li eswrt aop modeling manuscript si r1 final · 2016-10-18 · 1 1 supporting information section 2...

40
1 SUPPORTING INFORMATION SECTION 1 2 A Mechanistic Understanding of the Degradation of Trace Organic Contaminants 3 by UV/Hydrogen Peroxide, UV/Persulfate and UV/Free Chlorine for Water Reuse 4 5 Wei Li 1,2 , Tushar Jain 1 , Kenneth Ishida 3 and Haizhou Liu *1,2 6 7 1 Department of Chemical and Environmental Engineering, University of California, Riverside, 8 CA, USA 92521 9 2 Environmental Toxicology Program, University of California at Riverside, CA, USA 92521 10 3 Orange County Water District, Fountain Valley, CA USA 92708 11 12 * Corresponding Author: e-mail: [email protected], phone (951) 827-2076 13 14 Submitted to Environmental Sciences: Water Research and Technology 15 Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2016

Upload: others

Post on 25-Mar-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Li ESWRT AOP Modeling Manuscript SI R1 Final · 2016-10-18 · 1 1 SUPPORTING INFORMATION SECTION 2 3 A Mechanistic Understanding of the Degradation of Trace Organic Contaminants

1

SUPPORTING INFORMATION SECTION 1

2

A Mechanistic Understanding of the Degradation of Trace Organic Contaminants 3

by UV/Hydrogen Peroxide, UV/Persulfate and UV/Free Chlorine for Water Reuse 4

5

Wei Li1,2, Tushar Jain1, Kenneth Ishida3 and Haizhou Liu*1,2 6

7

1 Department of Chemical and Environmental Engineering, University of California, Riverside, 8

CA, USA 92521 9

2 Environmental Toxicology Program, University of California at Riverside, CA, USA 92521 10

3Orange County Water District, Fountain Valley, CA USA 92708 11

12

* Corresponding Author: e-mail: [email protected], phone (951) 827-2076 13

14

Submitted to Environmental Sciences: Water Research and Technology 15

Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology.This journal is © The Royal Society of Chemistry 2016

Page 2: Li ESWRT AOP Modeling Manuscript SI R1 Final · 2016-10-18 · 1 1 SUPPORTING INFORMATION SECTION 2 3 A Mechanistic Understanding of the Degradation of Trace Organic Contaminants

2

Table of Content 16

Text S1 Calculation of photolysis rates .......................................................................................... 517

Text S2 Probe method to determine steady state concentration of radicals ................................... 718

Text S3 Rate constants of reactions involving radicals .................................................................. 919

Scheme S1 A diagram of the single UV flow-through reactor (UVPhox, Trojan Technology). 20

The kinetics modeling is based on the configuration of this reactor. ................................... 1121

Fig. S1 Comparison of UV/H2O2, UV/S2O82- and UV/HOCl treatment. (A) Consumption of 22

H2O2, S2O82- and HOCl by UV irradiance. (B) Log removal of organic contaminants. 23

[Oxidant]=88 µM, [contaminant]=50 nM, [Cl-]=80 µM, [inorganic carbon]=200 µM, 24

[bromide]=0.2 µM, TOC=0.15 mg C/L, pH=8, UV irradiance= 45.3 mW/cm2, UV 25

dosage=1178 mJ/cm2 in 26 seconds. .................................................................................... 1226

Fig. S2 1,4-dioxane removal byUV/H2O2, UV/S2O82- and UV/HOCl. (A) First order decay of 27

1,4-dioxane. (B) First-order decay of H2O2, S2O82- and HOCl by UV irradiance. (C) 28

contribution of radicals to 1,4-dioxane decay. [Oxidant]=2 mM, [1,4-dioxane]=250 µM, 29

[chloride]=80 µM, [inorganic carbon]=200 µM, [Br-]=0.2 µM, TOC=0.15 mg C/L, pH=5.8, 30

UV irradiance= 45.3 mW/cm2, UV dosage=1178 mJ/cm2 in 26 seconds. Dash lines are 31

modeled results. .................................................................................................................... 1332

Fig. S3 Phenol removal by UV/H2O2, UV/S2O82- and UV/HOCl. (A) First order decay of phenol. 33

(B) first order decay of H2O2, S2O82- and HOCl by UV irradiance. (C) contribution of 34

radicals to phenol decay. [Oxidant]=2 mM, [phenol]=250 µM, [Cl-]=80 µM, [inorganic 35

carbon]=200 µM, [Br-]=0.2 µM, TOC=0.15 mg C/L, pH=5.8, UV irradiance= 45.3 36

mW/cm2, UV dosage=1178 mJ/cm2 in 26 seconds. Dash lines are modeled results. .......... 1437

Page 3: Li ESWRT AOP Modeling Manuscript SI R1 Final · 2016-10-18 · 1 1 SUPPORTING INFORMATION SECTION 2 3 A Mechanistic Understanding of the Degradation of Trace Organic Contaminants

3

Fig. S4 Direct oxidation of 1,4-dioxane and phenol by HOCl. [Oxidant]=2 mM, 38

[contaminant]=250 µM, [Cl-]=80 µM, [inorganic carbon]=200 µM, [Br-]=0.2 µM, 39

TOC=0.15 mg C/L, pH=5.8. Dash lines are modeled results. .............................................. 1540

Fig. S5 Effect of pH on the treatment efficiency of UV/H2O2. (A) First-order degradation rates of 41

organic contaminants in treatment. (B) Radical distribution. [H2O2]=88 µM, [trace organic 42

contaminant]=50 nM, [Cl-]=0.08 mM, [inorganic carbon]=0.2 mM, [Br-]=0.2 µM, 43

TOC=0.15 mg C/L, UV irra diance=45 mW/cm2. ................................................................ 1644

Fig. S6 Effect of pH on the treatment efficiency of UV/HOCl. (A) First-order degradation rates 45

of organic contaminants in treatment. (B) Radical distribution. [HOCl]=88 µM, [trace 46

organic contaminant]=50 nM, [Cl-]=0.08 mM, [inorganic carbon]=0.2 mM, [Br-]=0.2 µM, 47

TOC=0.15 mg C/L, UV irradiance=45 mW/cm2. ................................................................. 1748

Fig. S7 Effect of chloride on the treatment efficiency of UV/H2O2. (A) First-order degradation 49

rates of organic contaminants in treatment. (B) Radical distribution. [H2O2]=88 µM, [trace 50

organic contaminant]=50 nM, pH=5.8, [inorganic carbon]=0.2 mM, [Br-]=0.2 µM, 51

TOC=0.15 mg C/L, UV irradiance=45 mW/cm2. ................................................................. 1852

Fig. S8 Effect of chloride on the treatment efficiency of UV/HOCl. (A) First-order degradation 53

rates of organic contaminants in treatment. (B) Radical distribution. [HOCl]=88 µM, [trace 54

organic contaminant]=50 nM, pH=5.8, [inorganic carbon]=0.2 mM, [Br-]=0.2 µM, 55

TOC=0.15 mg C/L, UV irradiance=45 mW/cm2. ................................................................. 1956

Fig. S9 Effect of inorganic carbon on the treatment efficiency of UV/S2O82-. (A) First-order 57

degradation rates of organic contaminants in treatment. (B) Radical distribution. [S2O82-58

]=88 µM, [trace organic contaminant]=50 nM, pH=5.8, [Cl-]=80 µM, [Br-]=0.2 µM, 59

TOC=0.15 mg C/L, UV irradiance=45 mW/cm2. ................................................................. 2060

Page 4: Li ESWRT AOP Modeling Manuscript SI R1 Final · 2016-10-18 · 1 1 SUPPORTING INFORMATION SECTION 2 3 A Mechanistic Understanding of the Degradation of Trace Organic Contaminants

4

Fig. S10 Effect of inorganic carbon on the treatment efficiency of UV/H2O2. (A) First-order 61

degradation rates of organic contaminants in treatment. (B) Radical distribution. [H2O2]=88 62

µM, [trace organic contaminant]=50 nM, pH=5.8, [Cl-]=80 µM, [Br-]=0.2 µM, TOC=0.15 63

mg C/L, UV irradiance=45 mW/cm2. ................................................................................... 21 64

Page 5: Li ESWRT AOP Modeling Manuscript SI R1 Final · 2016-10-18 · 1 1 SUPPORTING INFORMATION SECTION 2 3 A Mechanistic Understanding of the Degradation of Trace Organic Contaminants

5

Text S1 Calculation of photolysis rates 65

The photolysis rate (rp) of H2O2, S2O82- and HOCl by low-pressure high-output (LPHO) mercury 66

vapor UV lamp (λ=254nm) was calculated based on the following equation: 67

rp= - 2 ´ F × I0 × foxidant × fsolution (1) 68

F is the extinction coefficient of the oxidation, i.e., FH2O2=0.5 (Baxendale and Wilson, 1957), 69

Fpersulfate=0.7 (Mark et al., 1990), FHOCl=0.7 (Watts and Linden, 2007), FOCl-=0.52 (Nowell and 70

Hoigne, 1992). Io is volume-normalized UV irradiance from the flow-through UV reactor 71

(Scheme S1). 72

foxidant is the fraction of incident light absorbed by the oxidant. fsolution is the fraction of light 73

absorbed by the total solution, which were calculated as: 74

!"#$%&'( =+,-,+.-. (2) 75

!/"01($"' = 1 − 105(78 +.-.)0 (3) 76

εp is the molar extinction coefficient of the oxidant (M-1�cm-1), cp is the concentration of the 77

oxidant (M). εi and ci are the molar extinction coefficient and concentration for NOM and a 78

particular contaminant selected. a is the absorption coefficient of the solution at the wavelength 79

of 254 nm and l is the path length of the reactor (cm). The direct photolysis rate for NOM and a 80

particular contaminant is also calculated based on the same equations except fcontaminant is 81

calculated based on the εi and ci of the particular contaminant (refer to Table S3 for the quantum 82

yield and molar extinction coefficient). 83

The volume-normalized surface irradiance from a flow-through UV reactor (Io) was calculated as 84

follows: 85

Page 6: Li ESWRT AOP Modeling Manuscript SI R1 Final · 2016-10-18 · 1 1 SUPPORTING INFORMATION SECTION 2 3 A Mechanistic Understanding of the Degradation of Trace Organic Contaminants

6

:; =<=>×@=>ABCDEF×G×(

(4) 86

The flow-through UV reactor was based on a configuration widely applied in water reuse 87

facilities (Scheme S1). The hydraulic retention time of the UV reactor (t) is 26 second. The 88

energy output of the low-pressure high-output mercury vapor UV lamp (Wuv) during the 89

hydraulic retention time of the UV reactor is 1179 mJ (Trojan Technology, London, ON). The 90

UV lamp surface area (Suv) is 1302 cm2. E is the energy of one mole of photons at the 91

wavelength of 254 nm (4.72×108 mJ), V is the volume of the UV reactor (9.8 L). Consequently, 92

Io was calculated as 1.27´10-5 L-1s-1. 93

Page 7: Li ESWRT AOP Modeling Manuscript SI R1 Final · 2016-10-18 · 1 1 SUPPORTING INFORMATION SECTION 2 3 A Mechanistic Understanding of the Degradation of Trace Organic Contaminants

