DB eq 2,73

Fresh water aquatic ecotox. kg 1.4-DB eq 0,536

Marine aquatic ecotoxicity kg 1.4-DB eq 527

Terrestrial ecotoxicity kg 1.4-DB eq 0,0896

Photochemical oxidation kg C2H4 0,00416

Water consumption3 m

3 26,3226

Table 2. Results of the analysis of Article 1 with the CML 2 baseline 2000 method (production + 75 washes + landfill)

2 Due to the impossibility to find database of acrylic fibres, it is going to be used viscose fibres with the hypothesis that viscose and acrylic fibres have the same environmental impacts in its production. 3 Water consumption is not an environmental impact included in the method CML 2 baseline 2000, I have calculated on my own with the data of each process including ALL the water consumed, which means it includes the water used for making electricity with hydropower, for example.

Page 11: LIFE CYCLE ANALYSIS OF A T-SHIRT

11

Analysing 1 p 'Life Cycle T-Shirt 1'; Method: CML 2 baseline 2000 V2.04 / West Europe, 1995 / characterisation

T-Shirt 1 - acrylic Clothing washing A Landfill/CH U

Abiotic depletion Acidification Eutrophication Global warming (GWP100)

Ozone layer depletion (ODP

Human toxicity Fresh water aquatic ecotox

Marine aquatic ecotoxicity

Terrestrial ecotoxicity

Photochemical oxidation

%

120

115

110

105

100

95

90

85

80

75

70

65

60

55

50

45

40

35

30

25

20

15

10

5

0

Figure 3. Analysis of ARTICLE 1 (viscose) with CML 2 baseline 2000: Impact Assessment Characterization

Page 12: LIFE CYCLE ANALYSIS OF A T-SHIRT

12

Analysing 1 p 'Life Cycle T-Shirt 1'; Method: CML 2 baseline 2000 V2.04 / West Europe, 1995 / normalisation

T-Shirt 1 - acrylic Clothing washing A Landfill/CH U

Abiotic depletion Acidification Eutrophication Global warming (GWP100)

Ozone layer depletion (ODP

Human toxicity Fresh water aquatic ecotox

Marine aquatic ecotoxicity

Terrestrial ecotoxicity

Photochemical oxidation

4e-12

Figure 4. Analysis of ARTICLE 1 (viscose) with CML 2 baseline 2000: Impact Assessment Normalisation

Page 13: LIFE CYCLE ANALYSIS OF A T-SHIRT

13

Figure 5. Analysis of ARTICLE 1 (viscose) with CML 2 baseline 2000: Network Normalisation (Abiotic depletion)

Page 14: LIFE CYCLE ANALYSIS OF A T-SHIRT

14

Figure 6. Analysis of ARTICLE 1 (viscose) with CML 2 baseline 2000: Network Normalisation (Acidification)

Page 15: LIFE CYCLE ANALYSIS OF A T-SHIRT

15

Figure 7. Analysis of ARTICLE 1 (viscose) with CML 2 baseline 2000: Network Normalisation (Eutrophication)

Page 16: LIFE CYCLE ANALYSIS OF A T-SHIRT

16

Figure 8. Analysis of ARTICLE 1 (viscose) with CML 2 baseline 2000: Network Normalisation (Global Warming 100)

Page 17: LIFE CYCLE ANALYSIS OF A T-SHIRT

17

Figure 9. Analysis of ARTICLE 1 (viscose) with CML 2 baseline 2000: Network Normalisation (Ozone Layer Depletion)

Page 18: LIFE CYCLE ANALYSIS OF A T-SHIRT

18

Figure 10. Analysis of ARTICLE 1 (viscose) with CML 2 baseline 2000: Network Normalisation (Human Toxicity)

Page 19: LIFE CYCLE ANALYSIS OF A T-SHIRT

19

Figure 11. Analysis of ARTICLE 1 (viscose) with CML 2 baseline 2000: Network Normalisation (Fresh water aquatic ecotoxicity)

