life analytical chemistry-molecular imaging (mi): optical imaging

34
1 Life Analytical Chemistry-Molecular Imaging (MI): Optical Imaging Gaolin Liang 梁梁梁梁 () , Ph. D. Professor, Ph. D. Advisor Deptartment of Chemistry University of Science and Technology of China

Upload: asher-rivas

Post on 02-Jan-2016

49 views

Category:

Documents


1 download

DESCRIPTION

Life Analytical Chemistry-Molecular Imaging (MI): Optical Imaging. Gaolin Liang (梁高林) , Ph. D. Professor, Ph. D. Advisor Deptartment of Chemistry University of Science and Technology of China. Microscopic fluorescence imaging. Fluorescence imaging. Macroscopic fluorescence imaging. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Life Analytical Chemistry-Molecular Imaging (MI): Optical Imaging

1

Life Analytical Chemistry-Molecular Imaging (MI): Optical Imaging

Gaolin Liang (梁高林) , Ph. D.Professor, Ph. D. AdvisorDeptartment of Chemistry

University of Science and Technology of China

Page 2: Life Analytical Chemistry-Molecular Imaging (MI): Optical Imaging

2

Optical Imaging

Fluorescence imaging

Non-Fluorescence-based optical imaging

Microscopic fluorescence imaging

Macroscopic fluorescence imaging

bioluminescence imaging

optical coherence tomography

photoacoustic microscopy

tissue spectroscopy

Page 3: Life Analytical Chemistry-Molecular Imaging (MI): Optical Imaging

3

Page 4: Life Analytical Chemistry-Molecular Imaging (MI): Optical Imaging

4

Fluorescence imaging: Microscopic fluorescence imaging

History: In 1839, Rudolph Wagner visualized leukocytes rolling inblood vessels within membranous translucent tissues by using brightfieldTransillumination.

Nowadays: Several imaging approaches based on fluorescence microscopy that were established for visualizing cells in vitro have recently been adapted for in vivo imaging: multiphoton microscopy, laser-scanning confocal microscopy, fibre-optic approaches and spectrally encoded endoscopy.

Page 5: Life Analytical Chemistry-Molecular Imaging (MI): Optical Imaging

5

Fluorescence imaging: Macroscopic fluorescence imaging

There are two main types of imaging approach: fluorescence reflectance and tomographic fluorescence.

FMT-CT/FMT-CT fusion

Page 6: Life Analytical Chemistry-Molecular Imaging (MI): Optical Imaging

6

Page 7: Life Analytical Chemistry-Molecular Imaging (MI): Optical Imaging

7

Page 8: Life Analytical Chemistry-Molecular Imaging (MI): Optical Imaging

8

Page 9: Life Analytical Chemistry-Molecular Imaging (MI): Optical Imaging

9

Page 10: Life Analytical Chemistry-Molecular Imaging (MI): Optical Imaging

10

Page 11: Life Analytical Chemistry-Molecular Imaging (MI): Optical Imaging

11

Optical Imaging

Fluorescence imaging

Non-Fluorescence-based optical imaging

Microscopic fluorescence imaging

Macroscopic fluorescence imaging

bioluminescence imaging

optical coherence tomography

photoacoustic microscopy

tissue spectroscopy

Page 12: Life Analytical Chemistry-Molecular Imaging (MI): Optical Imaging

12

Non-Fluorescence-based optical imaging: bioluminescence imaging

luciferase–luciferin pairs

firefly (Photinus pyralis) luciferase–luciferin

Renilla reniformis luciferase–coelenterazine

Gaussia princeps luciferase–coelenterazine

Page 13: Life Analytical Chemistry-Molecular Imaging (MI): Optical Imaging

13

Non-Fluorescence-based optical imaging: bioluminescence imaging

Page 14: Life Analytical Chemistry-Molecular Imaging (MI): Optical Imaging

14

Page 15: Life Analytical Chemistry-Molecular Imaging (MI): Optical Imaging

15

Page 16: Life Analytical Chemistry-Molecular Imaging (MI): Optical Imaging

16

Page 17: Life Analytical Chemistry-Molecular Imaging (MI): Optical Imaging

17

Page 18: Life Analytical Chemistry-Molecular Imaging (MI): Optical Imaging

18

Page 19: Life Analytical Chemistry-Molecular Imaging (MI): Optical Imaging

19

Non-Fluorescence-based optical imaging: optical coherence tomography

Optical coherence tomography is based on light scattering and can beused to image microscopic structures in vivo (at a resolution of 2–15 μmand to a depth of 1–3 mm)

Page 20: Life Analytical Chemistry-Molecular Imaging (MI): Optical Imaging

20

Page 21: Life Analytical Chemistry-Molecular Imaging (MI): Optical Imaging

21

Page 22: Life Analytical Chemistry-Molecular Imaging (MI): Optical Imaging

22

Page 23: Life Analytical Chemistry-Molecular Imaging (MI): Optical Imaging

23

Page 24: Life Analytical Chemistry-Molecular Imaging (MI): Optical Imaging

24

Page 25: Life Analytical Chemistry-Molecular Imaging (MI): Optical Imaging

25

Non-Fluorescence-based optical imaging: photoacoustic microscopy

Photoacoustic microscopy uses short laser pulses to irradiate tissueand temporarily raise its temperature (by millikelvins). Thermo-elasticexpansion then causes the emission of photoacoustic waves that canbe measured by wide-band ultrasonic transducers, offering improveddepth resolution in the 3–20 mm range

Page 26: Life Analytical Chemistry-Molecular Imaging (MI): Optical Imaging

26

Non-Fluorescence-based optical imaging: photoacoustic microscopy

Page 27: Life Analytical Chemistry-Molecular Imaging (MI): Optical Imaging

27

Non-Fluorescence-based optical imaging: photoacoustic microscopy

Page 28: Life Analytical Chemistry-Molecular Imaging (MI): Optical Imaging

28

Non-Fluorescence-based optical imaging: photoacoustic microscopy

Page 29: Life Analytical Chemistry-Molecular Imaging (MI): Optical Imaging

29

Non-Fluorescence-based optical imaging: photoacoustic microscopy

Page 30: Life Analytical Chemistry-Molecular Imaging (MI): Optical Imaging

30

Non-Fluorescence-based optical imaging: photoacoustic microscopy

Page 31: Life Analytical Chemistry-Molecular Imaging (MI): Optical Imaging

31

Non-Fluorescence-based optical imaging: tissue spectroscopy

tissue spectroscopy detects relative changes in the way in whichlight interacts with tissue and has been used extensively to improve earlydetection of gastrointestinal malignancies

Page 32: Life Analytical Chemistry-Molecular Imaging (MI): Optical Imaging

32

Page 33: Life Analytical Chemistry-Molecular Imaging (MI): Optical Imaging

33

Page 34: Life Analytical Chemistry-Molecular Imaging (MI): Optical Imaging

34