7

Text S2 Probe method to determine steady state concentration of radicals 94

Nitrobenzene, benzoic acid and N,N-dimethylaniline were utilized to probe the steady state 95

concentration of HO•, SO4•-, Cl•, Cl2

•- and CO3•-. The control experiments showed a negligible 96

direct photo-degradation for all probe compounds. Nitrobenzene exclusively reacts with HO•, 97

therefore is the best probe for HO•. First, the experimentally observed pseudo first order decay 98

rate of nitrobenzene (kobs) was obtained and [HO•]ss was calculated based on Equation 1. 99

−ln( JK LJK M

) = NOP5JK[RS∙]//V (Eq. 1) 100

[NB]t is the concentration of nitrobenzene at time t; [NB]0 is the initial concentration of 101

nitrobenzene; kHO-NB is the first-order rate constant between HO• and nitrobenzene, i.e., 3.2×109 102

M-1s-1, Neta and Dorfman, 1968). 103

[CO3•-]ss is calculated based on equation 2 analogously. 104

−ln( J,JXYZ LJ,JXYZ M

) = N[P\5J,JXYZ[]S\∙5]//V (Eq. 2) 105

kCO3-NB is the first order rate constant between CO3•- and N,N-dimethylaniline (1.4×109 M-1s-1, 106

Lilie et al, 1978). 107

[Cl•]ss and [SO4•-]ss

were simultaneously calculated using Equationa 3 and 4 108

-ln( KZ LKZ M

) = (NOP5KZ[RS∙]// + N@P_5KZ[`S_∙5]// + N[05KZ ]a∙]// V (Eq. 3) 109

-ln( b,_X Lb,_X M

) = (NOP5b,_X[RS∙]// + N@P_5b,_X[`S_∙5]// + N[05b,_X ]a∙]// V (Eq. 4) 110

Page 8: Li ESWRT AOP Modeling Manuscript SI R1 Final · 2016-10-18 · 1 1 SUPPORTING INFORMATION SECTION 2 3 A Mechanistic Understanding of the Degradation of Trace Organic Contaminants

8

kHO-BA=4.3×109 M-1s-1, Wander et al, 1968); kSO4-BA=1.2×109 M-1s-1, Neta et al, 1977); 1.4×109 M-111

1s-1, kCl-BA=1.8×1010 M-1s-1, Martire et al. 2001). 112

In the UV/S2O82-, the contribution of Cl2

•- to benzoic acid and 1,4-dioxane degradation was 113

minimal because the steady state concentration of Cl2•- was low and its reactivity with the 114

contaminants was lower than Cl• (Martire et al, 2001). In UV/HOCl system, the steady-state 115

concentration of Cl2•- could be high enough to make significant contribution to contaminant 116

degradation because the reverse reaction of ClOH•- with Cl- (Reaction 54 in table S1) produced a 117

significant amount of Cl2•-. Therefore, [Cl•]ss

and [Cl2•-]ss were simultaneously calculated using 118

the following equations: 119

−ln( KZ LKZ M

) = (NOP5KZ[RS∙]// + N[0c5KZ[]ac∙5]// + N[05KZ ]a∙]// V (eq 5) 120

−ln( b,_X Lb,_X M

) = (NOP5b,_X[RS∙]// + N[0c5b,_X[]ac∙5]// + N[05b,_X ]a∙]// V (eq 6) 121

kCl2-BA= 1.0×106 - 1.0×108 M-1s-1, kCl2-1,4D=1.0×106 - 1.0×108 M-1s-1 (Text S3). 122

123

Page 9: Li ESWRT AOP Modeling Manuscript SI R1 Final · 2016-10-18 · 1 1 SUPPORTING INFORMATION SECTION 2 3 A Mechanistic Understanding of the Degradation of Trace Organic Contaminants

9

Text S3 Rate constants of reactions involving radicals 124

The rate constants for all six compounds were mostly obtained from NIST database (NIST, 125

2015). When the value was not available, a range of the rate constant was estimated base on 126

existing known values for similar compounds. For example, the reaction mechanism of Cl• and 127

Br• are very similar to HO•, and the rates are comparable to the rates of HO• (Grebel et al., 2010, 128

NIST, 2015), thus a ±10% of HO• rate was assigned to Cl• or Br•. The estimation also based on 129

the reaction mechanism of the specific radical with different type of molecules. For example, Cl• 130

reacts fast with aromatic compounds and amine containing compounds (109-1010 M-1s-1, NIST, 131

2015), moderately fast with unsaturated aliphatic compounds (108–109 M-1s-1) and slow with 132

saturated aliphatic compounds including chlorinated or brominated compounds (104–106 M-1s-1). 133

Br• has high reaction rates with aromatic compounds (109–1010 M-1s-1) and low reactivity with 134

aliphatic alcohols (104-106 M-1s-1, NIST, 2015). 135

A relatively high reactivity also applies to Cl2•-, ClBr•-, Br2

•- and CO3•- (Yang et al., 2014, Fang et 136

al, 2014). Therefore, a ±10% rate was assigned based on known rates for any of the above 137

radicals. With a comparison of available rate constants from the NIST database, Cl2•- has high 138

reaction rates (108 M-1s-1) with unsaturated aliphatic compounds than with aromatic (106–108 M-139

1s-1). Low reactivity with unsaturated carboxylic (106 M-1 s-1). CO3•- reacts fast with compounds 140

containing amines (108–109 M-1s-1, NIST, 2015), but low reactivity with aromatic compounds 141

(104–106 M-1s-1). The rates of direct oxidation by HOCl were estimated when the literature 142

values were not available. For example, the oxidation rates for aniline, 17b-estradiol, 143

sulfamethoxazole and carbamazepine by HOCl was estimated based on their known reaction 144

Page 10: Li ESWRT AOP Modeling Manuscript SI R1 Final · 2016-10-18 · 1 1 SUPPORTING INFORMATION SECTION 2 3 A Mechanistic Understanding of the Degradation of Trace Organic Contaminants

10

rates with O3 (Huber et al. 2003). The direct oxidation of 1,4-dioxane by HOCl is negligible 145

based on experimental verification (Figure S1). 146

Page 11: Li ESWRT AOP Modeling Manuscript SI R1 Final · 2016-10-18 · 1 1 SUPPORTING INFORMATION SECTION 2 3 A Mechanistic Understanding of the Degradation of Trace Organic Contaminants

11

147

Scheme S1 A diagram of the single UV flow-through reactor (Trojan Technologies, London, 148

ON). The kinetics modeling is based on the configuration of this reactor. 149

Page 12: Li ESWRT AOP Modeling Manuscript SI R1 Final · 2016-10-18 · 1 1 SUPPORTING INFORMATION SECTION 2 3 A Mechanistic Understanding of the Degradation of Trace Organic Contaminants

12

150

151 Fig. S1 Comparison of UV/H2O2, UV/S2O8

2- and UV/HOCl treatment based on the kinetic 152

model. (A) Consumption of H2O2, S2O82- and HOCl by UV irradiance. (B) Log removal of 153

organic contaminants. [Oxidant]=88 µM, [contaminant]=50 nM, [Cl-]=80 µM, [inorganic 154

carbon]=200 µM, [Br-]=0.2 µM, TOC=0.15 mg C/L, pH=8, UV irradiance= 45.3 mW/cm2, UV 155

dosage=1178 mJ/cm2 in 26 seconds. 156

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000 1200

Reaction Time (s)

C/C

0

UV Dosage (mJ�cm-2 )

S2O8

H2O2

UV/Cl2

UV/H2O2

UV/S2O82-

UV/HOCl

A

0

1

2

3

4

5

6

Log

Rem

oval

Trace Organic Contaminant

UV-H2O2UV-S2O82-UV-Cl2

UV/H2O2

UV/S2O82-

UV/HOCl

1,4-dioxane

Carbamazepine

Phenol

17b-estradiol

AnilineSulfame-thoxazoleB

14

13

Page 13: Li ESWRT AOP Modeling Manuscript SI R1 Final · 2016-10-18 · 1 1 SUPPORTING INFORMATION SECTION 2 3 A Mechanistic Understanding of the Degradation of Trace Organic Contaminants

13

157

158

159 Fig. S2 1,4-dioxane removal byUV/H2O2, UV/S2O8

2- and UV/HOCl. (A) First order decay of 160

1,4-dioxane. (B) First-order decay of H2O2, S2O82- and HOCl by UV irradiance. (C) contribution 161

of radicals to 1,4-dioxane decay. [Oxidant]=2 mM, [1,4-dioxane]=250 µM, [Cl-]=80 µM, 162

[inorganic carbon]=200 µM, [Br-]=0.2 µM, TOC=0.15 mg C/L, pH=5.8, UV irradiance= 45.3 163

mW/cm2, UV dosage=1178 mJ/cm2 in 26 seconds. Dash lines are modeled results. 164 165

0 2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000 1200

C/C

0 1,

4-D

UV Dosage (mJ�cm-2 )

Reaction Time (min)

PS e

H2O2 e

Cl2 e

UV/S2O82-

UV/H2O2

UV/HOCl

A

0 2 4 6 8 10

0.4

0.6

0.8

1.0

0 200 400 600 800 1000 1200

C/C

0 ox

idan

t

UV Dosage (mJ�cm-2 )

Reaction Time (min)

PS e

H2O2 e

Cl2 e

UV/S2O82-

UV/H2O2

UV/HOCl

B

Page 14: Li ESWRT AOP Modeling Manuscript SI R1 Final · 2016-10-18 · 1 1 SUPPORTING INFORMATION SECTION 2 3 A Mechanistic Understanding of the Degradation of Trace Organic Contaminants

14

166

167

168

Fig. S3 Phenol removal by UV/H2O2, UV/S2O82- and UV/HOCl. (A) First order decay of phenol. 169

(B) First order decay of H2O2, S2O82- and HOCl by UV irradiance. (C) Contribution of radicals to 170

phenol decay. [Oxidant]=2 mM, [phenol]=250 µM, [Cl-]=80 µM, [inorganic carbon]=200 µM, 171

[Br-]=0.2 µM, TOC=0.15 mg C/L, pH=5.8, UV irradiance= 45.3 mW/cm2, UV dosage=1178 172

mJ/cm2 in 26 seconds. Dash lines are modeled results. 173

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000 1200

C/C

0 ph

enol

UV Dosage (mJ�cm-2 )

Reaction Time (min)

PS e

H2O2 e

Series5

UV/S2O82-

UV/H2O2

UV/HOCl

A

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000 1200

C/C

0 ox

idan

t

UV Dosage (mJ�cm-2 )

Reaction Time (min)

PS e

H2O2 e

Cl2 e

UV/S2O82-

UV/H2O2

UV/HOCl

B

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Log

rem

oval

SO4.-

OH.

Cl.