Page 20: LIFE CYCLE ANALYSIS OF A T-SHIRT

20

Figure 12. Analysis of ARTICLE 1 (viscose) with CML 2 baseline 2000: Network Normalisation (Marine aquatic ecotoxicity)

Page 21: LIFE CYCLE ANALYSIS OF A T-SHIRT

21

Figure 13. Analysis of ARTICLE 1 (viscose) with CML 2 baseline 2000: Network Normalisation (Terrestrial ecotoxicity)

Page 22: LIFE CYCLE ANALYSIS OF A T-SHIRT

22

Figure 14. Analysis of ARTICLE 1 (viscose) with CML 2 baseline 2000: Network Normalisation (Photochemical oxidation)

Page 23: LIFE CYCLE ANALYSIS OF A T-SHIRT

23

3.2 Life Cycle Analysis of Article 2 (with silk fibres4)

Indicator Unit TOTAL

Abiotic depletion kg Sb eq 0,0256

Acidification kg SO2 eq 0,0283

Eutrophication Kg PO4 eq 0,00563

Global Warming (100) kg CO2 eq 5,52

Ozone layer depletion kg CFC-11 eq 3,04E-7

Human toxicity kg 1.4-DB eq 2,59

Fresh water aquatic ecotox. kg 1.4-DB eq 0,522

Marine aquatic ecotoxicity kg 1.4-DB eq 440

Terrestrial ecotoxicity kg 1.4-DB eq 0,0914

Photochemical oxidation kg C2H4 0,00389

Water consumption m3 27,1214

Table 3. Results of the analysis of Article 2 with the CML 2 baseline 2000 method for the whole life cycle (production + 75 washes + landfill)

4 Due to the impossibility to find database of silk fibres, it is going to be used cotton fibres from China with the hypothesis that cotton and silk fibres have the same environmental impacts in its production.

Page 24: LIFE CYCLE ANALYSIS OF A T-SHIRT

24

Analysing 1 p 'Life Cycle T-Shirt 2'; Method: CML 2 baseline 2000 V2.04 / West Europe, 1995 / characterisation

T-Shirt 2 - silk Clothing washing A Landfill/CH U

Abiotic depletion Acidification Eutrophication Global warming (GWP100)

Ozone layer depletion (ODP

Human toxicity Fresh water aquatic ecotox

Marine aquatic ecotoxicity

Terrestrial ecotoxicity

Photochemical oxidation

%

120

115

110

105

100

95

90

85

80

75

70

65

60

55

50

45

40

35

30

25

20

15

10

5

0

Figure 15. Analysis of ARTICLE 2 (cotton) with CML 2 baseline 2000: Impact Assessment Characterization

Page 25: LIFE CYCLE ANALYSIS OF A T-SHIRT

25

Analysing 1 p 'Life Cycle T-Shirt 2'; Method: CML 2 baseline 2000 V2.04 / West Europe, 1995 / normalisation

T-Shirt 2 - silk Clothing washing A Landfill/CH U

Abiotic depletion Acidification Eutrophication Global warming (GWP100)

Ozone layer depletion (ODP

Human toxicity Fresh water aquatic ecotox

Marine aquatic ecotoxicity

Terrestrial ecotoxicity

Photochemical oxidation

3e-12

Figure 16. Analysis of ARTICLE 2 (cotton) with CML 2 baseline 2000: Impact Assessment Normalisation

Page 26: LIFE CYCLE ANALYSIS OF A T-SHIRT

26

Figure 17. Analysis of ARTICLE 2 (cotton) with CML 2 baseline 2000: Network Normalisation (Abiotic depletion)

Page 27: LIFE CYCLE ANALYSIS OF A T-SHIRT

27

Figure 18. Analysis of ARTICLE 2 (cotton) with CML 2 baseline 2000: Network Normalisation (Acidification)

Page 28: LIFE CYCLE ANALYSIS OF A T-SHIRT

28

Figure 19. Analysis of ARTICLE 2 (cotton) with CML 2 baseline 2000: Network Normalisation (Eutrophication)

Page 29: LIFE CYCLE ANALYSIS OF A T-SHIRT

29

Figure 20. Analysis of ARTICLE 2 (cotton) with CML 2 baseline 2000: Network Normalisation (Global Warming 100)