CO3.-

Cl2.-

Series6

Exp ExpExpMod ModMod

UV/S2O82-

UV/HOCl

UV/H2O2

C SO4�-

HO�

Cl�

CO3�-

Cl2�-

Direct oxidation

Page 15: Li ESWRT AOP Modeling Manuscript SI R1 Final · 2016-10-18 · 1 1 SUPPORTING INFORMATION SECTION 2 3 A Mechanistic Understanding of the Degradation of Trace Organic Contaminants

15

174 Fig. S4 Direct oxidation of 1,4-dioxane and phenol by HOCl. [Oxidant]=2 mM, 175

[contaminant]=250 µM, [Cl-]=80 µM, [inorganic carbon]=200 µM, [Br-]=0.2 µM, TOC=0.15 mg 176

C/L, pH=5.8. Dash lines are modeled results. 177

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 2.5 5 7.5 10

C/C

0

Reaction Time (min)

1,4-dioxanephenol

Page 16: Li ESWRT AOP Modeling Manuscript SI R1 Final · 2016-10-18 · 1 1 SUPPORTING INFORMATION SECTION 2 3 A Mechanistic Understanding of the Degradation of Trace Organic Contaminants

16

178

179

Fig. S5 Effect of pH on the treatment efficiency of UV/H2O2 based on the kinetic model. (A) 180

First-order degradation rates of organic contaminants in treatment. (B) Radical distribution. 181

[H2O2]=88 µM, [trace organic contaminant]=50 nM, [Cl-]=0.08 mM, [inorganic carbon]=0.2 182

mM, [Br-]=0.2 µM, TOC=0.15 mg C/L, UV irradiance=45 mW/cm2. 183

0.0E+00

1.0E-16

2.0E-16

3.0E-16

4.0E-16

0.0E+00

4.0E-11

8.0E-11

1.2E-10

5.0 5.5 6.0 6.5 7.0

[Cl� ]

ss (M

)

[R� ] s

s (M

)

pH

[OH.]

[CO3.-]

[Cl.]

[HO•]ss

[CO3•-]ss

B

[Cl•]ss

Page 17: Li ESWRT AOP Modeling Manuscript SI R1 Final · 2016-10-18 · 1 1 SUPPORTING INFORMATION SECTION 2 3 A Mechanistic Understanding of the Degradation of Trace Organic Contaminants

17

184

185

Fig. S6 Effect of pH on the treatment efficiency of UV/HOCl based on the kinetic model. (A) 186

First-order degradation rates of organic contaminants in treatment. (B) Radical distribution. 187

[HOCl]=88 µM, [trace organic contaminant]=50 nM, [Cl-]=0.08 mM, [inorganic carbon]=0.2 188

mM, [Br-]=0.2 µM, TOC=0.15 mg C/L, UV irradiance=45 mW/cm2. 189

0.0E+00

1.0E-12

2.0E-12

3.0E-12

0.0E+00

3.0E-10

6.0E-10

9.0E-10

1.2E-09

5.0 5.5 6.0 6.5 7.0

[R� ] s

s (M

)

[CO

3�- ]

ss (M

)

pH

CO3.-]ss

[HO.]ss

[Br.-]

[Cl.]ss

[HO•]ss

[Cl•]ss

[Br•]ss

[CO3•-]ss

B

Page 18: Li ESWRT AOP Modeling Manuscript SI R1 Final · 2016-10-18 · 1 1 SUPPORTING INFORMATION SECTION 2 3 A Mechanistic Understanding of the Degradation of Trace Organic Contaminants

18

190

191

Fig. S7 Effect of chloride on the treatment efficiency of UV/H2O2 based on the kinetic model. 192

(A) First-order degradation rates of organic contaminants in treatment. (B) Radical distribution. 193

[H2O2]=88 µM, [trace organic contaminant]=50 nM, [inorganic carbon]=0.2 mM, [Br-]=0.2 µM, 194

pH=5.8, TOC=0.15 mg C/L, UV irradiance=45 mW/cm2. 195

0.0E+00

2.0E-11

4.0E-11

6.0E-11

8.0E-11

0 50 100 150 200 250 300

[R� ] s

s (M

)

[Cl-] (µM)

[OH.]

[CO3.-]

[HO•]ss

[CO3•-]ss

B

Page 19: Li ESWRT AOP Modeling Manuscript SI R1 Final · 2016-10-18 · 1 1 SUPPORTING INFORMATION SECTION 2 3 A Mechanistic Understanding of the Degradation of Trace Organic Contaminants

19

196

197

Fig. S8 Effect of chloride on the treatment efficiency of UV/HOCl based on the kinetic model. 198

(A) First-order degradation rates of organic contaminants in treatment. (B) Radical distribution. 199

[HOCl]=88 µM, [trace organic contaminant]=50 nM, [inorganic carbon]=0.2 mM, [Br-]=0.2 µM, 200

pH=5.8, TOC=0.15 mg C/L, UV irradiance=45 mW/cm2. 201

0.0E+00

1.0E-12

2.0E-12

3.0E-12

0.0E+00

4.0E-10

8.0E-10

1.2E-09

0 50 100 150 200 250 300

[R� ] s

s (M

)

[CO

3�- ]

ss (M

)

[Cl-] (µM)

[CO3.-]

[OH.]

[Cl.]

[HO•]ss

[Cl•]ss

[CO3•-]ss

B

Page 20: Li ESWRT AOP Modeling Manuscript SI R1 Final · 2016-10-18 · 1 1 SUPPORTING INFORMATION SECTION 2 3 A Mechanistic Understanding of the Degradation of Trace Organic Contaminants

20

202

203

Fig. S9 Effect of inorganic carbon on the treatment efficiency of UV/S2O82- based on the kinetic 204

model. (A) First-order degradation rates of organic contaminants in treatment. (B) Radical 205

distribution. [S2O82-]=88 µM, [trace organic contaminant]=50 nM, [Cl-]=80 µM, [Br-]=0.2 µM, 206

pH=5.8, TOC=0.15 mg C/L, UV irradiance=45 mW/cm2. 207

0.0E+00

8.0E-12

1.6E-11

2.4E-11

3.2E-11

30 90 150 210 270 330 390

[R� ] s

s(M

)

[TOTCO3] (µM)

[HO.]ss

[SO4.-]ss

[CO3.-]ss

[HO•]ss

[SO4•-]ss

[CO3•-]ss

B

Page 21: Li ESWRT AOP Modeling Manuscript SI R1 Final · 2016-10-18 · 1 1 SUPPORTING INFORMATION SECTION 2 3 A Mechanistic Understanding of the Degradation of Trace Organic Contaminants

21

208

209

Fig. S10 Effect of inorganic carbon on the treatment efficiency of UV/H2O2 based on the kinetic 210

model. (A) First-order degradation rates of organic contaminants in treatment. (B) Radical 211

distribution. [H2O2]=88 µM, [trace organic contaminant]=50 nM, [Cl-]=80 µM, [Br-]=0.2 µM, 212

pH=5.8, TOC=0.15 mg C/L, UV irradiance=45 mW/cm2. 213

-1.0E-16

2.0E-16

5.0E-16

8.0E-16

0.0E+00

4.0E-11

8.0E-11

1.2E-10

1.6E-10

30 90 150 210 270 330 390

[Cl� ]

ss a

nd [C

l 2�- ]

ss (M

)

[HO

� ] ss

and

[CO

3�- ] s

s (M

)

[TOTCO3] (µM)

[CO3.-]ss

[HO.]ss

[Cl.]ss

[Cl2.-]ss

[CO3•-]ss

[HO•]ss

B

[Cl•]ss

[Cl2•-]ss

Page 22: Li ESWRT AOP Modeling Manuscript SI R1 Final · 2016-10-18 · 1 1 SUPPORTING INFORMATION SECTION 2 3 A Mechanistic Understanding of the Degradation of Trace Organic Contaminants

22

Table S1 Rate constants and elemental reactions for kinetics modeling 214 215

No. Reaction Rate Constant Reference 1 RcSc

de2SR∙ 1.0×105\s-1 Calculated

2 `cSjc5de2`S_∙5 1.4×105\s-1 Calculated

3 RS]adeSR∙ + ]a∙ 3.9×105\s-1 Calculated

4 ]aS5de]a∙ + S∙5 3.2×105\s-1 Calculated

5 nSodeSR∙ + pqrstuVv 1.8×105b;s-1 Calculated

6 `cSjc5 + SR. → `cSj∙5 1.4×10yM-1s-1 Buxton et al., 1990 7 `cSjc5 + `S_∙5 → `cSj∙5 + `S_c5 6.6×10{M-1s-1 Jiang et al., 1992 8 `cSjc5 + ]a∙ → `cSj∙5 + ]a 8.8×10| M-1s-1 Yu et al., 2004 9 `cSjc5 + ]S\∙5 → `cSj∙5 + ]S\c5 3.0×10y M-1s-1 Yang et al 2014

10 `cSjc5 + `S{∙5 → `cSj∙5 + `S{c5 1.0×10{ M-1s-1 Assumed 11 `S{c5 + R8 → R`S{5 5.0×10b; M-1s-1 Yang et al 2014 12 `S{c5 + `S_∙5 → `S{∙ + `S_c5 1.0×10j M-1s-1 Das 2001 13 R`S{5 → R8 + `S{c5 2.0×10bs-1 Yang et al 2014 14 R`S{5 + SR∙ → RcS + `S{∙5 1.7×10y M-1s-1 Maruthamuthu & Neta 1977 15 `S_∙5 + RcS → R`S_c5 + SR∙ 6.6×10cs-1 Herrmann et al., 1995 16 `S_c5 + ]a∙ → `S_∙5 + ]a5 2.5×10j M-1s-1 Das 2001 17 `S_∙5 + SR5 → `S_c5 + SR∙ 7.0×10y M-1s-1 Peyton 1993 18 `S_∙5 + ]a5 → `S_c5 + ]a∙ 3.0×10j M-1s-1 Das 2001 19 `S_∙5 + SR∙ → R`S{5 1.0×10b; M-1s-1 Das 2001 20 `S_∙5 + R`S{5 → `S{∙5 + `S_c5 + R8 1.0×10| M-1s-1 Das 2001 21 R`S_5 → R8 + `S_c5 1.2×105cs-1 Calculated 22 `S_∙5 + `S_∙5 → `cSjc5 7.0×10j M-1s-1 Das 2001 23 `S{∙5 + `S{∙5 → `cSjc5 + Sc 2.2×10j M-1s-1 Das 2001 24 `S{∙5 + `S{∙5 → `S_∙5 + `S_∙5 + Sc 2.1×10j M-1s-1 Das 2001 25 `S{∙5 + RSc∙ → Sc + R`S{5 5.0×10y M-1s-1 Yermakov et al., 1995 26 RcSc → R8 + RSc5 1.3×105bs-1 Yang et al., 2014 27 R8 + RSc5 → RcSc 5.0×10b; M-1s-1 Yang et al., 2014 28 RcSc + `S_∙5 → RSc∙ + R`S_5 1.2×10y M-1s-1 Wine et al., 1989 29 RcSc + `S_∙5 → RSc∙ + `S_c5 + R8 1.2×10y M-1s-1 Maruthamuthu & Neta, 1978 30 RcSc + Sc∙5 → SR∙ + SR5 + Sc 1.3×105b M-1s-1 Weinstein & Bielski, 1979 31 RcSc + S∙5 → Sc∙5 + RcS 4.0×10j M-1s-1 Buxton et al., 1988 32 RcS → R8 + SR5 1.0×105\s-1 Yang et al., 2014 33 R8 + SR5 → RcS 1.0×10bb M-1s-1 Yang et al., 2014 34 R8 + Sc∙5 → RSc∙ 5.0×10b; M-1s-1 Ilan & Rabani, 1976 35 SR∙ + RcSc → RSc∙ + RcS 2.7×10y M-1s-1 Buxton et al., 1988 36 SR∙ + SR5 → S∙5 + RcS 1.2×10b; M-1s-1 Buxton et al., 1988 37 S∙5 + RcS → SR∙ + SR5 1.8×10{s-1 Buxton et al., 1988 38 S∙5 + RSc5 → Sc∙5 + SR5 4.0×10j M-1s-1 Buxton et al., 1988 39 S∙5 + Sc → S\∙5 3.6×10� M-1s-1 Buxton et al., 1988 40 S∙5 + Sc.5 + R8 → SR5 + Sc 6.0×10j M-1s-1 Sehested et al., 1982 41 S\∙5 → Sc + S∙5 2.6×10\s-1 Elliot & McCracken 1989 42 SR∙ + S∙5 → RSc5 1.0×10b; M-1s-1 Buxton et al., 1988