Page 30: LIFE CYCLE ANALYSIS OF A T-SHIRT

30

Figure 21. Analysis of ARTICLE 2 (cotton) with CML 2 baseline 2000: Network Normalisation (Ozone Layer Depletion)

Page 31: LIFE CYCLE ANALYSIS OF A T-SHIRT

31

Figure 22. Analysis of ARTICLE 2 (cotton) with CML 2 baseline 2000: Network Normalisation (Human toxicity)

Page 32: LIFE CYCLE ANALYSIS OF A T-SHIRT

32

Figure 23. Analysis of ARTICLE 2 (cotton) with CML 2 baseline 2000: Network Normalisation (Fresh water aquatic ecotoxicity)

Page 33: LIFE CYCLE ANALYSIS OF A T-SHIRT

33

Figure 24. Analysis of ARTICLE 2 (cotton) with CML 2 baseline 2000: Network Normalisation (Marine aquatic ecotoxicity)

Page 34: LIFE CYCLE ANALYSIS OF A T-SHIRT

34

Figure 25. Analysis of ARTICLE 2 (cotton) with CML 2 baseline 2000: Network Normalisation (Terrestrial ecotoxicity)

Page 35: LIFE CYCLE ANALYSIS OF A T-SHIRT

35

Figure 26. Analysis of ARTICLE 2 (cotton) with CML 2 baseline 2000: Network Normalisation (Photochemical oxidation)

Page 36: LIFE CYCLE ANALYSIS OF A T-SHIRT

36

3.3 Analysis of the production process: Article 1 (with viscose)

PV

C p

rod

uct

ion

[%

]

RH

OV

YL

[%]

VIS

CO

SE

[%

]

FIL

AT

UR

E [

%]

TR

ICO

TA

GE

[%

]

EN

NO

BLI

SS

EM

EN

T [

%]

CO

NF

EC

TIO

N [

%]

TR

AN

SP

OR

T 1

[%

]

Indicator

Unit TOTAL

Abiotic depletion kg Sb eq 0,03219 11,84 9,91 3,74 28,12 20,82 22,48 1,86 1,23

Acidification kg SO2 eq 0,01631 6,46 10,25 11,18 39,01 12,93 16,05 1,16 2,97

Eutrophication Kg PO4 eq 0,00170 7,10 7,01 7,67 23,02 12,22 37,96 1,09 3,93

Global Warming (100) kg CO2 eq 3,937 7,93 8,75 1,42 32,33 21,47 24,79 1,92 1,40

Ozone layer depletion kg CFC-11 eq 3,86E-7 0,01 7,43 2,58 25,94 28,72 30,59 2,57 2,16

Human toxicity kg 1.4-DB eq 2,301 52,41 6,76 2,99 14,89 10,14 11,18 0,91 0,71

Fresh water aquatic ecotox. kg 1.4-DB eq 0,11860 7,43 9,18 12,97 26,88 11,60 29,06 1,04 1,85

Marine aquatic ecotoxicity kg 1.4-DB eq 340,204 1,69 7,65 7,93 31,04 20,98 27,39 1,88 1,45

Terrestrial ecotoxicity kg 1.4-DB eq 0,05288 0,82 16,38 3,29 39,42 27,59 9,79 2,47 0,23

Photochemical oxidation kg C2H4 0,00181 2,95 62,60 4,24 14,43 6,08 8,29 0,54 0,88

Water consumption m3 H2O 14,7391749 0,05 30,16 4,82 57,59 2,06 4,70 0,18 0,44

Table 3. Results of the analysis of the Article 1 production with the CML 2 baseline 2000 method for 1 T-Shirt produced

Page 37: LIFE CYCLE ANALYSIS OF A T-SHIRT

37

Analysing 1 p 'T-Shirt 1 - acrylic'; Method: CML 2 baseline 2000 V2.04 / West Europe, 1995 / characterisation

1. PVC production 2. RHOVYL 2. Viscose fibres 3. Filature IT 4. Tricotage TN 5. Ennoblissement TN 6. Confection TN 7. Transport 1

Abiotic depletion Acidification Eutrophication Global warming (GWP100)

Ozone layer depletion (ODP

Human toxicity Fresh water aquatic ecotox

Marine aquatic ecotoxicity

Terrestrial ecotoxicity

Photochemical oxidation

%

120

115

110

105

100

95

90

85

80

75

70

65

60

55

50

45

40

35

30

25

20

15

10

5

0

Figure 27. Damage characterisation of Article 1 production with CML 2 baseline method

Page 38: LIFE CYCLE ANALYSIS OF A T-SHIRT

38

Analysing 1 p 'T-Shirt 1 - acrylic'; Method: CML 2 baseline 2000 V2.04 / West Europe, 1995 / normalisation

1. PVC production 2. RHOVYL 2. Viscose fibres 3. Filature IT 4. Tricotage TN 5. Ennoblissement TN 6. Confection TN 7. Transport 1

Abiotic depletion Acidification Eutrophication Global warming (GWP100)

Ozone layer depletion (ODP

Human toxicity Fresh water aquatic ecotox

Marine aquatic ecotoxicity

Terrestrial ecotoxicity

Photochemical oxidation

2e-12

Figure 28. Normalisation of Article 1 production with CML 2 baseline method

Page 39: LIFE CYCLE ANALYSIS OF A T-SHIRT

39

3.4 Analysis of the production process: Article 2

PV

C p

rod

uct

ion

[%

]

RH

OV

YL

[%]

CO

TT

ON

[%

]

FIL

AT

UR

E [

%]

TR

ICO

TA

GE

[%

]

EN

NO

BLI

SS

EM

EN

T [

%]

CO

NF

EC

TIO

N [

%]

TR

AN

SP

OR

T 2

[%

]

Indicator

Unit TOTAL

Abiotic depletion kg Sb eq 0,02383 16,00 13,39 2,02 6,06 28,12 30,37 2,51 1,51

Acidification kg SO2 eq 0,01112 9,47 15,04 14,08 12,24 18,96 23,54 1,69 4,98

Eutrophication Kg PO4 eq 0,00206 5,87 5,80 38,24 4,42 10,11 31,40 0,90 3,25

Global Warming (100) kg CO2 eq 2,884 10,82 11,94 2,25 7,46 29,30 33,84 2,62 1,76

Ozone layer depletion kg CFC-11 eq 2,92E-7 0,02 9,83 2,27 3,43 38,02 40,49 3,40 2,53

Human toxicity kg 1.4-DB eq 2,162 55,77 7,20 2,54 10,01 10,79 11,90 0,96 0,82

Fresh water aquatic ecotox. kg 1.4-DB eq 0,1053 8,36 10,34 14,50 18,03 13,06 32,72 1,17 1,83

Marine aquatic ecotoxicity kg 1.4-DB eq 253,160 2,27 10,28 5,15 12,9 28,20 36,80 2,52 1,88

Terrestrial ecotoxicity kg 1.4-DB eq 0,05473 0,80 15,83 10,88 33,79 26,66 9,46 2,38 0,21

Photochemical oxidation kg C2H4 0,00154 3,46 73,45 0,96 3,47 7,13 9,72 0,64 1,17

Water consumption m3 H2O 15,538 0,05 28,61 2,73 61,63 1,96 4,46 0,17 0,39

Table 4. Results of the analysis of the Article 2 production with the CML 2 baseline 2000 method for 1 T-Shirt produced

Page 40: LIFE CYCLE ANALYSIS OF A T-SHIRT

40

Analysing 1 p 'T-Shirt 2 - silk'; Method: CML 2 baseline 2000 V2.04 / West Europe, 1995 / characterisation

1. PVC production 2. RHOVYL 2. Cotton fibres 3. Filature FR 4. Tricotage TN 5. Ennoblissement TN 6. Confection TN 7. Transport 2

Abiotic depletion Acidification Eutrophication Global warming (GWP100)