Page 23: Li ESWRT AOP Modeling Manuscript SI R1 Final · 2016-10-18 · 1 1 SUPPORTING INFORMATION SECTION 2 3 A Mechanistic Understanding of the Degradation of Trace Organic Contaminants

23

43 SR∙ + RSc5 → RSc∙ + SR5 7.5×10� M-1s-1 Christensen et al., 1982 44 SR∙ + RSc∙ → RcS + Sc 6.6×10� M-1s-1 Sehested et al., 1968 45 SR∙ + Sc∙5 → SR5 +Sc 7.0×10� M-1s-1 Beck, 1969 46 SR∙ + SR∙ → RcSc 3.6×10� M-1s-1 Elliot, 1989 47 SR∙ + ]a5 → ]aSR.5 4.3×10� M-1s-1 Jayson et al., 1973 48 SR∙ + R`S_5 → RcS + `S_∙5 1.7×10| M-1s-1 Heckel et al., 1966 49 RSc∙ + RSc∙ → RcSc + Sc 8.3×10{ M-1s-1 Bielski et al., 1985 50 RSc∙ + RcSc → SR∙ + RcS +Sc 3.0×10;M-1s-1 Koppenol, 1978 51 RSc∙ + Sc∙5 → RSc5 + Sc 9.7×10y M-1s-1 Bielski et al., 1985 52 RSc∙ → R8 + Sc∙5 1.6×10{ s-1 Bielski et al., 1985 53 ]aSR.5 → ]a5 + SR∙ 6.1×10� s-1 Jayson et al., 1973 54 ]aSR.5 + ]a5 → SR5 + ]ac∙5 1.0×10_ M-1s-1 Grigorev et al., 1987 55 ]aSR.5 + R8 → ]a∙ + RcS 2.1×10b; M-1s-1 Jayson et al., 1973 56 RS]a + RcSc → R]a + RcS + Sc 1.1×10_ M-1s-1 Connick 1947 57 RS]a + SR∙ → ]aS∙ + RcS 2.0×10� M-1s-1 Matthew & Anastasio, 2006 58 RS]a + Sc∙5 → ]a∙ + SR5 + Sc 7.5×10| M-1s-1 Matthew & Anastasio, 2006 59 RS]a + RSc∙ → ]a∙ + SR5 + Sc + R 7.5×10| M-1s-1 Matthew & Anastasio, 2006 60 RS]a + ]a∙ → ]aS. + R8 + ]a5 3.0×10� M-1s-1 Klaning & Thomas, 1985 61 RS]a + ]a5 → ]acSR5 1.5×10_ M-1s-1 Wang & Margerum, 1994 62 ]a∙+RcSc → R8 + ]a5 + RSc∙ 2.0×10� M-1s-1 Yu & Barker, 2003 63 ]a∙ + RcS → ]aSR.5 + R8 2.5×10{ s-1 Jayson et al., 1973 64 ]a∙ + SR5 → ]aSR.5 1.8×10b; M-1s-1 Klaning & Thomas, 1985 65 ]a∙ + ]a5 → ]ac∙5 8.5×10� M-1s-1 Yu and Barker, 2003 66 ]a∙ + ]ac → ]a\ 5.3×10j M-1s-1 Bunce et al, 1985 67 ]a∙ + ]aS5 → ]aS. + ]a5 8.3×10� M-1s-1 Klaning & Thomas, 1985 68 ]a∙ + ]a∙ → ]ac 8.8×10y M-1s-1 Wu et al., 1980 69 ]ac∙5 + ]a∙ → ]ac + ]a5 2.1×10� M-1s-1 Yu & Barker, 2003 70 ]ac∙5 + SR5 → ]a5 + ]aSR.5 4.5×10y M-1s-1 Grigorev et al., 1987 71 ]ac∙5 → ]a∙ + ]a5 6.0×10_ s-1 Yu & Barker, 2003 72 ]ac∙5 + ]ac∙5 → 2]a5+]ac 9.0×10j M-1s-1 Yu & Barker, 2003 73 ]ac∙5 + RcS → ]a5 + R]aSR 1.3×10\ s-1 Mcelroy, 1990 74 ]ac∙5 + SR∙ → RS]a + ]a5 1.0×10� M-1s-1 Wagner et al., 1986 75 ]ac∙5 + RcSc → RSc∙ + R8 + 2]a5 1.4×10{ M-1s-1 Matthew & Anastasio, 2006 76 ]ac∙5 + RSc∙ → Sc + R8 + 2]a5 3.1×10� M-1s-1 Matthew & Anastasio, 2006 77 ]ac∙5 + Sc∙5 → Sc + 2]a5 2.0×10� M-1s-1 Matthew & Anastasio, 2006 78 R]aSR → R8 + ]aSR.5 1.0×10j s-1 Mcelroy, 1990 79 R]aSR → ]a∙ + RcS 1.0×10c s-1 Mcelroy, 1990 80 R]aSR + ]a5 → ]ac∙5 + RcS 5.0×10� M-1s-1 Mcelroy, 1990 81 R8 + ]a5 → R]a 5.0×10b; M-1s-1 Yang et al 2014 82 R]a → R8 + ]a5 8.6×10b| s-1 Yang et al 2014 83 ]aS5 + RcSc → ]a5 + RcS+Sc 1.7×10{ M-1s-1 Connick 1947 84 ]aS5 + SR∙ → ]aS. + SR5 8.8×10� M-1s-1 Matthew & Anastasio, 2006 85 ]aS5 + Sc∙5 + RcS → ]a∙ + 2SR5 + Sc 2.0×10j M-1s-1 Matthew & Anastasio, 2006 86 ]ac + ]a5 → ]a\∙5 2.0×10_ M-1s-1 Ershov, 2004 87 ]ac + Sc∙5 → Sc + ]ac∙5 1.0×10� M-1s-1 Matthew & Anastasio, 2006 88 ]ac + RSc∙ → R8 + Sc + ]ac∙5 1.0×10� M-1s-1 Bjergbackke et al., 1981 89 ]ac+RcS → RS]a + ]a5 + R8 2.2×10;s-1 Wang & Margerum, 1994 90 ]ac+RcSc → 2R]a + Sc 1.3×10_ M-1s-1 Matthew & Anastasio, 2006 91 ]acSR5 → RS]a + ]a5 5.5×10� s-1 Wang & Margerum, 1994

Page 24: Li ESWRT AOP Modeling Manuscript SI R1 Final · 2016-10-18 · 1 1 SUPPORTING INFORMATION SECTION 2 3 A Mechanistic Understanding of the Degradation of Trace Organic Contaminants

24

92 ]a\∙5 → ]ac + ]a5 1.1×10{ s-1 Ershov, 2004 93 ]a\5+RSc∙ → ]ac∙5 + R]a + Sc 1.0×10� M-1s-1 Bjergbackke et al., 1981 94 ]a\5+Sc∙5 → ]ac∙5 + ]a5 + Sc 3.8×10� M-1s-1 Matthew & Anastasio, 2006 95 Rc]S\ → R]S\5+R8 2.5×10_ s-1 Yang et al 2014 96 Rc]S\ + SR∙ → ]S\.5+RcS + R8 1.0×10| M-1s-1 Grebel et al., 2010 97 R]S\5 + R8 → Rc]S\ 5.0×10b; M-1s-1 Yang et al 2014 98 R]S\5 → ]S\c5+R8 2.5×10; s-1 Matthew & Anastasio, 2006 99 R]S\5 + SR∙ → ]S\.5+RcS 8.6×10| M-1s-1 Buxton et al., 1988

100 R]S\5 + ]a∙ → ]S\.5 + R]a 2.2×10j M-1s-1 Mertens & von Sonntag, 1995 101 R]S\5 + ]ac∙5 → 2]a5 + R8 + ]S\.5 8.0×10y M-1s-1 Matthew & Anastasio, 2006 102 R]S\5 + `S_∙5 → ]S\.5 + `S_c5 + R8 9.1×10| M-1s-1 Dogliotti& Hayon, 1967 103 ]S\c5 + R8 → R]S\5 5.0×10b; M-1s-1 Matthew & Anastasio, 2006 104 ]S\c5 + SR∙ → ]S\.5+SR5 3.9×10j M-1s-1 Buxton et al., 1988 105 ]S\c5 + ]a∙ → ]S\.5 + ]a5 5.0×10j M-1s-1 Mertens & von Sonntag, 1995 106 ]S\c5 + ]ac∙5 → ]S\.5 + 2]a5 1.6×10j M-1s-1 Matthew & Anastasio, 2006 107 ]S\c5 + ]aS∙ → ]S\.5 + ]aS5 6.0×10c M-1s-1 Huie et al 1991 108 ]S\c5 + `S_∙5 → ]S\.5+`S_c5 2.5×10| M-1s-1 Padmaja et al 1993 109 ]S\.5+RcSc → R]S\5 + RSc∙ 4.3×10{ M-1s-1 Draganic et al., 1991 110 ]S\.5+RSc5 → ]S\c5 + RSc∙ 3.0×10y M-1s-1 Draganic et al., 1991 111 ]S\.5 + RSc5 → R]S\5 + Sc∙5 3.0×10y M-1s-1 Buxton et al., 1990 112 ]S\.5 + SR∙ → pqrstuV 3.0×10� M-1s-1 Crittenden et al., 1999 113 ]S\.5 + ]S\.5 → pqrstuV 3.0×10y M-1s-1 Crittenden et al., 1999 114 ]S\.5 + Sc∙5 → ]S\c5 + Sc 6.0×10j M-1s-1 Crittenden et al., 1999 115 ]S\.5 + 2Äq5 → ]S\c5 +Äqc5 3.4×10_ M-1s-1 Huie et al 1991 116 ]S\.5 + ]aS5 → ]S\c5 + ]aS∙ 5.1×10{ M-1s-1 Alfassi et al 1988 117 Äq5 + SR∙ → ÄqSR.5 1.1×10b; M-1s-1 Matthew & Anastasio, 2006 118 Äq5 + `S_.5 → Äq∙+`S_c5 3.5×10� M-1s-1 Redpath & Willson, 1975 119 Äq5 + R8 → +RÄq 5.0×10b; M-1s-1 Yang et al 2014 120 Äq5 + RS]a → Äq]a + SR5 1.3×105b M-1s-1 Sander et al., 1977 121 Äq5 +]ac → Äq]ac5 6.0×10� M-1s-1 Ershov, 2004 122 Äq5 + ]aSR∙5 → Äq]a.5 + SR5 1.0×10� M-1s-1 Matthew & Anastasio, 2006 123 Äq5 + ]a∙ → Äq]a.5 1.2×10b; M-1s-1 Matthew & Anastasio, 2006 124 Äq5+]ac

.5 → Äq]a.5+]a5 4.0×10� M-1s-1 Ershov, 2004 125 Äq5 + ]S\.5 → Äq∙ + ]S\c5 1.0×10{ M-1s-1 Mertens & von Sonntag, 1995 126 Äq5 + S.5 → pqrstuV 2.2×10j M-1s-1 Rabani & Zehavi, 1971 127 Äq]ac

5 → ]ac + Äq5 9.0×10\ s-1 Ershov, 2004 128 Äq]ac

5 + Äq5 → Äqc]a5 + ]a5 3.0×10j M-1s-1 Ershov, 2004 129 HBr→ R8 + Äq5 5.0×10b� s-1 Yang et al 2014 130 Äqc + Äq5 → Äq\5 9.6×10j M-1s-1 Matthew & Anastasio, 2006 131 Äqc + RSc∙ → Äqc. +Sc+R8 1.1×10j M-1s-1 Matthew & Anastasio, 2006 132 Äqc + Sc∙5 → Äqc.5+Sc 5.6×10� M-1s-1 Matthew & Anastasio, 2006 133 Äqc + RcS → RSÄq + R8 + Äq5 9.7×10bs-1 Matthew & Anastasio, 2006 134 Äqc + RcSc → RÄq + Sc 1.3×10\ M-1s-1 Wagner & Strehlow, 1987 135 Äqc + ]a5 → Äqc]a5 5.0×10_ M-1s-1 Matthew & Anastasio, 2006 136 Äqc]a5 → +Äqc + ]a5 3.8×10_ s-1 Matthew & Anastasio, 2006 137 Äqc]a5 + ]a5 → Äq]ac

5+Äq5 1.0×10{ M-1s-1 Matthew& Anastasio, 2006 138 Äq\5 → Äqc 5.5×10y s-1 Matthew & Anastasio, 2006 140 Äq\5 + RSc∙ → Äqc.5 + RÄq + Sc 1.0×10y M-1s-1 Matthew & Anastasio, 2006 141 Äq\5 + Sc∙5 → Äqc.5 + Äq5 + Sc 3.8×10� M-1s-1 Matthew & Anastasio, 2006

Page 25: Li ESWRT AOP Modeling Manuscript SI R1 Final · 2016-10-18 · 1 1 SUPPORTING INFORMATION SECTION 2 3 A Mechanistic Understanding of the Degradation of Trace Organic Contaminants

25

142 SÄq5 + R8 → RSÄq 5.0×10b; M-1s-1 Yang et al 2014 143 SÄq5 + RcSc → Äq5 + RcS + Sc 1.2×10| M-1s-1 von Gunten & Oliveras, 1997 144 SÄq5 + SR∙ → ÄqS∙ + SR5 4. 5×10� M-1s-1 Matthew & Anastasio, 2006 145 SÄq5 + Sc∙5 + RcS → Äq. +2SR5 + Sc 2.0×10j M-1s-1 Matthew & Anastasio, 2006 146 SÄq5 + ]S\∙5 → ]S\c5+ÄqS∙ 4.3×10y M-1s-1 Buxton & Dainton 1968 147 SÄq5 + S.5 + R8 → SR5 + ÄqS∙ 2.9×10� M-1s-1 Czapski & Treinin, 1969 148 RSÄq → R8 +SÄq5 7.9×10bs-1 Yang et al 2014 149 RSÄq + Äq5 + R8 → Äqc + RcS 5.0×10� M-1s-1 Eigen & Kustin, 1962 150 RSÄq + RSc5 → Äq5+RcS + Sc 7.6×10j M-1s-1 von Gunten & Oliveras, 1997 151 RSÄq + RcSc → RÄq + RcS + Sc 1.5×10_ M-1s-1 von Gunten & Oliveras, 1997 152 RSÄq + SR.5 → ÄqS∙ + RcS 2.0×10� M-1s-1 Matthew & Anastasio, 2006 153 RSÄq + Sc∙5 → ÄqSR∙5 + Sc 3.5×10� M-1s-1 von Gunten & Oliveras, 1997 154 RSÄq + RSc. → ÄqSR∙5 + R8 + Sc 3.5×10� M-1s-1 Matthew & Anastasio, 2006 155 RSÄq + ]a5 → Äq]a + SR5 5.6×10c M-1s-1 Sander et al., 1977 156 Äq. + RcS → ÄqSR∙5+R8 1.4×10; s-1 Klaning & Wolff, 1985 157 Äq. + SR5 → ÄqSR∙5 1.1×10b; M-1s-1 Zehavi & Rabani, 1972 158 Äq. + Äq5 → Äqc.5 1.2×10b; M-1s-1 Matthew & Anastasio, 2006 159 Äq. + Äq. → Äqc 1.0×10� M-1s-1 Matthew & Anastasio, 2006 160 Äq. + SÄq5 → Äq5 + ÄqS. 4.1×10� M-1s-1 Klaning & Wolff 1985 161 Äq. + RcSc → RSc. + Äq5 + R8 4.0×10� M-1s-1 Matthew & Anastasio, 2006 162 Äq. + RSc. → R8 + Sc + Äq5 1.6×10j M-1s-1 Matthew & Anastasio, 2006 163 Äq. + ]S\c5 → Äq5 + ]S\∙5 2.0×10| M-1s-1 Matthew & Anastasio, 2006 164 Äq. + R]S\5 → Äq5 + ]S\∙5 1.0×10| M-1s-1 Matthew & Anastasio, 2006 165 Äq. + ]a5 → Äq]a.5 1.0×10j M-1s-1 Matthew & Anastasio, 2006 166 Äqc.5 + RcSc → RSc. +2Äq5 + R8 5.0×10c M-1s-1 Matthew & Anastasio, 2006 167 Äqc.5 → Äq. + Äq5 1.9×10_s-1 Matthew & Anastasio, 2006 168 Äqc.5 + Äqc.5 → Äqc + 2Äq5 1.9×10� M-1s-1 Matthew & Anastasio, 2006 169 Äqc.5 + Äq. → Äqc + Äq5 2.0×10� M-1s-1 Matthew & Anastasio, 2006 170 Äqc.5 + RSc. → Sc + 2Äq5 + R8 1.0×10j M-1s-1 Wagner & Strehlow, 1987 171 Äqc.5 + RSc. → RSc. 4.4×10� M-1s-1 Matthew & Anastasio, 2006 172 Äqc.5 + Sc∙5 → Sc + 2Äq5 1.7×10j M-1s-1 Wagner & Strehlow, 1987 173 Äqc.5 + SÄq5 → ÄqS∙ + 2Äq5 6.2×10y M-1s-1 Matthew & Anastasio, 2006 174 Äqc.5 + SR∙ → RSÄq + Äq5 1.0×10� M-1s-1 Wagner & Strehlow, 1987 175 Äqc.5 + SR5 → ÄqSR∙5 + Äq5 2.7×10| M-1s-1 Manou et al., 1977 176 Äqc.5 + ]S\c5 →2Äq5+]S\∙5 1.1×10{ M-1s-1 Matthew & Anastasio, 2006 177 Äqc.5 + R]S\5 →2Äq5 + ]S\∙5 + R8 8.0×10_ M-1s-1 Matthew & Anastasio, 2006 178 Äqc.5 + ]a5 → Äq]a.5 + Äq5 4.3×10| M-1s-1 Ershov, 2004 179 Äqc.5 + ]ac

.5 → Äqc + 2]a5 4.0×10� M-1s-1 Matthew & Anastasio, 2006 180 ÄqSR∙5 → SR∙ + Äq5 3.3×10ys-1 Zehavi and Rabani, 1972 181 ÄqSR∙5 → Äq. + SR5 4.2×10|s-1 Zehavi and Rabani, 1972 182 ÄqSR∙5 + R8 → Äq. + RcS 4.4×10b; M-1s-1 Zehavi and Rabani, 1972 183 ÄqSR∙5 + Äq5 → Äqc.5 + SR5 1.9×10j M-1s-1 Zehavi and Rabani, 1972 184 ÄqSR∙5 + ]a5 → Äq]a.5 + SR5 1.9×10j M-1s-1 Matthew & Anastasio, 2006 185 ÄqcSR5 + R8 → Äqc + RcS 2.0×10b; M-1s-1 Eigen and Kustin, 1962 186 ÄqcSR5 → RSÄq + Äq5 5.0×10�s-1 Eigen and Kustin, 1962 187 Äq]a + RcS → RSÄq + ]a5 + R8 1.0×10{s-1 Matthew & Anastasio, 2006 188 Äq]a + RcSc → RÄq + R]a + Sc 1.3×10_ M-1s-1 Matthew & Anastasio, 2006 189 Äq]a + Sc.5 → Äq]a.5 + Sc 4.0×10� M-1s-1 Matthew & Anastasio, 2006 190 Äq]a + RSc. → Äq]a.5 + Sc + R8 5.0×10j M-1s-1 Matthew & Anastasio, 2006

Page 26: Li ESWRT AOP Modeling Manuscript SI R1 Final · 2016-10-18 · 1 1 SUPPORTING INFORMATION SECTION 2 3 A Mechanistic Understanding of the Degradation of Trace Organic Contaminants

26

191 Äq]a + ]a5 → Äq]ac5 1.0×10| M-1s-1 Matthew & Anastasio, 2006

192 Äq]a + Äq5 → Äqc]a5 3.0×10j M-1s-1 Matthew & Anastasio, 2006 193 Äq]a.5 + SR. → Äq]a + SR5 1.0×10� M-1s-1 Matthew & Anastasio, 2006 194 Äq]a.5 + RSc. → Äq5 + ]a5 + Sc + R8 1.0×10� M-1s-1 Matthew & Anastasio, 2006 195 Äq]a.5 + Sc.5 → Äq5 + ]a5 + Sc 6.0×10j M-1s-1 Matthew & Anastasio, 2006 196 Äq]a.5 + RcSc → Äq5 + R]a + RSc 5.0×10\ M-1s-1 Matthew & Anastasio, 2006 197 Äq]a.5 + SR5 → Äq5 + ]aSR5 3.0×10| M-1s-1 Matthew & Anastasio, 2006 198 Äq]a.5 + SR5 → ÄqSR.5 + ]a5 2.0×10y M-1s-1 Matthew & Anastasio, 2006 199 Äq]a.5 + R]S\5 → Äq5+R]a + ]S\.5 3.0×10| M-1s-1 Matthew & Anastasio, 2006 200 Äq]a.5 + ]S\c5 → Äq5 + ]a5 + ]S\.5 6.0×10| M-1s-1 Matthew & Anastasio, 2006 201 Äq]a.5 + Äq]a.5 → Äq5 + ]a5 + Äq]a 4.7×10� M-1s-1 Matthew & Anastasio, 2006 202 Äq]a.5 + ]ac