Ozone layer depletion (ODP

Human toxicity Fresh water aquatic ecotox

Marine aquatic ecotoxicity

Terrestrial ecotoxicity

Photochemical oxidation

%

120

115

110

105

100

95

90

85

80

75

70

65

60

55

50

45

40

35

30

25

20

15

10

5

0

Figure 29. Damage characterisation of Article 2 production with CML 2 baseline method

Page 41: LIFE CYCLE ANALYSIS OF A T-SHIRT

41

Analysing 1 p 'T-Shirt 2 - silk'; Method: CML 2 baseline 2000 V2.04 / West Europe, 1995 / normalisation

1. PVC production 2. RHOVYL 2. Cotton fibres 3. Filature FR 4. Tricotage TN 5. Ennoblissement TN 6. Confection TN 7. Transport 2

Abiotic depletion Acidification Eutrophication Global warming (GWP100)

Ozone layer depletion (ODP

Human toxicity Fresh water aquatic ecotox

Marine aquatic ecotoxicity

Terrestrial ecotoxicity

Photochemical oxidation

2e-12

Figure 30. Damage characterisation of Article 2 production with CML 2 baseline method

Page 42: LIFE CYCLE ANALYSIS OF A T-SHIRT

42

3.5 Analysis with other fibres

5 This values concert the whole production of RHOVYL fibres, form raw mateirals to the final fibre, wich means PVC PRODUCTION + RHOVYL PROCESS

Indicator Unit RHOVYL5 VISCOSE COTTON US COTTON CN

Abiotic depletion kg Sb eq 0,0352 0,0343 0,00982 0,0132

Acidification kg SO2 eq 0,0137 0,052 0,0215 0,0442

Eutrophication Kg PO4 eq 0,00121 0,00372 0,0202 0,0223

Global Warming (100) kg CO2 eq 3,3 1,59 0,827 1,77

Ozone layer depletion kg CFC-11 eq 1,45E-7 2,84E-7 1,62E-7 1,76E-7

Human toxicity kg 1.4-DB eq 6,85 1,96 1,46 1,55

Fresh water aquatic ecotox. kg 1.4-DB eq 0,0991 0,438 17,3 0,432

Marine aquatic ecotoxicity kg 1.4-DB eq 160 769 238 365

Terrestrial ecotoxicity kg 1.4-DB eq 0,0458 0,0495 1,58 0,169

Photochemical oxidation kg C2H4 0,00596 0,00218 0,00035 0,000404

Water consumption m3 22,393 20,228 2,566 11,964

Table 5 . Results of the analysis of data with CML 2 baseline method (characterisation) for 1 kg of fibre produced

Page 43: LIFE CYCLE ANALYSIS OF A T-SHIRT

43

Comparing 1 kg 'RHOVYL fibre', 1 kg 'Viscose fibres, at plant/GLO U SimaPro', 1 kg 'Cotton fibres, at farm/US U SimaPro' and 1 kg 'Cotton fibres, ginned, at farm/CN U - SimaPro'; Method: CML 2 baseline 2000 V2.04 / West Europe, 1995 / characterisation

RHOVYL fibre Viscose fibres, at plant/GLO U SimaPro Cotton fibres, at farm/US U SimaPro Cotton fibres, ginned, at farm/CN U - SimaPro

Abiotic depletion Acidification Eutrophication Global warming (GWP100)

Ozone layer depletion (ODP

Human toxicity Fresh water aquatic ecotox

Marine aquatic ecotoxicity

Terrestrial ecotoxicity

Photochemical oxidation

%

120

115

110

105

100

95

90

85

80

75

70

65

60

55

50

45

40

35

30

25

20

15

10

5

0

Figure 31. Comparation of fibres with CML 2 baseline method: Characterisation

Page 44: LIFE CYCLE ANALYSIS OF A T-SHIRT

44

Comparing 1 kg 'RHOVYL fibre', 1 kg 'Viscose fibres, at plant/GLO U SimaPro', 1 kg 'Cotton fibres, at farm/US U SimaPro' and 1 kg 'Cotton fibres, ginned, at farm/CN U - SimaPro'; Method: CML 2 baseline 2000 V2.04 / West Europe, 1995 / normalisation