.5 →2]a5 + Äq]a 2.0×10� M-1s-1 Matthew & Anastasio, 2006 203 Äq]a.5 + Äqc.5 → Äqc + ]a5 + Äq5 4.0×10� M-1s-1 Matthew & Anastasio, 2006 204 Äq]a.5 → ]a. + Äq5 2.0×10\s-1 Donati 2002 205 Äq]a.5 → ]a5 + Äq. 6.1×10_s-1 Donati 2002 206 Äq]a.5 + Äq5 → Äqc.5 + ]a5 8.0×10� M-1s-1 Ershov, 2004 207 Äq]a.5+]a5 → ]ac

.5 + Äq5 1.1×10c M-1s-1 Ershov, 2004 208 Äqc]a5 → Äq]a + Äq5 1.7×10_s-1 Matthew & Anastasio, 2006 209 Äqc]a5 → Äq]a + ]a5 1.7×10{s-1 Ershov, 2004 210 nSo + SR. → pqrstuV 7.2×104 (mg/L)-1s-1 Jasper and Sedlak, 2013 211 nSo + `S_.5 → pqrstuV 2.5×104 (mg/L)-1s-1 Lutze et al 2015 212 nSo + ]a. → pqrstuV 1.3×104 (mg/L)-1s-1 Fang et al 2014 213 nSo + ]ac

.5 → pqrstuV 1.0×102 (mg/L)-1s-1 Assumed, refer to text S3 214 nSo +]S\.5 → pqrstuV 3.7×102 (mg/L)-1s-1 Jasper and Sedlak 2013 215 nSo + Äq. → pqrstuV 1.0×104 (mg/L)-1s-1 * 216 nSo + Äqc.5 → pqrstuV 1.0×102 (mg/L)-1s-1 * 217 nSo + Äq]a.5 → pqrstuV 1.0×102 (mg/L)-1s-1 * 218 RS]a + ÅÇÉaÉÇÑ → pqrstuV 9.0×103 M-1s-1 * 219 RS]a + 17β − ÑvVqrsÉra → pqrstuV 2.5×102 M-1s-1 * 220 RS]a + vta!ÜáÑVℎrâÜärÑa → pqrstuV 1.0×102 M-1s-1 * 221 RS]a + uÜqãÜáÑäÑpÉÇÑ → pqrstuV 1.0×102 M-1s-1 *

* Rate constants are estimated (detail in Text S3) 216

Page 27: Li ESWRT AOP Modeling Manuscript SI R1 Final · 2016-10-18 · 1 1 SUPPORTING INFORMATION SECTION 2 3 A Mechanistic Understanding of the Degradation of Trace Organic Contaminants

27

Table S2 Compound structure and their quantum yield, extinction coefficient and direct 217

photolysis rate 218

Compound Name

Structure

Direct Photolysis Rate

(s-1)

Reference

17b-estradiol

Negligible

Mendez et al., 2010

1,4-dioxane

Negligible

Stefan and

Bolton, 1998

Phenol

2.1 ´ 10-4*

Prahl, 2012

Aniline

Negligible

Tang et al., 2010

Carbamazepine

4.6´10-4*

Pereira et al.,

Sulfamethoxazole

1.1 ´ 10-4*

Zhang et al., 2015

Natural Organic Matter (NOM)

1.8 ´ 10-10*

Jasper et al., 2013 Doll & Frimmel,

2003 * Calculated based on Equations 1-3 in the main text. FNOM=3.7 ´ 10-5 mole/Einstein, 219

εNOM=5.0´10-2 L mg-1cm-1, Fphenol=4.15´10-2 mole/Einstein, elphenol=7.50´102 M-1cm-1, Fcarba= 220

6.0´10-4 mole/Einstein, elcarba=8.0´103 M-1cm-1 (2007), Fsmx= 7.2´10-2 mole/Einstein, 221

elsmx=1.6´104 M-1cm-1. 222

Page 28: Li ESWRT AOP Modeling Manuscript SI R1 Final · 2016-10-18 · 1 1 SUPPORTING INFORMATION SECTION 2 3 A Mechanistic Understanding of the Degradation of Trace Organic Contaminants

28

Table S3 Rate constants of reactions between selected organic contaminants and radicals 223 224

Contaminant HO• (M-1s-1) SO4•- (M-1 s-1) Cl• (M-1 s-1) Cl2

•- (M-1 s-1) ClOH•- (M-1 s-1)

17b-estradiol 1.4´1010 1.2´109 1.3-1.6´1010* 2.0-2.4´107 * 2.0-2.4´107 *

Rosenfeldt and Linden, 2004

Rickman et al., 2010

Phenol 6.6´109 8.8´109 2.5´1010 3.2´108 5.0-6.0´106 *

Lindsey and Tarr, 2000

Lindsey and Tarr, 2000 Alfassi et al, 1989 Alfassi et al, 1990

Aniline 8.6´109 9.0´109 4.0´1010 3.4-4.1´108 3.4-4.1´108

Qin et al., 1985 Ahmed et al., 2012 Alfassi et al., 1989

Sulfamethoxazole 4.9´109 1.3´1010 4.4~5.4´109* 4.0-4.8´108 * 4.0-4.8´108 *

Boreen et al., 2004/2005 Ahmed et al. 2012

1,4-dioxane 3.1´109 4.1´107 2.8-3.4´109* 1.0´105-6* 1.0´105-6*

Eibenberger, 1980 Huie et al., 1991

Carbamazepine 2.1´109 8.8´109 1.8-3.7´109* 2.1-2.5´106 * 2.1-2.5´106 *

Vogna et al., 2004 Huber et al., 2003 225

Page 29: Li ESWRT AOP Modeling Manuscript SI R1 Final · 2016-10-18 · 1 1 SUPPORTING INFORMATION SECTION 2 3 A Mechanistic Understanding of the Degradation of Trace Organic Contaminants

29

Table S3 (Continued from the previous page) 226

Contaminant CO3.- (M-1 s-1) Br. (M-1 s-1) Br2

.- (M-1 s-1) ClBr.- (M-1 s-1)

17β-estradiol 2.2´107 1.3-1.6´109* 2.0-2.4´107 * 2.0-2.4´107 *

Jasper and Sedlak, 2013

Phenol 4.9´106 5.9-7.3´108 * 6.0´106 5.0-6.0´106 *

Chen et al., 1975 Simic et al., 1974

Aniline 5.4´108 7.7-9.5´108 * 2.1´108 3.4-4.1´108

Chen et al., 1975 Qin et al., 1985

Sulfamethoxazole 4.4´108 4.4-5.4´108* 4.0-4.8´108 * 4.0-4.8´108 *

Jasper and Sedlak, 2013

1,4-dioxane 1.0´102-6* 1.2´106 1.0´105-6* 1.0´105-6*

Chen et al., 1975 Scaiano et al., 1993

Carbamazepine 2.3´106 7.9-9.7´109* 2.1-2.5´106 * 2.1-2.5´106 *

Jasper and Sedlak, 2013

* Rates constants are estimated base on the known reactivity of radicals with other similar compounds (details in Text S3) 227

Page 30: Li ESWRT AOP Modeling Manuscript SI R1 Final · 2016-10-18 · 1 1 SUPPORTING INFORMATION SECTION 2 3 A Mechanistic Understanding of the Degradation of Trace Organic Contaminants

30

References 228

Ahmed, M. M., Barbati, S., Doumenq, P., Chiron, S., 2012. Sulfate radical anion 229

oxidation of diclofenac and sulfamethoxazole for water decontamination. Chemical 230

Engineering Journal, 197, 440-447. 231

Alfassi, Z. B., Huie, R. E., Mosseri, S., Neta, P., 1988. Kinetics of one-electron 232

oxidation by the ClO radical. International Journal of Radiation Applications and 233

Instrumentation. Part C. Radiation Physics and Chemistry. 32 (1), 85-88. 234

Alfassi, Z. B., Huie, R. E., Neta, P., Shoute, L. C. T., 1990. Temperature dependence of 235

the rate constants for reaction of inorganic radicals with organic reductants. Journal of 236

Physical Chemistry. 94 (25), 8800-8805. 237

Alfassi, Z. B., Mosseri, S., Neta, P., 1989. Reactivities of chlorine atoms and peroxyl 238

radicals formed in the radiolysis of dichloromethane. The Journal of Physical 239

Chemistry. 93 (4), 1380-1385. 240

Baxendale, J. H., Wilson, J. A., 1957. The photolysis of hydrogen peroxide at high light 241

intensities. Transactions of the Faraday Society, 53, 344-356. 242

Beck, G. 1969. Elektrische leitfähigkeitsmessungen zum nachweis geladener 243

zwischenprodukte der pulsradiolyse. International Journal for Radiation Physics and 244

Chemistry. 1 (3), 361-371. 245

Bielski, B. H. J., Cabelli, D. E., Arudi, R. L., Ross, A. B., 1985. Reactivity of HO2/O−2 246

radicals in aqueous solution. Journal of Physical and Chemical Reference Data. 14 (4), 247

1041-1100. 248

Bjergbakke, E., Navaratnam, S., Parons, B. J., Swallow, A. J., 1981. Reaction between 249

HO2• and chlorine in aqueous-solution. Journal of the American Chemical Society. 103 250

(19), 5926-5928. 251

Page 31: Li ESWRT AOP Modeling Manuscript SI R1 Final · 2016-10-18 · 1 1 SUPPORTING INFORMATION SECTION 2 3 A Mechanistic Understanding of the Degradation of Trace Organic Contaminants

31

Black, E. D., Hayon, E., 1970. Pulse radiolysis of phosphate anions H2PO4-, HPO4

2-, 252

PO43-, and P2O7

4- in aqueous solutions. The Journal of Physical Chemistry. 74 (17), 253

3199-3203. 254

Bunce, N. J., Ingold, K. U., Landers, J. P., Lusztyk, J., Scaiano, J. C., 1985. Kinetic study 255

of the photochlorination of 2, 3-dimethylbutane and other alkanes in solution in the 256

presence of benzene. First measurements of the absolute rate constants for hydrogen 257

abstraction by the "free" chlorine atom and the chlorine atom-benzene. pi-complex. 258

Identification of these two species as the only hydrogen abstractors in these systems. 259

Journal of the American Chemical Society. 107 (19), 5464-5472. 260

Buxton, G. V., Greenstock, C. L., Helman, W. P., Ross, A. B., 1988. Critical review of 261

rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl 262

radicals (•OH/•O− in aqueous solution. Journal of Physical and Chemical Reference 263

Data. 17 (2), 513-886. 264

Buxton, G. V., Salmon, G. A., Wood, N. D., 1990. A pulse radiolysis study of the 265

chemistry of oxysulphur radicals in aqueous solution. In Physico-Chemical Behaviour 266

of Atmospheric Pollutants. 245-250. Springer Netherlands. 267

Buxton, G. V., Dainton, F. S., 1968. The radiolysis of aqueous solutions of oxybromine 268

Compounds; the spectra and reactions of BrO and BrO_2. Proceedings of the Royal 269

Society of London. Series A. Mathematical and Physical Sciences. 304 (1479), 427-270

439. 271

Chen, S. N., Hoffman, M. Z., Parsons Jr, G. H., 1975. Reactivity of the carbonate radical 272

toward aromatic compounds in aqueous solution. The Journal of Physical Chemistry. 273

79 (18), 1911-1912. 274

Christensen, H., Sehested, K., and Corfitzen, H., 1982. Reactions of hydroxyl radicals 275

with hydrogen peroxide at ambient and elevated temperatures. The Journal of Physical 276

Chemistry. 86 (9), 1588-1590. 277

Page 32: Li ESWRT AOP Modeling Manuscript SI R1 Final · 2016-10-18 · 1 1 SUPPORTING INFORMATION SECTION 2 3 A Mechanistic Understanding of the Degradation of Trace Organic Contaminants

32

Connick, R. E., 1947. The interaction of hydrogen peroxide and hypochlorous acid in 278

acidic solutions containing chloride ion. Journal of the American Chemistry Society. 279

69 (6), 1509-1514. 280

Crittenden, J. C., Hu, S., Hand, D. W., Green, S. A., 1999. A kinetic model for H2O2/UV 281

process in a completely mixed batch reactor. Water Research, 33 (10), 2315-2328. 282

Czapski, G., Treinin, A., 1969. Flash photolysis of the oxybromine anions. Israel Journal 283

of Chemistry. 7 (3), 351-359. 284

Das, T., 2001. Reactivity and role of SO5•- radical in aqueous medium chain oxidation of 285

sulfite to sulfate and atmospheric sulfuric acid generation. The Journal of Physical 286

Chemistry A. 105 (40), 9142-9155. 287

Gallard, H., and von Gunten, U. (2002). Chlorination of Phenols: Kinetics and formation 288

of chloroform. Environmental Science & Technology, 36 (5), 884-890. 289

Dogliotti, L., Hayon, E., 1967. Flash photolysis of persulfate ions in aqueous solutions. 290

Study of he sulfate and ozonide radical anions. The Journal of Physical Chemistry. 71 291

(8), 2511-2516. 292

Doll, T. E., Frimmel, F. H., 2003. Fate of pharmaceuticals––photodegradation by 293

simulated solar UV-light. Chemosphere, 52 (10), 1757-1769. 294

Donati, A., 2002. Spectroscopic and Kinetic Investigations of Halogen Containing 295

Radicals in the Tropospheric Aqueous Phase (Doctoral dissertation). 296

Draganić, Z. D., Negron-Mendoza, A., Sehested, K., Vujošević, S. I., Navarro-Gonzales, 297

R., Albarran-Sanchez, M. G., Draganić, I. G., 1991. Radiolysis of aqueous solutions of 298

ammonium bicarbonate over a large dose range. International Journal of Radiation 299

Applications and Instrumentation. Part C. Radiation Physics and Chemistry. 38 (3), 300

317-321. 301

Eibenberger, J., Schulte-Frohlinde, D., Steenken, S., 1980. One-electron oxidation of. 302

alpha.-monoalkoxyalkyl radicals by tetranitromethane via an intermediate adduct. 303

Page 33: Li ESWRT AOP Modeling Manuscript SI R1 Final · 2016-10-18 · 1 1 SUPPORTING INFORMATION SECTION 2 3 A Mechanistic Understanding of the Degradation of Trace Organic Contaminants

33

Influence of the radical structure on the rate of decomposition of the adduct. The 304

Journal of Physical Chemistry. 84 (7), 704-710. 305

Elliot, A. J. 1989. A pulse radiolysis study of the temperature dependence of reactions 306

involving H, OH and e-aq in aqueous solutions. International Journal of Radiation 307

Applications and Instrumentation. Part C. Radiation Physics and Chemistry. 34 (5), 308

753-758. 309

Eigen, M., Kustin, K., 1962. The kinetics of halogen hydrolysis. Journal of the American 310

Chemical Society. 84 (8), 1355-1361. 311

Elliot, A. J., McCracken, D. R., 1989. Effect of temperature on O� reactions and 312

equilibria: A pulse radiolysis study. International Journal of Radiation Applications 313

and Instrumentation. Part C. Radiation Physics and Chemistry. 33 (1), 69-74. 314

Ershov, B.G., 2004. Kinetics, mechanism and intermediates of some radiation-induced 315

reactions in aqueous solutions. Uspekhi. Khimii. 73 (1), 107-120. 316

Fang, J., Fu, Y., Shang, C., 2014. The roles of reactive species in micropollutant 317

degradation in the UV/free chlorine system. Environmental Science & Technology. 48 318

(3), 1859-1868. 319

Grabner, G., Getoff, N., Schwoerer, F., 1973. Pulsradiolyse von H3PO4, H2PO4-, HPO4

2-320

and P2O74- in Wässriger Lösung—I. Geschwindigkeitskonstanten der reaktionen mit 321

den primärprodukten der wasserradiolyse. International Journal for Radiation Physics 322

and Chemistry. 5 (5), 393-403. 323

Grebel, J. E., Pignatello, J. J., Mitch, W. A., 2010. Effect of halide ions and carbonates on 324

organic contaminant degradation by hydroxyl radical-based advanced oxidation 325

processes in saline waters. Environmental Science & Technology. 44 (17), 6822-6828. 326

Grigorev, A. E., Makarov, I. E., Pikaev, A. K., 1987. Formation of Cl2- in the bulk 327

solution during the radiolysis of concentrated aqueous-solutions of chlorides. High 328

Energy Chemistry. 21 (2), 99-102. 329

Page 34: Li ESWRT AOP Modeling Manuscript SI R1 Final · 2016-10-18 · 1 1 SUPPORTING INFORMATION SECTION 2 3 A Mechanistic Understanding of the Degradation of Trace Organic Contaminants

34

Heckel, E., Henglein, A., Beck, G., 1966. Pulsradiolytische untersuchung des 330

radikalanions SO4•- Berichte der Bunsengesellschaft für physikalische Chemie. 70 (2), 331

149-154. 332

Herrmann, H., Reese, A., Zellner, R., 1995. Time-resolved UV/VIS diode-array 333

absorption spectroscopy of SOx- (x=3, 4, 5) radical anions in aqueous solution. Journal 334

of Molecular Structure. 348, 183-186. 335

Hoigné, J., 1998. Chemistry of aqueous ozone and transformation of pollutants by 336

ozonation and advanced oxidation processes. The Handbook of Environmental 337

Chemistry. 5 (Part C), 83-141. 338

Huber, M. M., Canonica, S., Park, G. Y., von Gunten, U., 2003. Oxidation of 339

pharmaceuticals during ozonation and advanced oxidation processes. Environmental 340

Science & Technology, 37 (5), 1016-1024. 341

Huie, R. E., Clifton, C. L., Neta, P., 1991. Electron transfer reaction rates and equilibria 342

of the carbonate and sulfate radical anions. International Journal of Radiation 343

Applications and Instrumentation. Part C. Radiation Physics and Chemistry. 38 (5), 344

477-481. 345

Ilan, Y., Rabani, J., 1976. On some fundamental reactions in radiation chemistry: 346

Nanosecond pulse radiolysis. International Journal for Radiation Physics and 347

Chemistry. 8 (5), 609-611. 348

Jayson, G., Parsons, B., Swallow, A. J., 1973. Some simple, highly reactive, inorganic 349

chlorine derivatives in aqueous solution. Their formation using pulses of radiation and 350

their role in the mechanism of the Fricke dosimeter. Journal of the Chemical Society. 351

Faraday Transaction 1: Physical Chemistry in Condensed Phases. (69), 1597- 1607. 352

Jasper, J. T., Sedlak, D. L., 2013. Phototransformation of wastewater-derived trace 353

organic contaminants in open-water unit process treatment wetlands. Environmental 354

Science & Technology. 47 (19), 10781-10790. 355

Page 35: Li ESWRT AOP Modeling Manuscript SI R1 Final · 2016-10-18 · 1 1 SUPPORTING INFORMATION SECTION 2 3 A Mechanistic Understanding of the Degradation of Trace Organic Contaminants

35

Jiang, P. Y., Katsumura, Y., Domae, M., Ishikawa, K., Nagaishi, R., Ishigure, K., 356

Yoshida, Y., 1992. Pulse radiolysis study of concentrated phosphoric acid solutions. 357

Journal of the Chemical Society. Faraday Transactions. 88 (22), 3319-3322. 358

Lutze, H. V., Kerlin, N., Schmidt, T. C., 2015. Sulfate radical-based water treatment in 359

presence of chloride: Formation of chlorate, inter-conversion of sulfate radicals into 360

hydroxyl radicals and influence of bicarbonate. Water Research. 72, 349-360. 361

Kläning, U. K., Wolff, T., 1985. Laser flash photolysis of HCIO, CIO−, HBrO, and BrO− 362

in aqueous solution. Reactions of Cl- and Br-Atoms. Berichte der Bunsengesellschaft 363

für physikalische Chemie. 89 (3), 243-245. 364

Koppenol, W. H., Butler, J., van Leeuwen, J. W., 1978. The haber-weiss cycle. 365

Photochemistry and Photobiology. 28 (4-5), 655-658. 366

Lilie, J., Henglein, A., Hanrahan, R. J. 1978. Reactions of the carbonate radical anion 367

with organic and inorganic solutes in aqueous solution. 176th Meeting American 368

Chemical Society. Miami Beach, Fla. 369

Lindsey, M. E., Tarr, M. A., 2000. Inhibition of hydroxyl radical reaction with aromatics 370

by dissolved natural organic matter. Environmental Science & Technology. 34 (3), 371

444-449. 372

Mamou, A., Rabani, J., Behar, D., 1977. Oxidation of aqueous bromide (1-) by hydroxyl 373

radicals, studies by pulse radiolysis. The Journal of Physical Chemistry. 81 (15), 374

1447-1448. 375

Mártire, D. O., Rosso, J. A., Bertolotti, S., Le Roux, G. C., Braun, A. M., Gonzalez, M. 376

C. 2001. Kinetic study of the reactions of chlorine atoms and Cl2- radical anions in 377

aqueous solutions. II. toluene, benzoic acid, and chlorobenzene. The Journal of 378

Physical Chemistry A. 105 (22), 5385-5392. 379

Page 36: Li ESWRT AOP Modeling Manuscript SI R1 Final · 2016-10-18 · 1 1 SUPPORTING INFORMATION SECTION 2 3 A Mechanistic Understanding of the Degradation of Trace Organic Contaminants

36

Matthew, B. M., Anastasio, C., 2006. A chemical probe technique for the determination 380

of reactive halogen species in aqueous solution: Part 1 - bromide solutions. 381

Atmospheric Chemistry and Physics. 6 (9), 2423-2437. 382

Mark, G., Schuchmann, M. N., Schuchmann, H. P. von Sonntag, C., 1990. The 383

photolysis of potassium peroxodisulphate in aqueous solution in the presence of tert-384

butanol: a simple actinometer for 254 nm radiation. Journal of Photochemistry and 385

Photobiology A: Chemistry. 55 (2), 157-168. 386

Maruthamuthu, P., Neta, P., 1977. Radiolytic chain decomposition of 387

peroxomonophosphoric and peroxomonosulfuric acids. The Journal of Physical 388

Chemistry. 81 (10), 937-940. 389

Maruthamuthu, P., Neta, P., 1978. Phosphate radicals. Spectra, acid-base equilibriums, 390

and reactions with inorganic compounds. The Journal of Physical Chemistry. 82 (6), 391