RHOVYL fibre Viscose fibres, at plant/GLO U SimaPro Cotton fibres, at farm/US U SimaPro Cotton fibres, ginned, at farm/CN U - SimaPro

Abiotic depletion Acidification Eutrophication Global warming (GWP100)

Ozone layer depletion (ODP

Human toxicity Fresh water aquatic ecotox

Marine aquatic ecotoxicity

Terrestrial ecotoxicity

Photochemical oxidation

3,4e-11

Figure 32. Comparation of fibres with CML 2 baseline method: Normalisation

Page 45: LIFE CYCLE ANALYSIS OF A T-SHIRT

45

Indicator Unit RHOVYL VISCOSE COTTON US COTTON CN

Greenhouse kg CO2 3,06 1,45 0,699 1,56

Ozone layer depletion kg CFC11 1,24E-7 2,84E-7 1,96E-7 1,96E-7

Acidification kg SO2 0,0133 0,0476 0,0246 0,0506

Eutrophication Kg PO4 0,00121 0,00371 0,0200 0,0219

Heavy metals kg Pb 5,51E-5 7,7E-5 3,62E-7 3,03E-7

Carcirogens kg B(a)P eq 1,45E-7 5,54E-7 3,93E-7 3,03E-7

Pesticides kg act.subst 0 0 0 0

Summer smog kg C2H4 0,0122 0,000873 0,000696 0,000539

Winter smog kg SPM 0,00951 0,0411 0,00547 0,00663

Energy resources MJ LHV 150 164 40,2 50,2

Solid waste kg 0,02 0 0 0

Table 6 . Results of the analysis of data with Eco-indicator 95 method (characterisation) for 1 kg of fibre produced

Page 46: LIFE CYCLE ANALYSIS OF A T-SHIRT

46

Comparing 1 kg 'RHOVYL fibre', 1 kg 'Viscose fibres, at plant/GLO U SimaPro', 1 kg 'Cotton fibres, at farm/US U SimaPro' and 1 kg 'Cotton fibres, ginned, at farm/CN U - SimaPro'; Method: Eco-indicator 95 V2.05 / Europe e / characterisation

RHOVYL fibre Viscose fibres, at plant/GLO U SimaPro Cotton fibres, at farm/US U SimaPro Cotton fibres, ginned, at farm/CN U - SimaPro

Greenhouse Ozone layer Acidification Eutrophication Heavy metals Carcinogens Pesticides Summer smog Winter smog Energy resources Solid waste

%

120

115

110

105

100

95

90

85

80

75

70

65

60

55

50

45

40

35

30

25

20

15

10

5

0

Figure 33. Comparation of fibres with Eco-indicator 95 method: Characterisation

Page 47: LIFE CYCLE ANALYSIS OF A T-SHIRT

47

Comparing 1 kg 'RHOVYL fibre', 1 kg 'Viscose fibres, at plant/GLO U SimaPro', 1 kg 'Cotton fibres, at farm/US U SimaPro' and 1 kg 'Cotton fibres, ginned, at farm/CN U - SimaPro'; Method: Eco-indicator 95 V2.05 / Europe e / normalisation

RHOVYL fibre Viscose fibres, at plant/GLO U SimaPro Cotton fibres, at farm/US U SimaPro Cotton fibres, ginned, at farm/CN U - SimaPro

Greenhouse Ozone layer Acidification Eutrophication Heavy metals Carcinogens Pesticides Summer smog Winter smog Energy resources Solid waste

0,0014

0,00135

0,0013

0,00125

0,0012

0,00115

0,0011

0,00105

0,001

0,00095

0,0009

0,00085

0,0008

0,00075

0,0007

0,00065

0,0006

0,00055

0,0005

0,00045

0,0004

0,00035

0,0003

0,00025

0,0002

0,00015

0,0001

0,00005

0

Figure 34. Comparation of fibres with Eco-indicator 95 method: Normalisation

Page 48: LIFE CYCLE ANALYSIS OF A T-SHIRT

48

Comparing 1 kg 'RHOVYL fibre', 1 kg 'Viscose fibres, at plant/GLO U SimaPro', 1 kg 'Cotton fibres, at farm/US U SimaPro' and 1 kg 'Cotton fibres, ginned, at farm/CN U - SimaPro'; Method: Eco-indicator 95 V2.05 / Europe e / weighting