710-713. 392

Mcelroy, W. J., 1990. A laser photolysis study of the reaction of SO4- with Cl- and the 393

subsequent decay of Cl2- in aqueous-solution. Journal of Physics. 94 (6), 2435-2441. 394

Mendez, A. S., Deconto, L., Garcia, C. V., 2010. UV derivative spectrophotometric 395

method for determination of estradiol valerate in tablets. Química Nova, 33 (4), 981-396

983. 397

Mertens, R., and von Sonntag, C., 1995. Photolysis (λ= 354 nm of tetrachloroethene in 398

aqueous solutions. Journal of Photochemistry and Photobiology A: Chemistry. 85, (1), 399

1-9. 400

Neta, P., and Dorfman, L. M., 1968. Pulse radiolysis studies. XIII. Rate constants for the 401

reaction of hydroxyl radicals with aromatic compounds in aqueous solutions. Ohio 402

State Univ., Columbus. 403

Page 37: Li ESWRT AOP Modeling Manuscript SI R1 Final · 2016-10-18 · 1 1 SUPPORTING INFORMATION SECTION 2 3 A Mechanistic Understanding of the Degradation of Trace Organic Contaminants

37

Neta, P., Madhavan, V., Zemel, H., Fessenden, R. W. 1977. Rate constants and 404

mechanism of reaction of sulfate radical anion with aromatic compounds. Journal of 405

the American Chemical Society. 99 (1), 163-164. 406

NIST Standard Reference Database 40: NDRL/NIST Solutions Kinetics Database V. 407

3.0, Gaithersburg, MD. 408

Nowell, L.H., Hoigné, J., 1992. Photolysis of aqueous chlorine at sunlight and 409

ultraviolet wavelengths—I. Degradation rates. Water Research. 26 (5), 593-598. 410

Padmaja, S., Neta, P., Huie. R. E., 1993. Rate constants for some reactions of inorganic 411

radicals with inorganic ions. Temperature and solvent dependence. International 412

Journal of Chemical Kinetics. 25 (6), 445-455. 413

Pereira, V. J., Linden, K. G., Weinberg, H. S., 2007. Evaluation of UV irradiation for 414

photolytic and oxidative degradation of pharmaceutical compounds in water. Water 415

Research, 41(19), 4413-4423. 416

Peyton, G. R., 1993. The free-radical chemistry of persulfate-based total organic carbon 417

analyzers. Marine Chemistry. 41 (1-3), 91-103. 418

Prahl, S., 2012. Phenol. URL: http://omlc.org/spectra/PhotochemCAD/html/072.html. 419

Qin, L., Tripathi, G. N. R., Schüler, R. H., 1985. Radiation chemical studies of the 420

oxidation of aniline in aqueous solution. Zeitschrift für Naturforschung A. 40 (10), 421

1026-1039. 422

Rabani, J., Zehavi, D., 1971. Pulse radiolytic investigation of Oaq-radical ions. The 423

Journal of Physical Chemistry. 75 (11), 1738-1744. 424

Sander, R., Vogt, R., Harris, G. W., Crutzen, P. J., 1997. Modelling the chemistry of 425

ozone, halogen compounds, and hydrocarbons in the arctic troposphere during spring. 426

Tellus B. 49 (5), 522-532. 427

Page 38: Li ESWRT AOP Modeling Manuscript SI R1 Final · 2016-10-18 · 1 1 SUPPORTING INFORMATION SECTION 2 3 A Mechanistic Understanding of the Degradation of Trace Organic Contaminants

38

Sehested, K., Holcman, J. Bjergbakke, E., Hart, E. J., 1982. Ultraviolet spectrum and 428

decay of the ozonide ion radical, O3-, in strong alkaline solution. The Journal of 429

Physical Chemistry. 86 (11). 2066-2069. 430

Rickman, K. A., Mezyk, S. P., 2010. Kinetics and mechanisms of sulfate radical 431

oxidation of β-lactam antibiotics in water. Chemosphere. 81 (3), 359-365. 432

Stefan, M. I., Bolton, J. R., 1998. Mechanism of the degradation of 1,4-dioxane in dilute 433

aqueous solution using the UV/hydrogen peroxide process. Environmental Science & 434

Technology. 32 (11), 1588-1595. 435

Redpath, J. L., Willson, R. L., 1975. Chain reactions and radiosensitization: model 436

enzyme studies. International Journal of Radiation Biology, 27 (4), 389-398. 437

Rosenfeldt, E. J., Linden, K. G., 2004. Degradation of endocrine disrupting chemicals 438

bisphenol A, ethinyl estradiol, and estradiol during UV photolysis and advanced 439

oxidation processes. Environmental Science & Technology. 38 (20), 5476-5483. 440

Scaiano, J. C., Barra, M., Krzywinski, M., Sinta, R., Calabrese, G., 1993. Laser flash 441

photolysis determination of absolute rate constants for reactions of bromine atoms in 442

solution. Journal of the American Chemical Society. 115 (18), 8340-8344. 443

Sehested, K., Rasmussen, O. L., Fricke, H., 1968. Rate constants of OH with HO2, O2-, 444

and H2O2+ from hydrogen peroxide formation in pulse-irradiated oxygenated water. 445

The Journal of Physical Chemistry. 72 (2), 626-631. 446

Simic, M., Powers, E. L., Centilli, M., Cross, M., 1974. Radiation sensitization of 447

bacterial spores and phage T7 by NaBr. International Journal of Radiation Biology and 448

Related Studies in Physics, Chemistry and Medicine. 25 (1), 43-50. 449

Tang, H., Li, J., Bie, Y., Zhu, L., Zou, J., 2010. Photochemical removal of aniline in 450

aqueous solutions: switching from photocatalytic degradation to photo-enhanced 451

polymerization recovery. Journal of Hazardous materials. 175 (1), 977-984. 452

Page 39: Li ESWRT AOP Modeling Manuscript SI R1 Final · 2016-10-18 · 1 1 SUPPORTING INFORMATION SECTION 2 3 A Mechanistic Understanding of the Degradation of Trace Organic Contaminants

39

Vogna, D., Marotta, R., Napolitano, A., Andreozzi, R., d’Ischia, M., 2004. Advanced 453

oxidation of the pharmaceutical drug diclofenac with UV/H2 O2 and ozone. Water 454

Research. 38 (2), 414-422. 455

von Gunten, U., Oliveras, Y., 1997. Kinetics of the reaction between hydrogen peroxide 456

and hypobromous acid: implication on water treatment and natural systems. Water 457

Research. 31 (4), 900-906. 458

Wagner, I., Karthaeuser, J., Strehlow H., 1986. On the decay of the dichloride anion Cl2- 459

in aqueous solution. Ber. Bunsenges. The Journal of Physical Chemistry. 90. 861-867. 460

Wagner, I., Strehlow, H., 1987. On the flash photolysis of bromide ions in aqueous 461

solutions. Berichte der Bunsengesellschaft für physikalische Chemie. 91 (12), 1317-462

1321. 463

Wander, R., Neta, P., Dorfman, L. M. 1968. Pulse radiolysis studies. XII. Kinetics and 464

spectra of the cyclohexadienyl radicals in aqueous benzoic acid solution. The Journal 465

of Physical Chemistry. 72 (8), 2946-2949. 466

Wang, T. X., Margerum, D. W., 1994. Kinetics of reversible chlorine hydrolysis: 467

temperature dependence and general-acid/base-assisted mechanisms. Inorganic 468

Chemistry. 33 (6), 1050-1055. 469

Watts M., Linden K., 2007. Chlorine photolysis and subsequent OH radical production 470

during UV treatment of chlorinated water. Water Research. 41 (13), 2871-2878. 471

Weinstein, J., Bielski, B. H. J., 1979. Kinetics of the interaction of perhydroxyl and 472

superoxide radicals with hydrogen peroxide. The Haber-Weiss reaction. Journal of the 473

American Chemical Society. 101 (1), 58-62. 474

Wine, P. H., Tang, Y., Thorn, R. P., Wells, J. R., Davis, D. D., 1989. Kinetics of aqueous 475

phase reactions of the SO4− radical with potential importance in cloud chemistry. 476

Journal of Geophysical Research: Atmospheres. (1984–2012) 94 (D1). 1085-1094. 477

Page 40: Li ESWRT AOP Modeling Manuscript SI R1 Final · 2016-10-18 · 1 1 SUPPORTING INFORMATION SECTION 2 3 A Mechanistic Understanding of the Degradation of Trace Organic Contaminants

40

Wu, D., Wong, D., Dibartolo, B., 1980. Evolution of Cl2- in aqueous NaCl solution. 478

Journal of Photochemistry. 14 (4), 303-310. 479

Xiao, D., Yu, D., Xu, X., Yu, Z., Cheng, M., Du, Y., Zheng, W., Zhu, Q., Zhang, C., 480

2009. Theoretical and REMPI spectroscopic study on phenylhydrazine and 481

phenylhydrazine–(Ar)n (n= 1, 2) van der Waals complexes. Physical Chemistry 482

Chemical Physics, 11 (18), 3532-3538. 483

Xie, P., Ma, J., Liu, W., Zou, J., Yue, S., Li, X., Wiesner, M. R., Fang, J., 2015. Removal 484

of 2-MIB and geosmin using UV/persulfate: Contributions of hydroxyl and sulfate 485

radicals. Water Research. 69, 223-233. 486

Yang, Y., Pignatello, J. J., Ma, J., Mitch, W. A., 2014. Comparison of halide impacts on 487

The efficiency of contaminant degradation by sulfate and hydroxyl radical-based 488

advanced oxidation processes (AOPs). Environmental Science & Technology. 48 (4), 489

2344-2351. 490

Yermakov, A. N., Zhitomirsky, B. M., Poskrebyshev, G. A., Stoliarov, S. I., 1995. 491

Kinetic study of SO5- and HO2 radicals reactivity in aqueous phase bisulfite oxidation. 492

The Journal of Physical Chemistry. 99 (10), 3120-3127. 493

Yu, X. Y., Bao, Z. C., Barker, J. R., 2004. Free radical reactions involving Cl, Cl2-, and 494

SO4- in the 248 nm photolysis of aqueous solutions containing S2O8

2- and Cl-. The 495

Journal of Physical Chemistry A. 108 (2), 295-308. 496

Yu, X. Y., Barker, J. R., 2003. Hydrogen peroxide photolysis in acidic aqueous solutions 497

containing chloride ions. I. Chemical mechanism. The Journal of Physical Chemistry 498

A. 107 (9), 1313-1324. 499

Zehavi, D., Rabani, J., 1972. Oxidation of aqueous bromide ions by hydroxyl radicals. 500

Pulse radiolytic investigation. The Journal of Physical Chemistry. 76 (3), 312-319. 501

Zhang, R., Sun, P., Boyer, T. H., Zhao, L., Huang, C. H., 2015. Degradation of 502

Pharmaceuticals and Metabolite in Synthetic Human Urine by UV, UV/H2O2, and 503

UV/PDS. Environmental Science & Technology. 49 (5), 3056-3066. 504