RHOVYL fibre Viscose fibres, at plant/GLO U SimaPro Cotton fibres, at farm/US U SimaPro Cotton fibres, ginned, at farm/CN U - SimaPro

Greenhouse Ozone layer Acidification Eutrophication Heavy metals Carcinogens Pesticides Summer smog Winter smog Energy resources Solid waste

mPt

7

6,8

6,6

6,4

6,2

6

5,8

5,6

5,4

5,2

5

4,8

4,6

4,4

4,2

4

3,8

3,6

3,4

3,2

3

2,8

2,6

2,4

2,2

2

1,8

1,6

1,4

1,2

1

0,8

0,6

0,4

0,2

0

Figure 34. Comparation of fibres with Eco-indicator 95 method: Weighting

Page 49: LIFE CYCLE ANALYSIS OF A T-SHIRT

49

Comparing 1 kg 'RHOVYL fibre', 1 kg 'Viscose fibres, at plant/GLO U SimaPro', 1 kg 'Cotton fibres, at farm/US U SimaPro' and 1 kg 'Cotton fibres, ginned, at farm/CN U - SimaPro'; Method: Eco-indicator 95 V2.05 / Europe e / single score

Greenhouse Ozone layer Acidification Eutrophication Heavy metals Carcinogens Pesticides Summer smog Winter smog Energy resourcesSolid waste

RHOVYL fibre Viscose fibres, at plant/GLO U SimaPro Cotton fibres, at farm/US U SimaPro Cotton fibres, ginned, at farm/CN U - SimaPro

mPt

14,5

14

13,5

13

12,5

12

11,5

11

10,5

10

9,5

9

8,5

8

7,5

7

6,5

6

5,5

5

4,5

4

3,5

3

2,5

2

1,5

1

0,5

0

Figure 34. Comparation of fibres with Eco-indicator 95 method: Single Score

Page 50: LIFE CYCLE ANALYSIS OF A T-SHIRT

50

4. Final conclusions

1. As we said in 2.5 Data quality, the big problem of this LCA has been having access to

good data. The free program GEMIS has worst quality data than SimaPro. We do not

know other data, so we don’t know how good data is SimaPro library, but it is better

than GEMIS data. Apart of the lack of information on GEMIS data of all environmental

impacts concerned in Human Toxicity and Ecotoxicity, the comments of the data are

very short and sometimes you do not even know which processes are included in the

data, which is the date of data or its boundaries. As we said before, picking good data

of industrial processes and having a quality data library should be done in the next

future. It would improve the results of LCA’s like this one, which can only be taken as

an orientation of the results.

2. The data presented on this LCA is the best we could get. Obviously, we cannot take

many conclusions of the results or propose improvements of the process: we only a

draft of the real process. If RHOVYL desires good and quality results, it is needed to

take data from the real process, step by step. Completing this LCA with real data will

allow to take real conclusions and to think in improvements for the process and

RHOVYL.

3. Once we assume this is only a draft that let us make an idea of the process, the

conclusions are that RHOVYL has a little contribution of the whole chain production

impacts. The only environmental impacts in which RHOVYL highlights is the

Photochemical Oxidation6 and Water Consumption. The three categories that RHOVYL

specially desired to know, are these:

Indicator Unit TOTAL RHOVYL RHOVYL [%]

Global Warming Potential kg Sb eq 3,397 0,345 8,75

Eutrophication Kg PO4 eq 0,00170 0,00011934 7,01

Water consumption m3 14,739 4,4453 30,1

Table 7. Environmental impacts of production chain desired and RHOVYL’s contribution (Article 1)

6 Photochemical Oxidation refers to all smog-producing chemicals, like NOX, VOCs. In RHOVYL process the emissions of Acetone and the CS2 cause the Photochemical Oxidation.